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Figure 1. A geodesic between configurations of sulcal lines.

Left vs. Right Hemispheres

In the case of sulcal lines, the correspondence between curves in 
different configurations is established using the optimal elastic 
alignment of their (unit) tangent fields as criterion. The registration 
technique is implemented via dynamic programming and represents a 
variant of methods previously used for single curves [2].

A configuration of n parametric curves αj: [0,1]→R3, 1≤j≤n, is represented by 
a 3xn matrix A whose entries are the components αij:[0,1]→R (i=1,2,3) of the 
curves. The Sobolev inner product <f,g>1 =a ∫f(s)g(s)ds +b∫f’(s)g’(s)ds 
induces an inner product on the space of 3xn matrices of functions given by

The geodesic deformation energy is given by E = ∫ ||Λ’(t) ||2dt  = d2(A,B).

To represent a spherical surface with a collection of space curves, we 
first construct a minimal distortion parametrization α: S2→R3 with the 
techniques of [1,2], and then decompose the surface using a collection of 
parallels on the sphere, as shown in Figure 2.

Examples of Geodesics

Fig. 3. Geodesic deformations between the left and  right hemispheres 
of 2 subjects: (a) calcarine; (b) central; (c) superior frontal; (d) superior 

temporal.
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We employ 3D arrangements of curves to represent and analyze 3D shapes. The 
arrangements of curves may vary from fairly sparse – such as a collection of sulcal lines that 
coarsely approximates the shape of the brain – to very dense decompositions of the cortical 
surface into space curves. A shape space of such arrangements is constructed equipped with 
geodesic metrics derived from Sobolev spaces that can be used in conjunction with nonlinear 
curve registration techniques to quantify shape resemblance and dissimilarity. Although the 
metric measures global shape differences, deformation energies allow us to identify the 
regions where anatomical differences and similarities are most pronounced. The metric is 
applied to the analysis of configurations of sulcal curves associated with the left and right 
hemispheres of the brain. Examples are also given of geodesic interpolations between 
decompositions into space curves of surfaces representing the entire left hemisphere.
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This metric accounts for shape geometry to first order, but higher order 
metrics can be defined similarly. As in classical Procrustes alignment, we 
first place the centroid of the configuration at the origin and scale the 
configuration so that ||A||=1. This makes the representation insensitive to 
translations and scale and restricts A to the infinite-dimensional unit sphere 
(about zero) in the subspace of centered matrices. To calculate the optimal 
orthogonal alignment between normalized matrices A and B, let M be the 
3x3 matrix whose (i,j) entry is the scalar ∑l< αil, βjl>.. If M=USVT is a 
singular value decomposition of M, then the optimal orthogonal alignment 
of B relative to A is given by B*=UVTB. Moreover, the geodesic shape 
distance is given by d(A,B) = arccos ω, where ω=trace(S), and the geodesic 
deformation is realized by the path

Λ(t) = cos(ωt)A + sin(ωt)v(A, B),

with v(A,B) = (B’- ωA) / ||B*- ωA||.

Figure 2. Decomposition of a surface into space curves.

Shape Alignment

Parametric spherical surfaces were aligned with the techniques of [1,3] 
and a common set of parallels of S2 was used to decompose them in a 
compatible manner, as indicated in Figure 2.

Fig. 2. Geodesic interpolations between aligned 
arrangements of curves.
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The energy of the geodesic path (2) is given by E(Λ) = Λ '(t) 2 dt = d 2 (A, B)
0
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Thus, the function

ρ j (s) = 1
d2 (A,B)
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can be interpreted as the energy density along the jth curve of the arrangement, 
which gives a measurement of the local contributions to the total shape distance.
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Experiments with 24 configurations of 4 sulcal curves representing the left 
and right hemispheres of 12 subjects, with weights a and b for the Sobolev 
metric. Decisions were based on the k-nearest neighbor classifier and a 
leave-one-out approach was used.
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