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Abstract

We present a novel approach to creating flat maps of the brain. Our
gpproach attemptsto preservethe conforma structure between theoriginal
cortical surface in 3-space and the flattened surface. We demonstrate
this with data from the human cerebellum. Our maps exhibit quasi-
conformal behavior and offer several advantagesover existing approaches.

Introduction

® Theconvoluted surface of thebrain, fold complexity and anatomical
variability makeit difficult to compare anatomical and functional
information within and between subjects.

® Current visualization techniques (such asprojecting functiona data
onto arendered cortical surface) make it difficult to compare the
location and extent of activated foci. For example, foci buried in
deep sulci may appear on the cortical surface and widely separated
foci on oppositewalls of asulcus may appear to be closetogether.

Surface Flattening

® Thesurface representing the cortical grey matter istopologically
equiva ent to atwo-dimensional sheet.

® Thus,itispossibletounfold or flatten thissurfaceto crestea2D flat
map of the cortex.

® Thissurface-based approach can assistin visuaizing and comparing
cortical folding patternsand help to resolve some of the problems
which existintraditional visualization techniques.

® However, itisimpossible to flatten a curved surface in 3D space
without metricand areal distortion.

® TheRiemann Mapping Theorem [1] impliesthat it istheoretically
possibleto preserve conformal (angular) information under flattening.

Quasi-Conformal Flattening
® Beginwithaapiecewiseflat triangulated surfacein 3D spacethat is
topologically a2D disk:
= each edge of the triangluated mesh is either an interior edge
contained in exactly two triangles or aboundary edge contained
inexactly onetriangle;
= thereisoneboundary component whichisasingleclosed chain
of boundary edgesforming theboundary of the surface.
® A piecewiseflat triangulated surface representing the cortex carries
the structure of aRiemann surface[2]:
= the measure of an angle based at a point other than one of the
triangle verticesisthe Euclidean measure of that angle;
= themeasureof an anglebased at avertex isthe Euclidean measure
linearly rescaled so thetotal angle measureis 27z,
= atrianglevertex v belongstok trianglefaces, giving k anglesat
\A
= the angle sum O(v) about the vertex v isthe sum of these these
Euclidean anglesabout v;
= the scalefactor used at v for measuring anglesisthen 277 6(v);
= avertex vwith Euclidean measure 6 has measure 2776/ &(v) in
the complex atlas of the Riemann surface.

The Riemann Mapping Theorem (1854):
If D isany simply-connected open set on asurface with adistinguished
point a € D and a specified direction (tangent vector) through a, then
thereisa UNIQUE conformal map (1-1 bijection) which takes D to
the interior of the unit circle Q in the plane, with a—> 0 and the
specified direction pointed in the positive X direction [2] (see Figure 1).
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Figure 1: Example of a conformal map.

CONFORMAL MAPPINGSEXIST: aconforma map preservesangle
proportions.

Approximating Conformal Mappings using Circle
Packings

® A circlepackingisaconfiguration of

circles with a specified pattern of

tangencies(seeFigure 2).

® Givenapiecewiseflat triangulation K

of a surface, a circle packing for K is a

collection of circlesinthe planewhere:

= thereisonecircle C(v) for each vertex v
of K;

= circles C(v) and C(w) aretangent when
theverticesv and w form an edge of K.

The Circle Packing Theorem [3] statesthat
given such a triangulation of K and any
assignment of positivenumbersr(v,),...,r(v,)
tothenboundary verticesv,,...,v, of K, then
thereisaunique (up to Euclidean isometry)
circle packing in the plane with boundary
circleC(v) haveradiusr(v), fori = 1,...,n.

Figure 2: A triangulation
(top) and its resulting circle
packing (bottom).

TheRing Lemma[4] guaranteesthat thiscircle packing mappingisquasi-
conformal, meaning thereisabounded amount of angular distortion.

® Aninitia circle packing of a surface is obtained by using the
combinatorial data from the surface contained in its abstract
triangulation.
® A setof circlescan be“flattened” sothat the circlesfit together in
the planeif O(v) = 21
® To“flatten” asurfaceat theinterior vertices:
= when ©(v) < 277 thereis positive curvature (cone point) which
isrepresented by agap between the circlesaround v, so shrink
thecirclesaround v until al thecirclesaround v aretangent;
= when ©(v) = 27T thereiszero curvature and the map is already
flatatv;
= when &(v) > 2rthereisnegative curvature (saddle point) which
isrepresented by overlapping circlesin the plane, so expand the
circlesaround v until all the circles around v are tangent (see

Figure3).
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Figure3: Exampleof how positive curvature (|eft) and negative curvature (right) are represented
in the plane and how the circles need to be adjusted to achieve acircle packing (middle).

® |teratively repeat this procedure at each vertex to obtain acircle
packing.
® Closer approximations to the actual conformal mappings can be
obtained by:
= if vertices v and w are connected by an edge, then the distance
between circles C(v) and C(w) isgiven by theinversivedistance
(aconformal invariant of circle pairs) between v and w so that
inversivedistancerather than circletangency ispreserved;
= refining thetrianglesin the surface by subdividing each triangle
into smaller triangles and repeating the above procedure until
the map convergesto the unique conformal map [5].
® [nasimilar manner, hyperbolicradii, linesand triangles can be used
to create mapsin the hyperbolic plane.
= Hyperbolic mapsnear theorigin havelittledistortion and regions
near themap border aregreatly distorted.
= Thefocusof the hyperbolic map can beinteractively moved to
changetheregionswhich areinfocus.

Flattening the Cerebellum

® We chose to flatten the cerebellum in an effort to facilitate the
description of activated cerebellar foci in functional neuroimaging.

® Thecerebellumwasextracted from ahigh resolution MRI scan [6]
and atopologically correct triangulated surface representing the
cerebellar surfacewas produced (see Figures4 and 5). Regionswere
colored to correspond to various|obes and fissures.

® A single closed
boundary was introduced
around the brain stem and
along thewallsand apex of the
fourth ventricle to act as the
boundary of theflattened maps.
®  Our quasi-conformd flattening
procedure was applied to this
surfaceto produceanumber of
flat maps (7] (seeFigure5).
® PET data from a target
|ntercept|on experl ment can bedl splayed on the maps.

Figure 4: Cerebellum extracted from MRI scan.

Figure 5: A triangulated surface representing the cerbel gh-

MRI (middle left). This surface was flattened using our quasi-conformal approach to produce

mapsin the Euclidean plane (bottom left), hyperbolic plane (middleright) and on asphere (bottom

right). Functional PET data from a target interception experiment (top) was superimposed on

these to display the activation on the maps.

Discussion: Advantages of Our Approach

® \Wehaveintroduced anovel approach for unfolding and flattening

thecortica surfacewhich attemptsto preservetheconforma structure

of theoriginal surface.

Conformal mappingscontrol and minimizeangular distortion.

Conformal mappingsare canonica and hencemathematically unique.

Extraneous cutsin the surface are not required to reduce distortion.

Flattening can be donein the Euclidean and hyperbolic planesand

mapping to asphereisalso possible.

A coordinate system can be easily imposed on the mapsby specifying

two anatomical landmarks.

® The map origin of the hyperbolic maps can be transformed
interactively to alter thelocation of map distortion.

® Fast compution times ( minutes) with real time user interaction.

References

[1] Ahlfors, L.V.: Complex Analysis. McGraw-Hill Book Company,
New York, 1996

[2] Beardon, A.F.: A Primer on Riemann Surfaces. Cambridge
University Press, Cambridge, 1984, LM SL ecture Notes 78

[3] Beardon, A.F., Stephenson K..: Theuniformization theoremfor circle
packings. IndianaUniv. Math. J. 39 (1990) 1383-1425

[4] Rodin, B., Sullivan, D.: The convergence of circle packingsto the
Riemann mapping. J. Differential Geometry 26 (1987) 349-360

[5] Bowers, P, Stephenson, K..: Uniformizing Dessinsand Belyi maps
via circle packing. Submitted to Trans. A.M.S. and available at
http:/Aww.math.fsu.edu/~bowers

[6] Holmeset al.: Enhancement of T1 MR images using registration
for signal averaging. J. Neurosci. 3 (1996) S28, Part 2 of 2

[7] Krantz, S.G.: Conformal mappings. American Scienstist 87 (1999)
436-445



