
Figure 2: A triangulation
(top) and its resulting circle
packing (bottom).
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Abstract
We present a novel approach to creating flat maps of the brain. Our
approach attempts to preserve the conformal structure between the original
cortical surface in 3-space and the flattened surface. We demonstrate
this with data from the human cerebellum. Our maps exhibit quasi-
conformal behavior and offer several advantages over existing approaches.

Introduction
� The convoluted surface of the brain, fold complexity and anatomical

variability make it difficult to compare anatomical and functional
information within and between subjects.

� Current visualization techniques (such as projecting functional data
onto a rendered cortical surface) make it difficult to compare the
location and extent of activated foci. For example, foci buried in
deep sulci may appear on the cortical surface and widely separated
foci on opposite walls of a sulcus  may appear to be close together.

Surface Flattening
� The surface representing the cortical grey matter is topologically

equivalent to a two-dimensional sheet.
� Thus, it is possible to unfold or flatten this surface to create a 2D flat

map of the cortex.
� This surface-based approach can assist in visualizing and comparing

cortical folding patterns and help to resolve some of the problems
which exist in traditional visualization techniques.

� However, it is impossible to flatten a curved surface in 3D space
without metric and areal distortion.

� The Riemann Mapping Theorem [1] implies that it is theoretically
possible to preserve conformal (angular) information under flattening.

Quasi-Conformal Flattening
� Begin with a a piecewise flat triangulated surface in 3D space that is

topologically a 2D disk:
� each edge of the triangluated mesh is either an interior edge

contained in exactly two triangles or a boundary edge contained
in exactly one triangle;

� there is one boundary component which is a single closed chain
of boundary edges forming the boundary of the surface.

� A piecewise flat triangulated surface representing the cortex carries
the structure of a Riemann surface [2]:
� the measure of an angle based at a point other than one of the

triangle vertices is the Euclidean measure of that angle;
� the measure of an angle based at a vertex is the Euclidean measure

linearly rescaled so the total angle measure is 2π;
� a triangle vertex v belongs to k triangle faces, giving k angles at

v;
� the angle sum Θ(v) about the vertex v is the sum of these these

Euclidean angles about v;
� the scale factor used at v for measuring angles is then 2π/Θ(v);
� a vertex v with Euclidean measure θ  has measure 2πθ /Θ(v) in

the complex atlas of the Riemann surface.

The Riemann Mapping Theorem (1854):
If D is any simply-connected open set on a surface with a distinguished
point a ε D and a specified direction (tangent vector) through a, then
there is a UNIQUE conformal map (1-1 bijection) which takes D to
the interior of the unit circle Ω in the plane, with a         0 and the
specified direction pointed in the positive X direction [2] (see Figure 1).

Figure 3: Example of how positive curvature (left) and negative curvature (right) are represented
in the plane and how the circles need to be adjusted to achieve a circle packing (middle).

Approximating Conformal Mappings using Circle
Packings

The Circle Packing Theorem [3] states that
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The Ring Lemma [4] guarantees that this circle packing mapping is quasi-
conformal, meaning there is a bounded amount of angular distortion.

� An initial circle packing of a surface is obtained by using the
combinatorial data from the surface contained in its abstract
triangulation.

� A set of circles can be “flattened”  so that the circles fit together in
the plane if  Θ(v) = 2π.

� To “flatten” a surface at the interior vertices:
� when Θ(v) < 2π  there is positive curvature (cone point) which

is represented by a gap between the circles around v, so shrink
the circles around v until all the circles around v are tangent;

� when Θ(v) = 2π  there is zero curvature and the map is already
flat at v;

� when Θ(v) > 2π there is negative curvature (saddle point) which
is represented by overlapping circles in the plane, so expand the
circles around v until all the circles around v are tangent (see
Figure 3).

Figure 1: Example of a conformal map.

��A circle packing is a configuration of
circles with a specified pattern of
tangencies (see Figure 2).
��Given a piecewise flat triangulation K
of a surface, a circle packing for K is a
collection of circles in the plane where:
� there is one circle C(v) for each vertex v

of K;
� circles C(v) and C(w) are tangent when

the vertices v and w form an edge of K.

Flattening the Cerebellum
� We chose to flatten the cerebellum in an effort to facilitate the

description of activated cerebellar foci in functional neuroimaging.
� The cerebellum was extracted from a high resolution MRI scan [6]

and a topologically correct triangulated surface representing the
cerebellar surface was produced (see Figures 4 and 5). Regions were
colored to correspond to various lobes and fissures.

CONFORMAL MAPPINGS EXIST: a conformal map preserves angle
proportions.

Figure 5: A triangulated surface representing the cerbellum was produced from a high-resolution
MRI (middle left). This surface was flattened using our quasi-conformal approach to produce
maps in the Euclidean plane (bottom left), hyperbolic plane (middle right) and on a sphere (bottom
right). Functional PET data from a target interception experiment (top) was superimposed on
these to display the activation on the maps.

� A single closed
boundary was introduced
around the brain stem and
along the walls and apex of the
fourth ventricle to act as the
boundary of the flattened maps.

� Our quasi-conformal flattening
procedure was applied to this
surface to produce a number of
flat maps [7] (see Figure 5).

� PET data from a target
interception experiment can be displayed on the maps.

Figure 4: Cerebellum extracted from MRI scan.

Discussion: Advantages of Our Approach
� We have introduced a novel approach for unfolding and flattening

the cortical surface which attempts to preserve the conformal structure
of the original surface.

� Conformal mappings control and minimize angular distortion.
� Conformal mappings are canonical and hence mathematically unique.
� Extraneous cuts in the surface are not required to reduce distortion.
� Flattening can be done in the Euclidean and hyperbolic planes and

mapping to a sphere is also possible.
� A coordinate system can be easily imposed on the maps by specifying

two anatomical landmarks.
� The map origin of the hyperbolic maps can be transformed

interactively to alter the location of map distortion.
� Fast compution times ( minutes)  with real time user interaction.
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� Iteratively repeat this procedure at each vertex to obtain a circle
packing.

� Closer approximations to the actual conformal mappings can be
obtained by:
� if vertices v and w are connected by an edge, then the distance

between circles C(v) and C(w) is given by the inversive distance
(a conformal invariant of circle pairs) between v and w so that
inversive distance rather than circle tangency is preserved;

� refining the triangles in the surface by subdividing each triangle
into smaller triangles and repeating the above procedure until
the map converges to the unique conformal map [5].

� In a similar manner, hyperbolic radii, lines and triangles can be used
to create maps in the hyperbolic plane.
� Hyperbolic maps near the origin have little distortion and regions

near the map border are greatly distorted.
� The focus of the hyperbolic map can be interactively moved to

change the regions which are in focus.


