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Introduction

Functional connectivity, based on the correlation between mean time courses (TCs) of brain regions, is thought to
reflect functional interactions (1). To carry out such analyses, a network of regionsis usually selected on the basis
of conventional activation maps. However, correlation maps, which are derived by correlating the mean TC of a
single seed region with TCs of other brain voxels (1), often show that the network of regions connected to an
activated seed comprise non-activated regions. Thus, these new regions need to be taken into account in
functional connectivity analyses, yet their automatic selection remains a problem, because presence, localization
and extent of correlation peaks vary from maps to maps. To identify the whole network of regions that are
functionally connected, we propose a new method, which combines a rough manual initialization and an iterative
clustering algorithm.

M ethods

Five healthy volunteers were included in our study. Five functional runs of 70 T, " -weighted volumes (Bruker 3

T scanner; TR: 3,500 ms; TE: 35 ms; voxel size: 3*3*3 mm?3; 42 d ices) were acquired while subjects were
continuously executing a motor adaptation task at asymptotic level of performance (3). Activated regions were
determined using SPM99 in a fixed-effect group study, and were used as seeds to compute correlation maps. A
rough manual delineation around correl ation peaks, common for all correlation maps, was then performed.
Because accuracy of such segmented areas are highly expertise-dependent, final selection of the cluster in each
areawas achieved with a clustering algorithm CAMIS (2) based upon TCs homogeneity using a data-driven
approach. CAMIS isan iterative algorithm. Starting from all voxels, clusters were merged at each step with
respect to a similarity measure defined as the mean correlation between TCs for any pair of voxels; each voxel
belonging to one cluster. Clusters were accepted when their extent was larger than 15 voxels, and the most
homogeneous one was selected, as measured by the mean correlation over the TCs of any pairs of voxelsin the
cluster.

Results

Activated regions were located in the cerebellum, motor cortex, and visual areas (figure 1). Correlation maps
using these regions as seeds allowed identification of many non-activated regions (figure 2). For each area
manually delineated, the cluster selected by CAMIS was found relevant anatomically (figure 3). Although the
TCs of functionally connected, but non-activated regions (e-g- thalamus or precuneus) was uncorrel ated to the
stimulus, these regions were neverthel ess fundamental from a connectivity viewpoint, because they could be used
as modulatory regions, or relays. Our method allows, in a context of noisy images, to perform an objective and
data-driven selection of the relevant regions for functional connectivity analysis of fMRI data.
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Activation maps (threshold: p < 0.01 uncorrected), superimposed on the corresponding axial sice.
Z-coordinaterefersto Talairach template.
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Correlation maps (threshold: p < 0.05 uncorrected), superimposed on the corresponding axial slice.
Z-coordinaterefersto Talairach template. Note that the thalamus was present on three maps, even though
it was not activated. L ocalization and presence of peaks varied from mapsto maps.
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Top: manual delineation of areas where at least one correlation peak has been observed. Theresulting
network islarger than the one shown on figure b because all correlation mapsto an activated region were
taken into account. Bottom: resulting clusters after application of CAMIS. Theregion are 3-dimensional,
so that all 15 voxelsfor each region do not appear on asingle dlice.
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The functional significance of the apha rhythm in humansis not known definitively. Alpha band activity has
been used as an indirect measure of brain activation because increased activity in the frequency rangeis
considered to be corresponding to decreased functional activity in underlying cortex. The identification of
generator regions using scalp EEG aone, however, is challenged by the fundamental difficultiesin localizing
sources in a conductive volume from only surface information. In order to address this problem of localization, a
current trend isto look at data collected simultaneously from EEG and some modality of medical imaging. This
work reports findings of one such investigation on a simultaneous EEG-fMRI experiment.

We recorded simultaneous EEG and fMRI on subjects (eleven in number; mean age 30, age 23--43, five females)
while they were at rest with their eyes closed. No visual or auditory stimuli were presented at any time during
functional scanning.

EEG was recorded from 16 scalp sites of the international 10-20 system in a hard-wired bipolar montage (Fp2-F8,
F8-T4, T4-T6, T6-0O2, O2-P4, P4-C4, C4-F4, FA-Fp2, Fpl-F7, F7-T3, T3-T5, T5-01, O1-P3, P3-C3, C3-F3,
F3-Fpl). The functional scans were obtained on a General Electric 3T imager with Echo planar imaging (EPI)
capability provided by Advanced NMR systems. The functional EPI gradient-echo scansin six adjacent slice
planes, with the second most inferior slice oriented through the anterior commissure-posterior commissure
(AC-PC) line to ensure consistency of dice plans across subjects (1,2).

The stetistical analysis consists of fitting alinear model to the fMRI time-series for every voxel, with the powers
in the alpha band corresponding to all the 16 channels as covariates. In particular, we explore the contribution of
EEG data corresponding to each channel to the fMRI data, and compare these contributions. The magnitudes of
the regression coefficients and also their dependence on the distance between the locations of electrodes used in
collecting EEG data and voxels associated with the fMRI data are of special importance. We report these findings.
We use the software fMRIstat (www.math.mcgill.ca’keith/fmristat) heavily in our work.
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Introduction

Functional neuroimaging is very well suited to investigate the localization of certain brain functions. However
information about functional interactions as well as information about the direction of these interactionsis crucial
for a deeper understanding of brain function. We applied vector autoregressive modeling in the context of
Granger causality as a method to analyze directed connectivity [1] in a standard event-related fMRI study using a
simple auditory-motor paradigm. The basic ideais to use temporal information in stochastic time series of abrain
region in order to predict signal time courses in other brain regions. As causes precede their effects in time these
predictions can be related to causal influences rather than to only correlational relations between brain regions. In
our paradigm a simple motor action was triggered by an auditory command. Thus, we predicted that the method
should demonstrate indirect causal influence of the auditory cortex on primary motor cortex.

Methods

11 right-handed healthy female subjects were studied in an event-related fMRI paradigm using a 1.5 Tesla
Siemens Symphony Scanner (TR=2.44 sec, TE=40 msec). Subjects were instructed to press a ball with either their
left or their right hand when hearing the command 'right’ or ’left’ (n=20 each) in the scanner. Data were analyzed
using BrainVoyager (Brainlnnovation, Maastricht). First, a standard model with regressors for left and right was
calculated. Then, regions of interest (ROIs) were defined centered on the individual subjects’ peak motor activity
for left and right motor cortex. Finally, inhouse programs written in MATLAB (Natick, MA) were used to map
Granger causality over the imaging volume for the selected ROIs [1] for each subject individually. The resulting
Granger Causality Maps (GCMs) can be used to make inference on 1) Granger causality from the ROI to the rest
of the brain, 2) Granger causality from other regionsin the brain to the ROI. Bootstrapping was used to assign
significance to the GCMs.

Results

Granger causality to the left motor cortex was found from bilateral auditory cortex as well as from the
supplementary motor area (SMA) in 9 of 11 subject at asignificance level of 0.001 uncorrected. Granger causality
to the right motor cortex existed from bilateral auditory cortex in 5 and from SMA in 6 subjects.

Conclusion

Analysis of datawith Granger causality in a standard event related fMRI paradigm was able to demonstrate that
the time course in motor cortex can be predicted by past signal time courses in two areas which are known (by
experimental design) to causally influence motor cortex. Evidence for directed connectivity was clearer for left
motor cortex corresponding to the dominant hand. Our findings in a simple task show that even under sub-optimal
circumstances (arelatively long TR) Granger causality can be a useful tool to explore effective connectivity.
Temporally optimized scanning should increase that potential.

Reference
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Fully automatic lobe delineation for regional lesion load quantification in large a scale study

Introduction

In aprevious study, [1] we developed a semi-automated method to quantify white matter lesion (WML) load. It
has been successfully used in alarge study in geriatric subjects and produced clinically relevant results[2]. The
main goal of the present work was to develop a software tool that allows the quantification of WML load in
anatomical regions (lobes and cerebellum), for further correlation analyses with cognitive information in geriatric
patients. A fully automatic template-based approach has been implemented and evaluated on 1054 scans. The
software showed very high reliability.

Methods

MR images of 527 subjects, scanned twice (1054 scans), were acquired on a 1.5 Tesla system (Philips Medical
Systems, Best, The Netherlands), and comprised dual fast spin-echo imaging (TE 27/120ms, TR 3000 ms, echo
train length factor 10, 48 contiguous 3mm slices, matrix 256x256, FOV 220). These images have been, in
previous work[1,2], semi-automatically segmented. For each subject the Intra cranial (IC) and WML masks,
among others, were saved.

Three experts have delineated manually the lobes on asingle T1 high-resolution image resized and co-registered
to the Montreal Neurological Institute (MNI) brain template (109 dlices, voxel size 2x2x2 mm, see figurel.a). The
delineation is labor-intensive (10 hours). The 3D distance of every voxe to each |obe was then computed and
every voxel of an IC prior probability map (from MNI) was assigned to the closest |obe (see figure 1.b). The
obtained template-like image was used for afully automatic 1C and lobe delineation in a template-based approach,
which combined affine registration, fuzzy clustering and mathematical morphology. Using the previously
segmented WML masks, the system generates for each lobe and the cerebellum the respective WML load (see
fig.2a). For quality control purposes, the software generates a mosaic view per subject, showing selected dlices for
visual inspection (see figure 2.b). Furthermore, aflag is automatically put on scans that did not co-register
correctly to the template (using the value of the cost function of the registration).

Results and conclusion

Since it isvery labor-intensive to manually delineate brain lobes, we used the total intra-cranial mask,
semi-automatically delineated, to evaluate the automatic delineation. Out of the 1054 scans, 941 were
automatically flagged as successfully segmented and the rest as possible failure. We compared the volumes of the
semi-automatic 1C and fully automatic 1C masks (union of the 4 lobes and cerebellum) using intra class
correlation coefficient (ICC), with one-way random effect model. We obtained an ICC of 0.949. The mean degree
of overlap was 97% +15%; The |lobe delineation was evaluated visually using the mosaic images in the 941
successfully segmented subjects. Only 1% cases were marked as non-accurate delineation. Our automatic
approach istherefore avalid and reliable tool for use in large-scale studies. The 1054 scans were processed fully
automatically within 15 hours on a Pentium4.
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Fig 1. a: manually delineated lobes. b: distancemap on | C prior probabilitiesin axial view. c: in coronal
view and d: in sagittal view.
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Fig 2 (&) WML assigned to inter secting lobes. (b) M osaic view for quality control
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Application of Coherence Spectrato fMRI Connectivity Studies
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BACKGROUND

Connectivity studies using fMRI rest state data have achieved significant popularity in the latest years (e.g. [1]).
Typically, the data are temporally filtered, and correlation coefficients are computed between areference time
series and the remaining brain voxels. The physiological phenomena underlying this approach are poorly
understood. Besides, several practical aspects are often overlooked: for instance, optimal temporal sampling is
required, to avoid contamination by aliased cardiac and breathing components [2]. In the present study, we look
into the frequency specificity of across-brain correlations, using coherence spectra. The purpose istwofold: a) to
provide better grounds for correlation studies (to ascertain to what extent breathing and cardiac components
contribute to correlations); b) to contribute to a better understanding of the spatiotemporal behaviour of fMRI
noise.

METHODS

450 seconds of rest state data were acquired from one subject (Bruker 3 T, EPI, TR=303 ms, TE=27.5 ms, 64x64
matrix, 3x3x4 mm voxels, 6 slices + 2 mm gap). Simultaneous measurement of pulse and respiratory rhythm was
performed. The scans were realigned, corrected for slice acquisition timing and spatially smoothed, using SPM99
[3]. Frequencies significantly different from white noise (including pulse and breathing frequencies) were
classified as frequencies of interest (FOIs). ROIs were defined in structures often involved in imaging studies (e.g.
striate cortex), and served as reference for the estimation of coherence maps for the FOIs. Correlation patterns of
very low frequencies (< 0.08 Hz) were also computed, following the established low pass filtering approach.
RESULTS

The results indicate that both breathing and pulse (especially the latter) related components have the potential to
confound correlation estimations, whenever aliasing occurs. For instance (see Figure), coherence patterns using
anterior cingulate gyrus as areference show marked frequency related differences (0.05 Hz: posterior cingul ate,
cuneal and precuneal regions involved; pulse frequency: contralateral insular cortex and ventricles). Overall, the
coherence patterns centered at frequencies in the range 0.02-0.08 Hz were cognitively meaningful, and more
sharply defined than correlation patterns of low pass filtered data. Careful choice of parameters allowed to probe
the spectral fine structure of low frequency interactions.

CONCLUSIONS

The low passfilter approach has important limitations, and much can be gained by using afull frequency domain
method instead. Coherence spectra are a powerful tool to probe frequency specific spatiotemporal interactions
across the brain. Moreover, they allow rigorous statistical evaluation, and they are not phase sensitive (allowing
detection of time lagged interactions). In this work, it was shown that contamination of the frequency spectrum by
aliased pulse related components should indeed be a concern. Work in the near future should be directed towards
optimization of the spectral estimation parameters (e.g. windowing), application of time-frequency methodologies
(e.g. wavelets), and tackling possible non linearity of the interactions [4].

REFERENCES
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Thresholded coherence patterns at pulse frequency (left) and at 0.05 Hz (right)
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Segmentation by Integrating I ntensity-based Classification and Template Matching

John Ashburner , Karl JFriston
Functional Imaging Laboratory, London, UK.

Many investigators currently use the tools within SPM for a technique that has become known as " optimized"
VBM [1]. VBM performs region-wise volumetric comparisons among populations of subjects. It requires the
images to be spatially normalized, segmented into different tissue classes, and smaoothed, prior to performing
statistical tests. The "optimized" pre-processing strategy involves spatially normalizing subjects’ brain imagesto a
standard space, by matching gray matter in these images, to agray matter reference. The historical motivation
behind this approach was to reduce the confounding effects of non-brain structural variability on the registration.
Tissue classification in SPM requires the images to be registered with tissue probability maps [2]. After this
registration, these maps represent the prior probability of different tissue classes being found at each location in
an image [3]. Bayes rule can then be used to combine these priors with tissue type probabilities derived from
voxel intensities, to provide the posterior probability.

However, this procedure is inherently circular, because the registration requires an initial tissue classification, and
the tissue classification requires an initial registration. This has been resolved by combining severa components
into asingle large generative model. This model also includes parameters that account for image intensity
non-uniformity, although it is now fairly standard to include intensity non-uniformity correction in segmentation
[4] and registration [5] methods. Estimating the model parameters (for a maximum a posteriori solution) can then
be done by repeatedly alternating among classification, bias correction and registration steps [6]. Thisiterative
approach will provide better results than simple serial applications of each component (e.g. N3 [7], ANIMAL and
INSECT [8]).

The classification component of this scheme involves updating class means, variances and mixing proportions,
accounting for the current estimates of the intensity non-uniformity and warps for overlaying the prior probability
maps. It uses the usual expectation-maximization strategy for fitting a mixture of Gaussians model.

The non-uniformity is re-estimated by holding the warps and mixture parameters fixed, and updates of the warps
are made by fixing the bias and mixture parameters. A Levenberg-Marquardt optimization scheme is used for
both these steps, requiring the first and second derivatives of the log-probability objective function to be
computed with respect to the parameters.

Operational details, examples and improvements in relation to existing schemes will be presented.
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Introduction

The well-described minimum-norm and minimum-current estimates (MNE and MCE) [1, 2] are widely used in
estimating sources of MEG/EEG responses. In Bayesian interpretation, these models are members of the Ip-norm
prior family with a Gaussian likelihood for the measurements. M CE corresponds to the I 1-norm source priors and
produces rather focal estimates whereas MNE corresponds to 12-norm prior and results in more diffuse estimates.
However, the choice between these two solutionsis more or less arbitrary as any value of the Ip-norm order p
between 1 and 2 could be used. In Bayesian sense, the choice of the norm order p is subject to uncertainty and,
sinceitisnot a priori known, it can be treated as an additional unknown variable. Similarly, the width of the prior
distribution, the regularization parameter, is not known. Here, we performed afull Bayesian analysis of the
Ip-norm prior model, using Markov chain Monte Carlo methods, to obtain numerical samples from the joint
posterior distribution of the parameters (neural currents) and hyperparameters (Ip-norm order p and the prior
width).

Methods

A single-compartment M RI-based boundary-element model was utilized in the forward field calculations with
source locations restricted to the cortical mantle. Furthermore, the source orientations were constrained to be
normal to the cortex [3]. Simulated source and Gaussian noise was used to generate MEG signals. Slice sampling
[4] was used to obtain numerical samples from the joint posterior distribution.

Results

5000 samples were drawn from the posterior. Convergence diagnostics and time series analysis was used to verify
that the convergence of the sampler was plausible. Figure 1 shows a simulated source and the respective inverse
estimate, which reflects the posterior expectation value of the currents integrated over the hyperparameters. The
posterior distributions of the hyperparameters are also shown.

Discussion

Slice sampling was chosen to improve mixing of the Markov chain suffering from correlations between the
parameters and the prior width. The method is computationally heavy but it isfairly automatic asit requires only
little or no tuning of the sampling parameters. In this approach, al parameters and hyperparameters are estimated
from the data without manual interaction. Notably, the distribution of p is somewhat diffuse, which suggests that
fixing this hyperparameter to some ad hoc value (e.g., 1 or 2) leads to overfitted estimates. At the present stage,
for computational reasons, the source space consists of 1500 source locations. With cortical orientation constraint
this may betoo limited for empirical investigations. We are currently implementing methods to accelerate the
computational procedure.
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Figure 1. Top row: A simulated source and the corresponding inver se estimate. The surface represents
gray-white matter boundary and it isviewed directly from the right side of the brain. Bottom row: The
posterior distributionsof thelp-norm order, p, and the prior width, regularization parameter, respectively.
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Aim. Recently, it has been demonstrated that the multimodal integration of high resolution EEG and fMRI
recordings improves the estimation of the cortical activity. By using the cortical estimated waveforms and
appropriate signal processing techniques, it is also possible to estimate the dependence of the activity in one
cortical region of interest (ROI) from the activity generated in other ROIs. Here, we will use the Directed Transfer
Function (DTF) technique to estimate the pattern of cortical connectivity subserving the finger tapping
movements of the left hand finger from high resolution EEG and fMRI recordings in normal subjects.

Methods. High resolution EEG and fMRI recordings were performed in a group of normal subjects during a
finger tapping task performed with the left hand. Realistic cortical and head models were used to estimate the
cortical activity from these recordings with linear inverse methodol ogies. Cortical activity was estimated in
particular regions of interest (ROI) coincident with the Brodmann areas. The estimation of the cortical
connectivity patterns subserving the different phases of the task has been performed by using the DTF technique.
The statistical significance of the observed pattern of cortical connectivity was assessed by generating an
empirical distribution for the DTF values with surrogate EEG data. The analyzed patterns of cortical connectivity
were discussed only if they were statistically significant at the 5%, corrected for multiple comparisons. The
connectivity patterns were estimated in two time intervals, lasting 300 msec before and after the onset of muscular
activity (EMG onset).

Results and Conclusions.

Different patterns of connectivity were observed during the task. The first one involves posterior parietal (B.A. 5)
and the premotor-prefrontal areasin aimost all the frequency bands examined and in the two time periods
considered. Another one was observed in the apha frequency band (8-12 Hz) after the movement begins, linking
the primary somatosensory and motor area of both hemispheres. Thislast connectivity pattern isrelated to the
actual performance of the movement, while the first one could be related to the general alocation of the
attentional resources for the task performed. In the case of the connectivity patterns generated by the cortical
estimation performed with the use of hemodynamic priors we noted a change with respect those already presented
in the case of only EEG. The inclusion of the fMRI priors elicited the premotor-prefrontal clusters that were
hidden in the analysis based on the EEG only

PRE-EMG ONSET POST-EMG ONSET
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Figure presentsa pattern of cortical connectivity estimated by the application of the DTF to the ROI
waveforms, in afrequency band from 8to 12 Hz, in a time period from -300 msto the occurrence of the
EMG trigger onset. The bar codesthe valuesof DTF in colors. The labelsrepresent the name of the ROIs
in which statistically significant activity has been assessed
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Introduction

In[1], we reported a system for the real-time analysis of functional MRI time series using a dedicated PC cluster.
The system exploits the advantages of parallel computing to attain fully real-time analysis of whole-brain fMRI
data. In this study, we investigate the feasibility of employing remote resources via computational grids[2] to
process functional magnetic resonance (fMRI) datain real time. The effect of two critical time factors, namely,
datatransfer time and analysis time, to the overall system performance is examined. The former is strongly
influenced by the speed of the used network transport while the latter is dependent on the employed
computational resources.

Implementation

Figure 1 shows the schematic representation of the prototype grid-enabled rea -time system composed of an MR
imaging subsystem and several analysis servers (PC clusters) and their interconnection viathe Internet.
Physically, the system may span several sites, which are geographically separated from each other. System
integration is accomplished by the accompanying software component. The series of operations can be
summarized as follows. After an image volume is acquired, the volume is immediately sent to the remote analysis
server for immediate processing. The analysis server processes the received data using the approach in [3]. The
updated results are sent back to the analysis workstation, which then updates its displayed activation map. These
steps are repeated until all volumes are processed.

Results

One of the critical factorsin the real-time analysis of fMRI time seriesis the analysistime. The results obtained
demonstrated that a PC cluster with 16 processors was already sufficient to process a 64x64x30 image volume
within agiven TR (3 s). The bulk of the processing time was spent on image realignment (1.034 s per volume)
whereas statistical analysistook around 23 ms per image volume. On the other hand, the time required to transfer
the data from the analysis workstation connected to the MR scanner to the remote analysis servers varies from site
to site. In one site, the transfer rate was around 17.69 ms per slice (16096 bytes). In another site, the transfer rate
was around 11.28 ms per dlice. Thistiming, however, depends on several factors including the number of users
logged into the system, time of the day, network traffic, among others.

Discussion and Conclusion

Performing real-time analysis using computational grids imposes additional constraint in the overall performance
of the system. The data transfer time introduces extratime in the overall analysis and is strongly affected by the
unpredictable behavior of the network. In spite of this, the results indicated that real-time analysisis still possible
with the activation map becoming available afew minutes after the last volume is acquired. Moreover, further
performance improvement can be achieved using high-speed network connectivity.

References

[1] Bagarinao E, et al. Mag Res Eng 19B, 14-25 (2003)

[2] I. Foster and C. Kesselman, The Grid: Blueprint for a Future Computing Infrastructure. San Francisco:
Morgan Kaufmann Publishers, Inc, 1999.

[3] Bagarinao E, et a. Neurolmage 19, 422-429 (2003)

el407



Abstracts presented at the 10th International Conference on Functional Mapping of the Human Brain, June 13-17, 2004, Budapest, Hungary

MR Scannet

OF=

Analysis
ok sl ion
rniemel
analysis andly ss [= gl [7:-13
server | server 2 samver 3
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A NEW TECHNIQUE FOR SIMULTANEOUS STUDY OF PHYSIOLOGICAL AROUSAL AND BRAIN
IMAGING

Matthew J. Barton12, David Alexander3, Evian Gordon13, Leanne M. Williams1:34
1The Brain Dynamics Centre, Westmead Hospital, Westmead, NSW 2145, Australia, 2Department of
Psychological Medicine, University of Sydney, NSW 2006, Australia, 3The Brain Resource International
Database, Ultimo, NSW 2007, Australia, #School of Psychology, University of Sydney, NSW 2006, Australia

Introduction

At atime when advances in functional heuroimaging are providing increasingly precise techniques for mapping
neural activity, the value of concurrent recording of autonomic variables, such as skin conductance (SC), remains
often overlooked. Autonomic measurements can be used (i) to augment traditional analyses by providing both a
continuous index of physiological arousal and a discrete and objective index of phasic responses to the
significance, novelty and/or emotional valence of stimuli, and (ii) to measure potential sources of confound due to
habituation or fatigue. The integration of brain and body measures has already shown considerable promise in
functional MRI studies where subaveraging by simultaneous SC responses (SCRs) has revealed more precise
brain network activity in both healthy and clinical samples[1,2]. Here we present two recent developmentsin this
areafrom the Brain Resource International Database; an MRI-compatible SC recording system, and a new
agorithm for analysing SC data.

Method and Results. Data Recording

Despite the challenges of devel oping non-standard M RI-compatible recording systems for autonomic data,
reliable systems for recording SC and el ectroocul ography have been developed [3,4]. We have designed and built
an MRI-compatible system for recording multiple channels of autonomic data including heart and respiration rate,
aswell as SC. The system has been used to record interference-free data, requiring no post-processing, from over
100 subjectsusing a 1.5 T scanner. The SC channel consists of shielded, and radio-frequency filtered, Ag-AgCl
finger electrodes placed on the medial phalanges of digits 11 and IV of the non-dominant hand. A constant 0.5

V pc excitation across the fingersis provided by a SC adapter whose output is optically isolated, amplified and

sampled at 10 Hz.

Method and Results: Data Analysis

Algorithms for auto-scoring SCRs have typically used peak-and-trough detection. This strategy is adequate for
isolated SCRs (in long inter-stimulus interval, 1SI, paradigms), but is unable to correctly score the compound
(potentially overlapping) SCRs often seen in short-1SI cognitive paradigms. We previously used an algorithm
based on a sigmoid-exponent model developed specifically to handle overlapping SCRs[1,2]. Here we report on a
new technique that uses capacitance equations to decompose compound SCRs. The algorithm operates by
extracting peak-containing segments to which an inverse capacitance equation is applied to generate an
approximation to the individual SCR responsible for the observed peak. The reconstructed SCR is then scored for
amplitude, latency and rise time. Analysis of 100 subjects with the new algorithm has shown increased robustness
and accuracy over the previously used curve-fitting technique.

Conclusion

The simultaneous recording of fMRI with autonomic measuresis a growing area of research which allows brain
function to be probed more precisely. Such research however necessitates the development of both
MRI-compatible recording apparatus and analysis techniques which facilitate the combining of fMRI-ANS data,
as described here for SC.
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Multimodal fusion methodology applied to a categorisation task

Sebastien Basan , Cyril Pernet , Xavier Franceries, Pierre Celsis
INSERM U455, Neurological Department, CHU Purpan, 31059 Toulouse, France

Introduction

Categorization is a dynamic process of perception that reduces the complexity of our environment. One major
topic in visual cognition isto understand, spatialy and temporally, how our brain binds stimuli that differ in their
physical featuresto produce categories. In the present study, neural spatio-temporal correlates of categorisation
task were investigated using a combined fMRI and ERP interactive approach.

Materiel and Method

One subject performed a same/different task, responding for items that differ and not responding for identical
stimuli. The categorisation task consisted in deciding whether items belong to the same category. For functional
MR imaging studies, blood oxygen level-dependent (BOL D) imaging was performed using a T2* -weighted
single-shot EPI sequence (64x64x16 matrix, FOV = 230 mm, 5 mm slice thickness). Functional images were
processed with SPM2 (available at www.fil.ion.ucl.ac.uk) with athreshold p= 0.0001 and an extend threshold of
20 voxels. EEG data were obtained with a 64-electrode montage and were processed with Scan 4.2 (Neuroscan,
USA) to compute ERP data. In addition, electrodes locations were acquired with a digitizer (Fastrak, Polhemus).
A redlistic boundary element model (BEM) was derived from 3D anatomical MRI and used to solve the inverse
problem. In afirst step, an ICA filtering was done to filter noise and enhance SNR (figure 1). In a second step,
because of the poor EEG spatial resolution, ERP source localisation was computed with a distributed source
agorithm (L2-norm) at fixed latencies to obtain afirst estimation of source locations. Only source locations
corresponding to the highest 5% part of intensity distribution were retained. In athird step, a direct comparison
between distributed sources and fMRI data was performed to estimate co-location of ERP sources and fMRI
activation loci. Finally, adipolar model constrained spatially by fMRI data and in source number by distributed
source reconstruction was computed for each latency previously analysed in order to validate the spatiotemporal
modelling of our data.

Results

Five components were identified. N1 component (156ms) was modelled with 2 dipolesin occipital regions, one
dipole in the left precuneus and in the right fronto-temporal area. P2a (210ms) exhibited 3 dipolesin the right
fusiform gyrus, in the left cuneus and the right mid-dorsolateral prefrontal cortex. P2b (272ms) involved two
dipolar sourcesin the left precuneus and the right fronto-temporal cortex. N2 component (360ms) was associated
with aright mid-dorsolateral dipole and one left precuneus dipole, 1 left inferior occipital and 1 right fusiform
dipole. Finally, P3 (420ms) was modeled with 3 dipolesin the left inferior occipital, the right fusiform dipole and
the right mid-dorsolateral cortex. Categorisation task exhibited low residual variance (table 1) although generally
modelled with few dipoles.

Discussion

Future research would make use of this new combined approach to elaborate spatiotemporal models at the group
level, by identifying temporal and spatial differences from ERP and fMRI data and by combining multiple
individual dynamic models.

Table 1l

N1 P2a P2b N2 P3
112 148 459 398 323

Residual variance of each component
e1410
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Tensorial extensionsto I ndependent Component Analysisfor Multi-Subject/Session FMRI data

Christian F. Beckmann , Stephen Smith
FMRIB Centre - University of Oxford, U.K.

Abstract

We discuss the analysis of multi-subject/ multi-session FMRI data by

extending standard bilinear models to higher dimensions and present a

method for an iterated rank-1 tensor ICA decomposition based on a generalisation of a 3-way parallel factor
analysis (PARAFAC) model [1].

Method

The three-way PARAFAC technique is characterised by the following generative model:

Xijk=Zr QjrbjrCir + Eijjk,

where the data at time point i, voxel location j and session (or subject index) k is given by the sum of R products
from vectors that characterise processesin time (a, ), space (b, ) and across subjects/sessions (¢, ).

This givesrise to expressions for theindividual 2-D subsets of the 3-D data X:
X k = Adiag(ck)B'+E ; k=1,2,...,K,
(smilarly for X ;, and X;_ ). These can be expressed as
Xik=3 = (CI*|A)*B+E, (1)

where X+ denotes the matrix formed by concatenating all K different data sets and (C|*|A) denotes the
Khatri-Rao product of A and C (K stacked copies of A scaled by diag(cy) [2]).

Optimising for statistical independence in the spatial domain, the matrices A, B and C can be identified by
iterating the following steps:

(i) treating egn. (1) asa 2-D problem with (C|*|A) as the’mixing matrix’ M and finding spatially independent
maps B! and anew estimate of M asin [3].

(ii) identifying a, and ¢, from M viaarank-1 SVD of each columnr, reshaped into 1* K matrices M, and

collecting eigenvectors and loadings into A and C.

Model order selection istreated asin [3] and final spatial maps are thresholded using a Gaussian/Gamma mixture
model [4].

Example

The data consist of 10 sessions under the motor paradigm from [5]: right-handed male; block design with 24.6s
on/off periods, right index finger tapping at 1.5 Hz. Figure (1) shows GLM mixed-effects results, generated by
fixing both the temporal signal characteristics (design matrix) and the assumed response over sessions. In
contrast, Figure 2 shows tensor-1CA results (R=19), where the signal characteristics in space, time and across
sessions is estimated from the data. The spatial maps correspond closely, with fig. 2 showing larger clusters
especially in bilateral secondary somatosensory areas (both maps thresholded using mixture modelling [4]). The
estimated session response corresponds closely to observed variation in individual post-threshold first level
cluster sizes. While this presentation only deals with the single group case, the approach can be extended to
multiple groups.

Conclusion

The Tensor-1CA approach provides a conceptually attractive decomposition of multi-subject/session FMRI data
into sets of characteristic spatial/temporal and session modes. Simulations on artificial and real FMRI data
suggest that Tensor-ICA is able to accurately identify underlying signals and extract plausible modesin 3-way
data. e1412
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Reordering diffusion-based connectivity matricesto define anatomical networksin the human brain.

T E JBehrens2, H Johansen-Berg!, SM Smith1, JM Brady?, PM Matthews?!, D JHigham3
1FMRIB Centre, University of Oxford, UK, 2Dept. Engineering Science, University of Oxford, UK, 3Dept.
Mathematics, University of Strathclyde, Glasgow, UK

Introduction

The anatomical connectivity pattern of abrain region determines its function. Brain areas with distinct functions
have different connectivity patterns. Conversely, regions with similar functions have similar connectivity patterns
and are highly interconnected. A defining feature of such hierarchical networksisthat their connectivity matrices
may be reordered (by simultaneous permutation of rows and columns) such that blocks of high connectivity
appear around the leading diagonal [1]. Here we use diffusion imaging of the human brain to provide pairwise
connectivity information between all areas of the human visual system and submit these datato a spectral matrix
reordering routine to test the hypothesis that they may be organised into a hierarchical form.

Methods

Diffusion-weighted data were acquired with an optimised method [2] based on echo planar imaging, implemented
on a General Electric 1.5 T Sigha Horizon scanner with a standard quadrature head-coil and maximum gradient
strength of 22 mT /m. 60 diffusion weighted volumes were acquired with diffusion gradients isotropically
distributed in angular space, with amaximum b-value of 1150 smm~2. Cardiac gating was applied to minimize
artefacts due to CSF pulsatile flow.

Probabilistic tractography was carried out from each seed voxe in structural space, according to [3]. Connectivity
values were stored from each seed voxel to every other voxe in the visual system (seed/target masks were
resampled to a coarse resolution of 10x10x10mm?3). Log connectivity information was arranged in a matrix, A.
Symmetry was imposed on this matrix by computing C=(A+A T)/2 (figure 2 (right)). The nodesin this matrix
were then permuted using a spectral reordering algorithm [4]. This algorithm looks for the node reordering which
minimises the sum of element values multiplied by the squared distance of that element from the diagonal, hence
forcing large values to the diagonal. The algorithm does not search for clusters in the matrix. Clusters that emerge
are due to organisation in the data.

Results

Figure 2 shows the connectivity matrix initsoriginal form (A) and after spectral reorganisation (B). The matrix
was divided by eye into 3 dominant clusters (horizontal coloured barsin Fig 2(right)). These clusters were then
mapped back onto their anatomical location (Figure 3). Thefirst cluster (blue) included lateral parietal lobe
corresponding to putative dorsal visual stream. The second cluster (yellow) included inferior occipital lobe and
inferior temporal lobe corresponding to putative ventral visual stream. The third cluster (red) included medial
occipital lobe corresponding to putative primary visual cortex (V1). Clusters are consistent across subjects.
Discussion

Applying a spectral reordering routine to amatrix of connectivity values between brain voxels revealed
hierarchical network organisation. Clusters of nodes emerge in the reorganised matrix. When mapped back into
anatomical space, these clusters appear to correspond well with the ventral and dorsal processing streamsin the
visual system and primary visual cortex.
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Clustersrecovered from connectivity matrix reorganisation of the visual system. Colours correspond to
coloured clusters at the bottom of the right hand matrix in figure 2.
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A new Algorithm for Detection of Coherent Brain Areasworking with MEG data

Paolo Belardinelli 12, Luca Ciancettal2, Vittorio Pizzellal23, Cosimo Del Grattal23, Gian Luca Romani 123
1Department of Clinical Sciences and Biomedical Imaging - University of Chieti, Italy, 2Institute of Advanced
Biomedical Technologies - Fondazione Universita G. DAnnunzio, Chieti, Italy, 3INFM - GC Chieti, Italy

The study of spontaneous activity and coherence between different regionsin the brain is an issue of growing
importance in recent neuroimaging studies. Starting from the work of Gross et al. with MEG data, we conceived
an algorithm the application of which isindependent from a particular external reference signal. This may be done
by integrating the original algorithm with additional tools for the identification of an internal reference signal.
The description of the procedure follows. A discrete isotropic 3D grid is placed inside a spherical model of the
brain. The sphere isfitted to the reference points on the real head. A set of tomography |ocalization tools (derived
from Loretaand SAM) was devel oped to detect the areas characterised by the strongest activity. The maximum of
electric activity is considered the starting point for the detection of coherent areas. When the areas of interest have
been localized, a map of the coherence degree between the different areas of the brain is obtained to study further
kinds of interactions (phase locking, directionality).

The possible applications of this procedure are numerous, especially in the field of cognitive studies where many
different brain areas are activated in complex sequences. As an example, we are currently working on MEG data
recorded during sexual arousal, where the interplay of many brain districts, such as thalamus, hypothalamus,
hippocampus, amygdala, anterior cingulate, insula, is expected.
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Calibrating BOLD fMRI Response L atencies Using Gd-DTPA Bolus Washout Dynamics

Rasmus M Birnl, Karen E Bove-Bettis?, Peter A Bandettini 1.2
1L aboratory of Brain and Cognition, National Institute of Mental Health, 2Functional MRI Facility, National
Institute of Mental Health

Introduction:

Mapping the relative timing of brain activation with functional magnetic resonance imaging (fMRI) is at present
difficult, since the latency of the blood oxygenation level dependent (BOLD) response is dominated by spatial
heterogeneity of the vasculature. This heterogeneity gives riseto variations in response latency of several seconds,
clearly dominating underlying neuronal timing variations. The goal of this study is to estimate the vascular
contribution to the spatial variation in the latency of the BOLD response by measuring the dynamic signal
changes following a bolus injection of a susceptibility contrast agent, gadopentetate dimeglumine (Gd-DTPA).
More specifically, it is hypothesized that the Gd-DTPA washout time is reflective of the transport of blood from
the microvasculature in cortex through the draining veins, and would therefore be correlated with the latency of
the BOLD response. This estimate is then applied to a hemi-field visual stimulation paradigm, to test whether this
calibration technique can improve the estimation of subtle differences in the onset of neuronal firing.

Methods:

Several series of axia echo-planar MR images were acquired through the visual cortex. In two runs, subjects
viewed a contrast reversing checkerboard for periods of 10s aternated with fixation periods of 10s. The
checkerboard in the one visual hemi-field was turned on either 500ms or 1s before the checkerboard in the other
hemi-field. In two runs, subjects viewed no stimulus and received a bolus injection of Gd-DTPA after 1 minute of
scanning.

Functional areas were identified by correlating the measured response with an ideal reference function. Signal
time-courses measured during the Gd bolus were fit on a voxel-wise basis to Gamma-variate functions. The
latency of BOLD and Gd-DTPA responses were also computed by finding the peak of the correlation function of
the time-course with an ideal response. BOLD latency maps from the hemi-field stimulation paradigm were
calibrated by subtracting the washout time of the Gd-DTPA bolus.

Results:

A Gamma-variate function provided a good fit to the Gd-DTPA-induced signal change. Thisfit was repeatable
across runs. The latency of the BOLD response was only dlightly correlated with the onset of the Gd-DTPA bolus
(average correlation-coefficient = .23). A better correlation was found between the BOLD latency and the
Gd-DTPA washout time constant (average CC = 0.36). Using this estimate to calibrate the BOLD latency
estimate resulted in a small improvement in the delineation of underlying neuronal latency differences, but
considerable variability remains.

Discussion & Conclusion:

Attempts at correcting variations in the BOLD latency by comparing the timing to dynamics of a Gd-DTPA bolus
have been performed previously, but these studies have focused only on the onset latency of the Gd-DTPA
induced signal decrease, atime constant that is influenced by variationsin the arrival time of the bolus from the
site of injection to the arteriolar sphincters. As shown here, the washout time of the Gd-DTPA, is more predictive
of BOLD latencies. Remaining variability can be due to a variety of sources, and may be improved by more
accurate modeling of the hemodynamic time constants.
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When isa conjunction not a conjunction?

Matthew Brett1, Tor Wager2, Jean-Baptiste Poline3, Tom Nichols*
1CognAc lab, Psychology department, University of California, Berkeley, CA 94720, USA, 2Department of
Psychology, Columbia University, New York, NY 10027, USA, 3SHFJCEA/INSERM, Orsay, France,
4Department of Biostatistics, University of Michigan, Ann Arbor, M1 48109, USA

Neuroimaging experiments can reguire conjunction inference (Price and Friston 1997). For example, it may be
interesting to find brain areas that are commonly activated across different tasks. Imagine a study on working
memory (WM), with averbal WM task (task A) with averbal control (task B), and a spatial WM task (C) with a
spatia control (D). If there are areas of activation that are common to the two subtractions [A-B] and [C-D], these
areas may be involved in WM independent of modality. Thisisatest of logical AND, finding areas where both
[A-B] AND [C-D] are activated.

Price and Friston suggested the following way of getting at this problem; find areas where ([A-B] + [C-D]) is
dtatistically significant (main effect), then remove all areas where [A-B] - [C-D] is significant (interaction effect).
Thiswasthe 'interaction’ conjunction test implemented in SPM 96.

This method had problems. It equated the lack of statistical significance for the interaction with no effect; for
example, if [A-B] islarge and [C-D] issmall, it is possible to have a significant main effect but not a significant
interaction, and hence for the test to be positive. Alternatively both [A-B] and [C-D] could be very large but
different in magnitude, giving a significant main effect and interaction, and a negative test.

In 1999, Wordley and Friston proposed a Minimum Statistic Test (MST) for conjunction. Imagine a brain region
where [A-B] givesat statistic of 1.5 and [C-D] gives at statistic of 1.6. Alone, neither t value is convincing, but
the fact that both values are quite high suggests there may be areal effect. This intuition can be formalized by
taking the minimum t value from ([A-B] and [C-D]), here 1.5, and testing if this value is unexpectedly high for
the minimum of two random t values under the null hypothesis. If so, we conclude there is some effect over
[A-B], [C-D]. SPM99 and SPM2 use the MST for conjunction analysis.

Researchers usually interpret the MST as atest of logical AND in the sense described in Price and Friston (1997).
Unfortunately thisisincorrect. The problem arises because the null hypothesis for the MST is that none of the
tasks have activated, which can be refuted if any task activates. Consider thet values for a single prefrontal voxel
across 5 tasks, 4 WM tasks and a flashing checkerboard (FC) task. All WM tasks give a high prefrontal t value; by
chance the FC gives aprefrontal t dightly less than 0. The 5% uncorrected threshold for one Z is 1.64, but the 5%
uncorrected threshold for the minimum of 5 Z’sis-0.12, so the MST is significant even if the minimum valueis
lessthan 0. If weinterpret the MST as atest of AND, we must conclude that FC activates prefrontal cortex,
athough thisis clearly false.

In fact we show that atest for activation in every comparison needs to use the standard thresholds for each single
comparison. Readers and reviewers should consider screening for problems related to MST.
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Component-Wise M odel of the BOLD Responsein the Human Primary Visual Cortex

Emma S. Buneci 1, Kenneth C. Roberts?, Rachael Brady®, Allen W. Song?3, Xiaobai Sunl, Marty G. Woldorff2
1Department of Computer Sciences, Box 90129, Duke University, Durham, NC 27708, 2Center for Cognitive
Neuroscience, Box 90999, Duke University, Durham, NC, 27708, 3Brain Imaging and Analysis Center, Duke

University Medical Center, PO Box 3918, Durham, NC 27710

Introduction

We report our investigation in characterizing and modeling the relationship between stimulus duration and the
hemaodynamic response (HDR) in the human primary visual cortex.

Materials

A 4.0 Tesla GE scanner was used with a Nova Medical surface coil. Visual stimuli were displayed viaaLCD
goggle system. We acquired 22 dlices per time point (TR=1sec) that were centered on and parallel to the calcarine
fissure (2D inverse spiral pulse sequence, 64x64 matrix, 3.75mm isotropic voxels). Subjects fixated on a central
cross while a series of visual stimuli were presented. There were two different types of visual stimuli, presented in
random order: 1) afrequent regular stimulus (83.33%), which was a black/white radial checkerboard pattern and
2) an infrequent target stimulus (16.67%), which was the same as the regular stimulus except it contained a color
change during the last 30ms. The stimulus was displayed to the subject at 9 different durations from 50ms to
1500ms. Subjects were instructed to press a button at each occurrence of the target stimulus. The stimulus onset
asynchrony (SOA) was constant at 16s.

Methods

Dataanalysis consisted of four steps: 1) preprocessing, 2) time-locked averaging within the primary visual cortex
3) testing of the linear transform model for the averaged event responses 4) modeling of the HR using a newly
proposed component-wise model, C-WISE. In preprocessing, the SPM 99 package was used for slice timing
correction, motion correction, co-registration of functional with anatomical images, smoothing with a Gaussian
filter of FWHM=8mm, and high pass filtering to remove low frequency drifts. Correlation analysis was used for
signal detection and for the formation of activation maps. Our C-WISE model describes the observed HDR as the
integration of three component hemodynamic responses triggered by two types of neuronal activations. The
activations from onset and offset transient neurons are assumed to respond immediately and relatively briefly to
the stimulus onset and offset, respectively. The response due to the activities of sustained neuronsis proportional
to the stimulus duration. The model specifies also additional constraints based on physiological conditions and
expectations. The model parameters were estimated using nonlinear programming techniques.

Results

We found that across the duration range of the stimuli used here (<1.5s), alinear model breaks down. This finding
isin agreement with other studies showing nonlinearity in the BOLD response. Both linear and nonlinear
behaviors are captured in the model components: onset, sustained and offset. Figure 1 illustrates a very good fit
(R2=0.968) between the data (solid traces) and the model (dotted traces). Figure 2 showsin detail the estimated
components for each of the stimulus durations. We note that both the offset and sustained neuronal activations
begin to contribute to the HDR at around 200-400ms duration and both increase in amplitude as the duration
increases, a pattern consistent with studies from the ERP and single-unit literature.

Conclusion

C-WISE represents a novel approach to modeling the HDR. It offers a physiologically structured mapping
between component hemodynamic responses and activities associated with different neuronal populations.
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Figure 1: Data and Modd Fitting of the C-WISE model.

e

Figure 2: Individual response decomposition to an onset, sustained and offset component. Red Curve:
Onset Component, Green Curve: Sustained Component, Blue Curve: Offset Component for the C-WISE
proposed model.
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FMRI Analysiswith the General Linear Model: Removal of Latency-Induced Amplitude Bias by
Incor poration of Hemodynamic Derivative Terms

Vince D Calhoun23, Michael Stevens1-2, Godfrey D Pearlson12:3. | Kent Kiehl 12
10lin Neuropsychiatry Research Center, Hartford, CT, 2Y ale University Dept. of Psychiatry, New Haven, CT,
Johns Hopkins University, 3Dept. of Psychiatry and 4Dept. of Radiology, Baltimore, MD

Introduction: FMRI data are often analyzed by employing a hemodynamic model. Model mismatches can be
caused by spatially varying delays or dice-timing differences. It is common practice to desensitize the analysis to
such delays by incorporation of the hemodynamic model plusitstemporal derivative. However, amplitude bias
can occur due to the use of only the non-derivative portion of the model in the final test for significant amplitudes.
We propose instead testing an amplitude value which is afunction of both the non-derivative and the derivative
terms of the model. Using simulations, we show that the proposed amplitude test does not suffer from
delay-induced bias and that a model incorporating temporal derivatives is amore natural test for amplitude
differences.

Methods: We generated a synthetic fMRI model waveform consisting of events modeled as delta functions spaced
fifteen seconds apart and convolved with the default hemodynamic response function in SPM99 [1]. Simulated
MRI datawith different delays were created by adding Gaussian noise and shifting this model relative to the
model waveform. We then compared the amplitude estimates obtained by using either the non-derivative term
only or both terms as proposed.

100 subjects (50 female) completed two 8 minute runs of an auditory oddball task. Imaging was performed on a
GE 1.5T scanner (TR/TE 3000/40 ms, flip angle 90, FOV 24 x 24 cm, 64 x 64 matrix, 29 5 mm dlice). Images
containing standard or derivative corrected amplitude estimates were then entered into a second level analysis
(random effects).

Results: The simulations show that as the delay increases, the amplitude estimate for the non-derivative terms
decreases below the true value, with significant decreases occurring even for delays as small as one second. For
delays of three seconds the amplitude estimate is reduced by a factor of three from the correct value (fig 1). When
utilizing both terms the amplitude estimate is much closer to the true response even for a three second delay.
Differential maps of [targets (with both terms) targets (with non-derivative term)] [novels (with both terms)
novels (with non-derivative term)] were also calculated (fig 1). The largest amplitude differences occur in motor,
supplemental motor, and basal ganglia regions consistent with areas that may have delayed hemodynamic
response functions.

Discussion: Thiswork has important implications for both within- and between-subject fMRI analyses. Spatially
varying delays can be present between voxels due to hemodynamic differences, (uncorrected) slice timing
differences and also potentially between groups of subjects (e.g. young and old). Both main effect and differential
effect estimates can be affected by these spatially varying delays since as the actual delay differs from the
assumed (modeled) delay the amplitude of the non-derivative term will decrease (the affect of delay upon
amplitude is also true when the temporal derivative is not modeled). Using both a simulated data set and actual
fMRI data we demonstrate the effect of amplitude bias.

References. 1. Worsley K and Friston K, Neuroimage 2:173-181 (1995)
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Figure 1: Smulation results (left) and fMRI resultsindicating regions exhibiting amplitude bias.
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Modedling the structure of the visual system based on structural connectivity and spike onset data

Michael Capalbo?, Eric Postma?, Rainer Goebel 1
1Cognitive Neuroscience Section, Dept. of Psychology, University of Maastricht, the Netherlands, 2Computer
Science Section, Dept. of General Sciences, University of Maastricht, the Netherlands

Introduction

In the 1950s Hubel and Wiesel suggested that a serial scheme could account for the progressive increase in the
complexity of receptive field propertiesin the visual cortex. Felleman & Van Essen [1] have recently taken this
notion further, by a method called hierarchical analysis. Goodale & Milner [2] propose another, complementary,
organizational principle by claiming the visual system is organized in two pathways, the Vision for perception and
the Vision for action pathways respectively. If we take these theories together we arrive at the currently popular
serial, hierarchical, dual pathway model of the organization of the visual system.

Recent single-cell data by Schmolesky [3] suggests that a serial and hierarchical model does not suffice to explain
onset latency effects. They found that there was a functional sequence in the ventral stream wherein several
modules demonstrated successively longer latencies. In contrast, there was simultaneous onset of firing in the
modules of the dorsal stream. The dorsal pathway is dominated by the fast magno cells and the ventral pathway
consists of mixed cell types, but the resulting speed difference [4] aone cannot account for the size of the effects.
This means these effects cannot be attributed to different cell propagation speeds alone and therefore show a
shortfall of the currently held beliefs. We modeled the structure of the visual system based on these single cell
response data, constrained by a database (CoCoMac) of the known anatomical connectivity of the macaque brain
[5].

Methods

The building blocks of our model are the functional modules of the visual system that were described by Felleman
& Van Essen [1] and measured by Schmolesky [3]. With these blocks we generated semi-randomly all possible
architectures by gradually increasing the probability of a connection existing between two modules. Thiswas
constrained by what connections are possible given the known connections in the brain as collected in the
CoCoMeac database [5]. We then measured the characteristic path length [6] and congestion robustness [7] of the
generated architectures, to characterize and compare them. Finally we tested the architectures to see which
architectures would fit the onset latency data best, by feeding activity to the input modules and propagating the
activity through the model.

Resultsand Conclusion

The results show that for adual pathway model to explain the current spike onset data in the visual system, the
two pathways must have a different organization to attain different throughput speeds. Generated model s that
show the best fit have smaller path lengths, and higher congestion robustness in the dorsal system. These different
characterizations show that speed might be an important design consideration in the architecture of the visual
system.

1. Felleman & Van Essen, 1991, Cerebral Cortex

2. Goodale & Milner, 1992, Trends in Neuroscience

3. Schmolesky et. al., 1998, Journal of Neurophysiology

4. Bolz, Rosner and Wassle, 1981, Journal of Physiology

5. Stephan et al., 2001, Proceedings of the Royal Society

6. Watts and Strogatz, 1998, Nature

7. Dodds & Watts, 2003, PNAS
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Evaluation of human cortical sitesunderlying International 10-10 System scalp electrodes.
An MRI study.

Filippo Carducci 3, Claudio Babiloni 1, Fabio Babiloni 1, Febo Cincotti 1, Cosimo Del Gratta*®, Antonio
Ferretti4, Paolo Nalin®, Gian Luca Romani #®, Paolo Maria Rossini 236
1Dipartimento di Fisiologia Umana e Farmacologia, Universita La Sapienza, Roma, Italy, 2IRCCS S Giovanni di
Dio, ViaPilastroni, Brescia, Italy, 3AFaR.- Dip. di Neuroscienze, S. Giovanni Calibita, Fatebenefratelli Isola
Tibering, Roma, Italy, 4ITAB Universitadi Chieti, Chieti, Italy, ®Istituto Nazionale di FisicadellaMateria, UdR
LAquila, Italy, 8Clinica Neurologica, Campus Biomedico, Universita di Roma-ltaly

Electrodes placed on the subjects scalp according to the International 10-10 System (S.I. 10-10), an extension of
the S.I. 10-20 (Jasper, 1958) that considers percentage curvilinear distances instead of absolute ones, take into
account inter-subjects differences in skull size and shape (Jasper, 1958; Penfield et al., 1958), and show a stable
neuro-anatomic correlation with underlying brain cortical areas (Jasper, 1958, Penfield et al., 1958, Kagawa et d.,
1962; Hellstrom et al., 1964; Silverman, 1965; Torres et al., 1968; Blume et a., 1974; Morriset al., 1986; Homan
et al., 1987; Myslobodsky and Bar-Ziv, 1989; Steinmetz et al., 1989, Myslobodsky et al., 1990; Grzeszczuk et .,
1990; Jack etal., 1990; Givensand Illes, 1991; Van den Elsen and Viergever, 1991; Largelund et al., 1993, Barnet
et al., 1993, Towle et a., 1993). Until now, only a small amount of crude studies have tried to investigate and to
evaluate this neuro-anatomic correlation, involving too few subjects and considering a very small subset of scalp
electrode sites, and not giving any reliable and complete evaluation of this correlation. In this study, we evaluated
neuro-anatomical correspondence of all S.1. 10-10 scalp electrodes.

On 35 redlistic MRI-constructed head models (including the one reconstructed from the set of averaged MRIs of
152 subjects coming from the Montreal Neurological Institute, MNI), describing scalp and brain surfaces, the
positions of S.I. 10-10 electrodes were determined over the scalp surface by means of an automatic procedure
(Echallier et a., 1992). Then, these el ectrode positions were perpendicularly projected onto the corresponding
brain surface, that is referred to the Taairach stereotaxic space. Talairach coordinates of the projected electrodes
were recorded. Brodmann areas (BA) associated to these projections were identified using Talairach atlas.

e1426



Abstracts presented at the 10th International Conference on Functional Mapping of the Human Brain, June 13-17, 2004, Budapest, Hungary

WE 142
Content-Based Retrieval of Structural MRI

Monica P. Carley-Spencer , Kenneth P. Smith , John K. Dixon , Jeffrey P. Woodard , Jeffrey C. Hoyt
The MITRE Corporation

Augmenting our MRI management platform, we will present our progress toward the development of querying
capability over image content. The goals of our research are to provide users the ability to (i) present an example
image (e.g., adlice of an MRI volume) and automatically retrieve similar images from an archive, (ii) provide
feedback on the relevance of retrieved "matches’, (iii) examine the attributes of subjects having similar image
characteristics, and (iv) automatically filter requested scans based on image quality metrics. Thefirst three
capabilities would support virtual hypothesis-testing. For example, a researcher might notice that a particular
anatomical structure has an unusual shape in one individual’ s scan and want to know if it correlates with acertain
attribute such as handedness or perhaps a disease. Hypothesizing that it is a distinguishing structural characteristic
of people with this attribute or condition, the researcher would query the system for archived scans of other
subjects with the same unusual shape. The system would then retrieve the requested attributes of the subjects, thus
enabling the researcher to test the hypothesis over an existing set of data.

We will present a system architecture, our progress in identifying and developing similarity metrics for
query-by-example, and the software tools we are developing for users to interact with the proposed system and
visualize query results.
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Functional Connectivity Excluding Extreme-L ow-Frequency: A BOLD fMRI study

Chia-Fang Chen , Chang-Wei Wu , Jyh-Horng Chen
Interdisciplinary MRI/MRS Lab, Dept. of Electrical Engineering, National Taiwan University, Taipel, Taiwan

Introduction

Low frequency fluctuations in functional connectivity MRI (fcMRI) were used to detect neural connections
among local regions in human brain, which were claimed during 0~0.1 Hz avoiding respiratory and cardiac
effects[1, 3]. However, the observation range has not been officially determined. Wang reported that BOLD
show markedly increased power in extreme-low-frequency (ELF, corresponding frequency: 0 ~ 0.01Hz)
comparing with perfusion data and Biswal demonstrated functional connectivity map existsin perfusion imaging
[2]. Therefore, it was reasonably hypothesized that the source of ELF isfrom noise irrelevant to neural
connectivity. Here we compared resting-state dataset of low frequency with ELF (0~0.1 Hz) and without ELF
(0.01~0.1 HZ) in the fcMRI research.

Materials & Methods

Experiments were performed on Bruker MedSpec 3T system (Bruker, Ettlingen, Germany) with quadratic
birdcage head coil. Two subjects were conducted in two experiments: visual task and resting. Block-designed
visual task with 8 Hz checkerboard (20 sec on, 20 sec off, 4 blocks) were applied to subjects by LCD goggle.
Both task and resting images were acquired by gradient-echo echo planar imaging with 64x 64 matrix size,4 slices
with slice thickness of 7mm, 2mm gap, 25.6-cm FOV, and TE of 35 ms; task images with TR of 2000 ms, 800
flip angle while resting images with TR of 400 ms, 450 flip angle. Two seed voxels were selected from the task
datawith largest correlation coefficient values in each subject. Resting-state data were low-pass filtered at the
cutoff frequency 0.1 Hz, and then filtered by band pass filter from 0.01 Hz to 0.1 Hz. Resting time courses of seed
voxels were analyzed by cross-correlation (CC, threshold >0.7) to resting-state data of whole dataset. Comparison
was made between the |ow-pass results and band-pass resullts.

Results & Discussion

Figure 1 shows the power spectrum profiles of BOLD with ELF and without ELF of single subject.
Corresponding fcMRI maps were shown in Figure 2 and 3. As Table 1 shows, resting dataset without ELF has
both more correlated voxels and stronger correlation coefficientsin contrast to that with ELF. Therefore, we can
presume that ELF signal is unconcerned with neural connectivity. However, even though the power spectrum of
BOLD without ELF issimilar to that of perfusion, the functional mappings from BOLD without ELF and
perfusion are quite different. It was speculated that this phenomenon is mainly caused by physiological
differences of BOLD and perfusion images, resulting in mismatches of activated area and correlation coefficients.
References

[1]. Jiongjiong Wang et a., Empirical analyses of null-hypothesis perfusion FMRI dataat 1.5and 4 T,
Neurolmage 19 (2003) 1449-1462.

[2]. Biswal B et a., Simultaneous Assessment of Flow and BOLD Signalsin Resting-State Functional
Connectivity Maps, NMR in

Biomedicine, val. 10, 165-170 (1997).

[3]. Cordes D. et a., Mapping Functionally Related Regions of Brain with Functional Connectivity MR Imaging,
AINR Am JNeuroradiol 21:1636-1644, October 2000.
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Comparison of activated voxel numbers and correlation coefficient between BOLD signals with and without

ELF
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Power spectrum of BOLD signal with ELF (0~0.1Hz, red) and without ELF (0.01~0.1Hz, blue)
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Mutual information based approach for detecting cortical connectivity during self-paced finger lifting tasks

Chun Chuan Chen®, Yu-TeWul:2, Po-Lai Leel, Shyan-Shiou Chenl, Yz-TeWu?l3, Li-Fen Chenl#, Tze-Chen
Yehl3, Jen-Chuen Hsieh1:34
1integrated Brain Research Unit, Taipei Veterans General Hospital, Taiwan, 2Institute of Radiological Sciences,
National Yang-Ming University, Taiwan, 3Ingtitute of Neuroscience, School of Life Science, National
Y ang-Ming University, Taiwan, 4Faculty of Medicine, School of Medicine, National Y ang-Ming University,
Tawan

Introduction

In this study, we exploit the mutual information (M1) method to elucidate the functional connections between
cortical regionsin MEG study, especially the participation of SMA and ipsilateral sensorimotor area. Contrary to
the conventional coherence method using the second-order covariance, the Ml method utilizes the entropy to take
the high-order statistics among data into account. Results of MI method were compared with that of conventional
coherence method to demonstrate its effectiveness.

Materials and Method

Eight healthy and right handed subjects were recruited for this study. All subjects gave written informed consent
for the experiment. Subjects were asked to perform repeatedly self-paced brisk index finger movement with a
period about 8 ~15 seconds inside the magnetic shielding room. To avoid the movement-related vibration
contaminated into the ipsilateral hemisphere, the left hand was put on a pillow. The brain magnetic signals were
continuously recorded during the movement by using the 306 channel whole-head MEG device with 1000 Hz
sampling rate and downsampled to 250 Hz. The surface EM G signals were simultaneously recorded for
verification the movement of index finger. The number of trialsis more than 100 for each subject.

The time-frequency maps of measured MEG trials were created and averaged across trials and across
pre-specified passbands (16 ~ 25 Hz; beta band). A channel exhibited the strongest oscillatory power in the
vicinity of sensorimotor area, and another arbitrary (task non-related) channel were respectively selected as the
channel of interest (COI). The mutual information of averaged temporal-frequency powers between COI and
other channels were then computed. The 95% confidence limit of t-distribution was used as a threshold to
determine the significant regions.

Results

We superimposed the thresholded M1 values (obtained in the sensor space) on top of individual MRI to facilitate
the visualization (Fig.1). When the COI was task-related, the involved regions included mesial frontocentral
cortex, likely supplemental motor area (SMA) and primary sensorimotor areas (SM 1), and premotor area (PM),
which were in line with previous fMRI or PET studies. Table 1 summarized the M1 result. The SMA and
ipsilateral SM | were detected consistently in all subjects, even the signal-to-noise level was low. In addition,
significantly functional relevance between left and right senserimotor areas, which was not resolved by the
conventional coherence method, was manifested. When the COI was arbitrary, the Ml results exhibited much less
connectivity than the coherence results (Fig. 2). These results demonstrated that M1 method is superior not only in
detecting the event-related regions but also in discriminating the event-related regions from the event-non-rel ated
regions.

Conclusion

In this study, we have developed a M| method to detect the functional connectivity between cortical regionsin
MEG study. The results show that M| method is a promising tool to appraise inter-regional neural network and to
probe the unknown dynamics of brain function.
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Table 1 The summary of MI result

area A B C D E F G H Average
sMmit B(C)® B(C) B(C) B(C) B(C) B(C) B(C) B(C) 8/8
Pre-motor c4 C B(C) C C C B(C) B(C) 88
SMA 2 B(C) | C BC) B(C) B B{C) C 8/8
Parietal lobe X X C C C C X C 5/8

1: primary sensorimotor area ; 2: supplemental motor area ; 3: bilateral activation with contralateral side
dominat; 4: contralateral side only; 5: ipsilateral side only; X : no significance
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Gaussian Convolution Model of the BOLD response of functional MRI

Huafu Chen , Dezhong Y a0
School of Life Science & Technology, School of Applied Math., University of Electronic Science and
Technology of China, Chengdu 610054, PR China

Introduction

Blood oxygenation level dependent (BOLD) contrast based functional magnetic resonance imaging (fMRI) has
been widely utilized to detect brain neural activities and great efforts are now stressed on the hemodynamic
performances of different brain regions activated by a stimulus. The focus of thiswork is the convolution model
of aBOLD signal (Miller et al, Human Brain Mapping, 2001,13:1). We extended this model by replacing the
kernel function with a Gaussian function, and newly added a baseline term.

Model and Methods

In the original model (Miller, et al 2001), the convolution was between the perfusion function of the neural
response to a stimulus and a Gamma function that is the response of a single neuron. SinceaBOLD signal isthe
collective response of a neural cluster, and based on the law of large numbers in probability, we suggested using a
Gaussian function to replace the original Gamma function. Meanwhile, for simulating the background activities, a
baseline term was newly included, too. The final model is

X(t)=n(t)* gauss(t)+(1+t.a).baseline +noise (1)

Here the BOLD signal x(t) was expressed by the convolution between the perfusion function of the neural
response n(t) to stimulus and a Gaussian function gauss(t) of Cerebral Blood flow (CBF) hemodynamic change of
aneura cluster. (1+at).baseline was introduced to represent the background activities. The baseline was a
constant, and the time dependence was assumed being a linear function a.t.baseline with a baseline shift factor a.
The noise represented various additive noise. The parameters of the model were estimated by a nonlinear
|east-squares optimal algorithm for fMRI data collected in a visual stimulus experiment.

Results

Figure 1 shows the relative errors (RE) of the new model and the original Gamma model, they are calculated over
atotally 12 BOLD signalsin ROIsin the left and right primary visual cortexes. The maximum RE of the Gaussian
model is0.0333, and its average is 0.0243, minimum is 0.0135. However, the maximum RE of the Gamma model
is0.0453, and its average is 0.0283, minimum is 0.0144.

Conclusions

Our results show the new Gaussian convolution model is better than the original Gamma convolution model in
fitting the curves of the fMRI signals with a much smaller relative error. Asfor the available spatial resolution of
fMRI, any measurable signal is due to neuronal cluster which means that the BOLD response is a macroscopic
response (Gaussian response), not aresponse of asingle neural cell (Gamma response), and so the foundation of
the new Gaussian convolution model is theoretically stronger than the Gamma model.

Acknowledgement The work was supported by NSFC(N0.90208003 and 30200059) and the China 973 Project (
No. 2003CB716106).
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Figure.l Relative errors (RE) of the models, they are calculated over atotally 12 BOLD signalsin ROIsin
theleft and right primary visual cortexes.+
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Comparison of Activation Detection Methods for fMRI using ROC Curves

Xu Chen?, Pulapura Sujit2, Lars K Hansen3, Jane Zhang#, Jon R Anderson?, Stephen C Strother 1>
1 Department of Neurology,University of Minnesota, USA, 2Department of Electrical Engineering,University of
Minnesota, USA, 3Informatics and Mathematical Modeling, Technical University of Denmark,DK, 4Department
of Health Information,University of Minnesota, USA, °>Department of Radiology,University of Minnesota, USA

INTRODUCTION. Severa frequency domain activation-detection methods based on multi-taper spectral
estimation[ 1] were evaluated using fMRI simulation data and a normalized partial ROC index within the NPAIRS
framework. The results were also compared with univariate Bayesian and GLM techniques, aswell as
multivariate Canonical Variates Analysis (CVA) in the time domain.

METHODS. Data Simulation: The simulation data were generated using a brain-mask volume(64* 64* 32) from
one subject for a 1.5T fMRI experiment in which every volunteer was asked to perform two runs of a static force
task alternating six rest and five force periods/run (44s/period, TR=4s). Four artificial Gaussian blob
(FWHM=1,1.5,2,4 pixels) activations, each restricted to a 7* 7 square, were added to different locationsin asingle
dice. To form the simulated time sequence, the blobs were then multiplied by 1) Block: the on-off reference
function for two parametric static force runs; 2) asinusoidal wave of 0.011 Hzthe fundamental block frequency;
both were convolved with a Poisson shaped (A=7.3) HRF. After adding white noise to the sequence and
normalizing the SNR at the blobs centers to be 1, two sets of simulation data (Block & Sinusoidal) were obtained.
Finally the spectra of the time series corresponding to each voxel were estimated using multi tapers[1] (MTM, the
number of Sepian sequences K=3, timehalf band width product NW=2, the Rayleigh frequency N=128).
Analysis: In frequency domain: 1) Harmonic F test; 2) regression with reference F test; 3) CVA (each frequency
component corresponding to a group, total group number=N/2); 4) Complex Singular Vaue Decomposition
(SVD) was performed over the MTM spectral data[2]. In time Domain: 1) GLM; 2) Bayesian Detection [3]; 3) 2
Class CVA; 4) 11 class CVA. All of the above 8 methods were implemented in the NPAIRS framework [4] with
consensus, reproducing Z-score images as the final results for each data set. The normalized area under a partial
ROC curve (pAUC) with FPRs ranging between 0 and 0.1 was calcul ated as the performance measurement.
RESULTS/CONCLUSIONS.Thefiguresillustrate the pAUC trends as a function of Gaussian blob threshold
only the voxels in the Gaussian Blob with values no less than the threshold were treated as truly activated for the
8 detection methods applied to the Sinusoidal and Block simulated data sets. Our conclusions require further
justification using real fMRI data: 1) GLM performs the worst of all methods tested; 2) Time domain CVA,
whether 2 class or 11 class, performs the best; 3) the Bayesian method dramatically outperforms all other
univariate methods because it takes maximum advantage of prior information; 4) Among frequency domain
methods, complex SVD performs the best; 5) Regression with reference F test uses the 0.011Hz priori frequency
and therefore performs better than the harmonic F test.

REFERENCES.[1] MitraPP, et a, Biophysical Journal 76: 691-708, 1999; [2] Sujit KP, master thesis,
UMN2757487, 2003; [3] Hansen LK, et a, AIM 25: 35-44, 2002;[4] Strother SC, et al, Neurolmage 15, 747-771,
2002.
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Detection of cortical activity asymmetriesfrom non invasive EEG recordingsfor Brain Computer Interface
applications

Febo Cincotti 1, Donatella Mattial, Marco Mattiocco®, Alessandro Timperi 1, Giorgio Campani 12, Serenella
Salinari 2, Maria Grazia Marciani 13, Fabio Babiloni4
1Fondazione Santa L ucia, Roma, Italy, 2Dip. di Informatica e Sistemistica, Univ. La Sapienza, Roma, Italy,
3Dip. di Neuroscienze, Univ. Tor Vergata, Roma, Italy, 4Dip. Fisiologia umana e Farmacologia, Univ. La
Sapienza, Roma, Italy

Objectives. To analyze whether the use of the cortical activity estimated from non invasive EEG recordings could
be useful to detect mental states related to the imagination of limb movements.

M ethods. Estimation of cortical activity was performed on high resolution EEG data rel ated to the imagination of
limb movements gathered in six normal healthy subjects by using realistic head models. Cortical activity was
estimated in Region of Interest associated with the subjects Brodmann areas by using depth-weighted minimum
norm solutions. Comparisons between surface recorded EEG and the estimated cortical activity were performed.
Results. The estimated cortical activity related to the mental imagery of limbsin the six subjectsis located mainly
over the contralateral primary and supplementary motor areas. The unbalance between brain activity estimated in
contralateral and ipsilateral cortical areas appears greater than those obtained in the scalp EEG recordings.
Conclusion. Results suggest that the use of the estimated cortical activity for the motor imagery of upper limbs
could be potentially superior with respect to the use of surface EEG recordings. Thisis dueto a greater unbalance
between the activity estimated in the contralateral and ipsilateral hemisphere with respect to those observed with
surface EEG. These results are useful in the context of the development of anon invasive Brain Computer
Interface.
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A Permutation Multiple Hypothesis Procedur e based on the
Weighted Sum of Test-Statistics

Marco Congedo?, Livio Finos?, Federico Turkheimer3
1IRISA (Institute for Research in Informatics and Random Systems), Rennes, France, 2Department of Statistics,
The University of Padova, Italy, 3Neuropathology Department, Imperial College London, UK

We introduce a new test procedure for multiple hypothesis testing based on the permutation space of the sum of
test-statistics (t-sum). The underlying combining function is shown to be an instance of afamily to which it also
bel ongs the well-known combining function based on the maximum of test-statistics (t-max). After discussing the
family-wise error rate and the false discovery rate, two common neuroimaging approaches to the control of the
type | error in multiple testing, we consider two further error rates, the stochastic family error and the mean square
error model fit estimator. By means of alarge set of simulations we show that besides controlling the family-wise
error rate in the weak sense, the t-sum procedure also controls the stochastic family error and generally
considerably outperform the t-max procedure in power and mean square error in experiments with low degrees of
freedom.

The t-sum procedure is suitable for pilot and exploratory studies in neuroimaging and in other experimental
contexts in which the sample size/number of hypothesesratio is low, the data correlation is moderate, and the
proportion of false hypothesisis possibly large. We end the discussion outlining possible investigations of the
more general form of combining function (weighted sum) with the aim of data-driven selection of an optimal
power combining function.
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I nvestigating the Reliability of ICA Sources Obtained After PCA Preprocessing

Dietmar Cordes , Rajesh Nandy
Department of Radiology, University of Washington

Introduction

Independent Component Analysis (ICA) is apromising technique for analyzing fMRI data[1]. Unfortunately, the
size of fMRI datasets often renders this technique as being computationally intractable, and certain compromises
must be made to perform the analysis. One such compromiseisto project the full dataset onto a
lower-dimensional subspace that, in some well-defined sense, captures the essence of the data. The most common
method for achieving thisaim is Principal Component Analysis (PCA). PCA isused for two reasonsin ICA, for
computational efficiency and to prevent ICA from splitting components into multiple groups. In our investigation
we focus on the first aspect by using pseudo real and simulated data.

Methods

All scans were done on a GE 1.5 Tesla MRI scanner (20 dlices, 64 x 64 resolution, 7mm slice thickness, 2mm
gap, TR 2 s, bandwidth, +/-62.5 kHz, TE 40ms, flip angle 82°, 165 time frames). Standard resting-state data and
motor activation data (30 second on/off task, repeated 5 times) were collected with experienced volunteers. ICA
was carried out using FastlCA with and without PCA preprocessing [2]. Two types of simulations were
performed. In the first simulation, an ICA motor component (obtained from an activation study) was added to the
resting-state data set using different mixing amplitudes to provide different SNRs. The simulated data set was
then reduced by PCA to different dimensions and analyzed by ICA. In another simulation we investigated the
dependence of the ICA component extracted (after PCA preprocessing) as a function of the shape of the source
distribution. We assumed that the source activation pattern can be parameterized by an exponential power family
with afree parameter a describing the shape of the distribution. For afixed value of a [0.3,2.5] in steps of 0.1 we
generated 20,000 independent identically distributed points from the distribution. The generated numbers
represent a spatial intensity pattern that was then multiplied with a hypothesized hemodynamic response function
and added to resting-state data with different amplitudes as before.

Results and Conclusion

To obtain accurate ICA sources using PCA reduction in apreliminary step, the strength of the signal sources and
their spatial distribution play a major role. Indeed, in both the pseudo-real and simulated data, PCA-preprocessed
ICA can be beneficial if the signal is strong (=1% relative amplitude) but can also fail to detect all the activations
associated with the paradigm when the dimension was reduced too aggressively (< 50) or the relative amplitude
was low (< 1%).

References

[1] McKeown et al. Analysis of fMRI data by blind separation into Independent Spatial Components. 1998.
Human Brain Mapping 6:160-188.

[2] Hyvérinen et al. 1997. A fast fixed-point algorithm for Independent Component Analysis. Neural Computation
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A (Sort of) New Image Data Format Standard: NIfTI-1

Robert W Cox 1, John Ashburner?, Hester Breman3, Kate Fissell 4, Christian Haselgrove®, Colin J Holmes®,
Jack L Lancaster 7, David E Rex 8, Stephen M Smith?, Jeffrey B Woodward19, Stephen C Strother 11
INIMH/NIH/DHHS/Bethesda, 2FIL/London, 3Brain Innovation/Maastricht, 4U Pittsburgh/Pittsburgh,

SMGH/Charlestown, 8SGI/Mountain View, “RIC/UTHSCSA/San Antonio, 8LONI/UCLA/Los Angeles,
9FMRIB/Oxford, 10Dartmouth College/Hanover, 11U Minnesota/Minneapolis and DFWG Chair

The problem of interoperability of neuroimaging data analysis software is being addressed by the NIfTI
(Neuroimaging Informatics Technology Initiative) task force. The Data Format Working Group (DFWG) within
NIfTI was chartered to deal with the particular issue of data interoperability; that is, making it smpler to
interchange image (etc.) data between analysis packages.
The DFWG decided to proceed in two phases: near- and long-terms. Since the ANALY ZE™-7.5 file format
(.hdr/.img file pairs) is simple, widely used, and contains some unused/little-used fields, for the first phase we
decided to modify this format to add features that the DFWG agreed were highly desirable for FMRI analysis
purposes. In outline, new features include:
(1) Two affine coordinate definitions relating voxel index to spatial location:

- one orthogonal transform, to indicate orientation/location of data in scanner coordinates;

- one genera affine transform, to indicate mapping to a "normalized" space;

— global coordinates are +x=Right, +y=Anterior, +z=Superior.
(2) Codesto indicate spatial normalization type (e.g., MNI-152).
(3) Codesto indicate units of spatial and temporal dimensions.
(4) Codesto indicate temporal and spatial acquisition ordering for MRI.
(5) "Complete" set of 8..128 hit data type codes.
(6) Standardized way to store vector-valued datasets (e.g., amatrix at each voxel).
(7) Affine data scaling (i.e., true-data-value=a* data-in-file+[3; a, 3 stored in header).
(8) Codes and parameters for data "meaning” (e.g., values are t-statistics with 23.7 DOF):

- 21 types of statistics are encodable; parameters can be global or voxel-dependent.
(9) "Magic" string indicates if header is NIfTI-1 compliant:

- i.e., contains "extra' data not defined in ANALYZE™-7.5.
(10) Single or dual file storage (.nii or .hdr/.img).
The NIfTI-1 format has been carefully designed so that unmodified FMRI analysis programs that read
ANALYZE™-7.5files are likely to work with NIfTI-1 files; for example, the NIfTI-1 header is still 348 bytes
long. Another goal was to reduce the uncertainty about diverse ANALY ZE™-7.5 extensions used in this
community. The developers of Brain Voyager, FSL, SPM, and AFNI have agreed to adapt their codes to read and
write NIfTI-1 files; other sites (including those represented by the DFWG committee) have also agreed to support
this format.
The complete definition of the NIfTI-1 format (as a heavily-commented C .h file) is available at the Web site
nifti.nimh.nih.gov. In addition, sample C source code for reading and writing NIfTI-1 filesis available at this
site; Matlab code is planned.
The primary goal of NIfTI-1 isto foster near-term data interchangeability between FMRI analysis and
visualization tools. The format is simple, and programs already using the ANALY ZE™-7.5 format should be
easily adapted to use NIfTI-1. We are aware that many desiderata are missing from this format; work is underway
to define and agree upon a more ambitious and extensible NIfT1-2 format.
Acknowledgments: NIfTI and the DFWG are sponsored by NINDS and NIMH. Mark Jenkinson of the FMRIB
aided significantly in formulating some aspects of NIfTI-1. The Mayo Foundation granted permission to use
components of the ANALY ZE™-7.5 header dbh.h.
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M apping of binding parametersin the human brain using artificial neural network based noise attenuation

Zsolt Cselényi , Hans Olsson , Johan Lundberg , Christer Halldin, Lars Farde , Balazs Gulyés
Department of Clinical Neuroscience, Karolinska Institutet, S-171 76 Stockholm, Sweden

PET images obtained after injecting radioligands of different neuroreceptors can be used to map the binding
properties of different brain regions. Despite the existing several techniques, due to the highly noisy nature of
these PET images, the most stable approach to date still remains the calculation of binding parameters on
user-defined regions of interests (ROIs). The ROI-based analysis builds on the idea of removing noisein 4D PET
images by averaging the time-activity curves (TACs) of voxels belonging to a given region of interest. This
proved to be an efficient way to overcome the effects of noise.

However, the approach has some major disadvantages. (i) As it takes the average value of an area, the information
on sub-regional distribution of the signal islost. (ii) If the regions are inappropriately placed on the image, voxels
with inhomogeneous kinetic behaviour may appear in the same ROI, and the resulting kinetic analysis may be
misleading. (iii) ROIs with small volume lead to insufficient removal of noise and, consequently, incorrect results.
Our aim was to create a method which (i) builds upon the same principles as the ROI-based approach and (ii) is
able to produce a 3D map of binding parameters, i.e. which diminishes the effects of noise by averaging
individual TACs of voxels. In contrast to the ROI-base technique, however, this approach does not average the
TACs of spatially adjacent voxels but that of voxels with asimilar shape of the TAC, i.e. it classifies voxelsinto a
number of groups.

Thisis performed by using an artificial neural network model called the growing adaptive neural gas (GANG),
which belongs to the family of self-organizing maps (SOM). This network model is capable of classifying the
input into a large number of similarity-groups, called neighborhoods, in arbitrary dimensional data-space. This
classification is used to obtain the average TACs of voxelsin the same neighbourhood. Kinetic calculation isthen
performed on these average TACs and the resulting binding parameters are back-projected to the spatial locations
of the voxels they emanate from according to the classification of the voxels. Thus the technique yields 3D
parametric maps of binding parameters. Since the entities of the kinetic calculation are noise-attenuated TACs,
any method of estimating binding parameters may be applicable that one can use in the classic ROI-based
approach.

The calculations were performed on PET images obtained with [11C]FLB 457 and [11C]WAY -100635, high
affinity D2- and 5-HT1A-receptor ligands, respectively.

The results indicate that the approach based on the classification of individual voxel TACsis an efficient way to
remove hoise. The parametric maps created are highly detailed enabling us to visualise anatomical structures of
only one voxel in diameter (e.g. the tail of the caudate nucleus or the raphe nuclei). Comparing the parametric
values with results obtained using the classic ROI-based approach or previously validated voxel-based techniques
indicates a high accuracy of the approach.
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EEG/MEG data-driven cortex parcelling

Jean Daunizeaul24, Jérémie Mattout 134, Bernard Goulard?, Jean-Marc Linal24, Habib Benali 124
1Imagerie Médicale Quantitative, U494 INSERM, Paris, FRANCE, 2Centre de Recherches Mathématiques,
Université de Montréal, CANADA, 3Wellcome Department of Imaging Neuroscience, Institute of Neurology,
London, UK, 41FR 49 de Neurosciences, Orsay, FRANCE

Introduction

Reconstructing the cortical sources of the EEG/MEG activity constitutes an ill-posed inverse problem that
requires constraints from additional information. In the context of distributed source model, regularization is all
the more needed since the problem is highly under-determined. Several types of priors such as anatomical,
functional or mathematical constraints have been yet evaluated [1,2].

As acomplement to such needed regul arization approaches, we propose a pre-processing tool which aims at
optimizing the source model, using the EEG/MEG datato be analyzed. This method consistsin dividing the
cortical surface into afew anatomically connex but also functionally coherent parcels. Those parcels might be
then exploited for constraining any source reconstruction algorithm.

Method

The proposed approach involves the two following priors.

- An anatomical smoothness prior: the shorter the cortical distance between two putative sources, the higher their
prior correlation,

- A data-driven functional prior: a source covariance matrix is estimated from the EEG/MEG data itself, using the
Multivariate Source Prelocalization approach [3].

It then consists in a clustering procedure which successively involves the three following steps.

Defining seeds:

The sources that anatomically correspond to alocal maximum of the prior covariance matrix are defined as seeds.
These seeds are easily constrained to be homogeneously distributed over the cortical surface. They are then used
as starting points in an iterative cluster-growing procedure. The initial number of seeds thus determines the final

number of clusters.
Iterative clustering:

Driven by the priors, anatomically and functionally coherent clusters are grown from the seeds. This process ends

when no single source is left.
Determining the optimal parcelling order:

Theinitial number of seedsis the hyperparameter of the process. It can be optimized a posteriori, by minimizing
a between-cluster contrast criterion. The optimal clustering is the one which both guarantees high within parcel
homogeneity and high between parcel heterogeneity.

Application

Two active extended sources were randomly chosen on atrue cortical surface, made of 3,400 dipoles.
Corresponding ERP data were simulated on 59 channels and corrupted by an additive white Gaussian noise so
that SNR = 20 dB (cf. Figures 1 and 2).

Due to the prior types, the initialization itself and the simultaneous growing of the regions, the final clusters are
homogeneousin size.

Conclusion

This systematic and data-driven clustering approach is currently under extensive evaluation. Using synthetic data,
the quality of the clustering itself can be assessed by quantifying a distance between the true simulated sources
and the obtained most intersecting parcels.

Such amethodology would be very useful for constraining some recent inverse approaches that explicitly requires
an anatomically and functionally coherent cortex parcelling [4,5].
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Figure 2. The two most inter secting par cels estimated by the optimal clustering procedure.
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M odelling event-related potentialsin cortical hierarchies

Olivier David , Karl J. Friston
Wellcome Dept. of Imaging Neuroscience, UCL, WCI1N 3BG, London, UK

The aim of thiswork was to evaluate the dependence of event-related potentials (ERPs) on the biophysical
attributes of stimulation (e.g. amplitude) and the network engaged by perceptual and cognitive processing (i.e. its
connectivity). We used a neural mass model that is a dightly modified version of the model used previously to
study oscillatory dynamics (1).

In our model, each cortical area comprises three interacting neuronal populations (inhibitory and excitatory
interneurons, excitatory pyramidal cells). Bottom-up processes between areas are enacted by connections from the
pyramidal cells of one areato the excitatory interneurons of a higher area. Top-down processes are mediated by
connections from pyramidal cells of one areato pyramidal cells and inhibitory interneurons of alower area.
Extrinsic inputs model incoming stimuli and act on synaptic activity of excitatory interneurons (spiny stellate
cells) of the lowest area. The ensuing architecture allows us to construct hierarchical, realistic neuronal models of
ERPs.

We were primarily interested in the effects, on ERPs, of the strength of extrinsic inputs and connections
(bottom-up and top-down), and how these effects changed with the hierarchical level. The results show that when
extrinsic inputs are strong enough to induce nonlinear saturation in neuronal outputs, the forms of the ERPs
change. Therole of connectivity is central. For instance, strong top-down connections render the system unstable
and promote oscillatory dynamics. Finally, the level in the hierarchy, from which recordings are made, is akey
factor in determining the form of the observed ERP.

To conclude, the ERP is a phenomenon that depends on multiple factors that are often difficult to disentangle.
Explicit generative or forward models, that are neuronally plausible, are essential for a mechanistic understanding.
The comparison of real ERPs with model predictions (2) should help to better characterise the relevant
biophysical mechanisms that generate these waveforms.

(1) O. David et a., Neurolmage, 20(3): 1743-1755, 2003.

(2) C.J. Rennieet d., Biol Cybern, 86(6):457-471, 2002.
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3D Structural Parcellation of the Human Cerebral Cortex Using in vivo high-resolution MR Images

Rhodri H Davies!2, Chris Adamson1-3, Nathan Walters®, John Watson?, Gary Egan?-2
1Howard Florey Institiute, University of Melbourne. Australia, 2Centre for Neuroscience, University of
Melbourne. Australia, 3Electrical Engineering, University of Melbourne. Australia

1. Introduction

The human cerebral cortex has distinct cytoarchitectural and myeloarchitectural regions, discernible via
traditional histological methods. Techniques have been devel oped to objectively parcellate the cortex (e.g. [4,5]),
but these approaches have some major limitations. In particular, it is generally very difficult to obtain functional
results form the same subject prior to post-mortem analysis, preventing the study of structure-function
correlations in the human cortex.

We have shown recently [6] that in vivo high-resolution T1-weighted MR images contain sufficient information to
discriminate between different cortical areas, predominantly based on myel oarchitectonic information [2]. We
have also successfully applied automated 2D parcellation techniquesto in vivo images [6]. Here, we describe a
more robust approach to parcellation that requires minimal human intervention.

2. Method

High-resolution T1-weighted MR images (0.28mm* 0.28mm* 0.35mm) were obtained as described el sewhere [6].
The grey matter-white matter and grey matter-cerebrospinal fluid interfaces were segmented and converted into a
pair of triangulated surfaces, one for each interface. Intensity profiles, sampled across the cortex, were used to
represent the laminar structure. The start- and end-points of these profiles were defined using an adaptation of an
existing method [3], which involves a solution to Laplaces equation, between fixed values at the two interfaces.
The tangent field of this solution was traced from one surface to the other, giving a one-to-one correspondence,
and thus the start- and end- points of our profiles. The image intensity was interpolated along the profiles at fixed
positions with the distance between sample points on a profile chosen to be comparable to the distance between
adjacent profiles. Profiles were then grouped together into similar classes using a mixture of Gaussian models.
The model parameters were optimised using the EM agorithm [1].

3. Results

Figure 1 shows a high-resolution T1-weighted MR coronal section of the human V5 areain the occipito-temporal
cortex. Five distinct parcellated areas were found by the algorithm.

The method was also applied to an image of a histological section (figure 2), where the finer resolution (<10um)
alows avisua confirmation of the results of this parcellation algorithm. Three distinct parcellated areas were
determined on the delineated cortex, with the area boundaries shown by the arrows.

4. Conclusions

High-resolution in vivo MR imaging now allows sub-millimetre investigation of structure-function correlationsin
the human brain. Theintrinsic 3D nature of the images necessitates the development of automatic tools for robust
cortical extraction and parcellation.

Whilst our recent devel opments are promising, the lack of ground truth represents a significant challenge. Future
work will involve validation with a 3D phantom and volumetric post-mortem data.
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Verifying the use of Non-parametric Statisticsfor fMRI Analyses

Patrick A. De Maziére , Marc M. Van Hulle
Laboratorium voor Neuro- & Psychofysiologie, Medical School, Campus Gasthuisberg O & N, K.U.Leuven,
B-3000 Leuven, Belgium

Introduction

Many attempts have been reported to improve the detection of active brain areas with functional Magnetic
Resonance Imaging (FMRI). Most statistical fMRI analysistools rely on the assumptions of Gaussianity and
linearity despite the fact that this can be debated [1]. Building on previous experience, we further developed the
non-parametric statistics behind our fMRI analysistool.

Implementation

Previoudly, reservations were made concerning the use of non-parametric statistics as it would not take into
account, e.g., multiple comparisons [2] or serial correlations (autocorrelations). The former concern is dealt with
by adopting proper non-parametric statistics and with the False Discovery Rate [3], the latter by a new technique
that allows usto analyse fMRI time series by means of non-parametric rank tests which are based on the
empirical signal distribution function (EDF). For this purpose, the time-series are splitted in parts according to
their estimated autocorrelation lag.

Finally, after applying the proposed statistical procedures, a simple clustering algorithm is used which guarantees
that the detected active voxels are spatially grouped in a consistent manner.

Results

Given these improvements, we examined two types of non-parametric statistics, namely the Mann-Whitney and
the Cramer-von Mises tests. Both are EDF-based, the former is used to test for adifference in median, the latter to
test for adifference in distributions. FMRI monkey data were used to compare the two approaches. In general,
they yielded similar results, with a small superiority of the Mann-Whitney test over the Cramer-von Mises test
with respect to its sensitivity. Furthermore, we performed a number of comparisons with SPM99 by verifying the
accordance between the local maxima of the significantly active regions of SPM99 and the non-parametric
statistic. A very high degree of correspondence was found.

Using non-parametric statistics, one no longer hasto rely on the assumption of Gaussianity and linearity. The
necessary correction for the haemodynamic response is resolved by discarding the transitional scans. Besides the
theoretical advantages offered by non-parametric statistics, we also noted a decreased sensitivity for variationsin
the haemodynamic delay (which varies over space and even over time [4]) and for variations in the timing of the
different stimuli. The result is a more robust method for the detection of activations.
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Conditional Granger Causality for Exploratory Connectivity Analysis of fMRI data

Filip Deleus , Temujin Gautama, Patrick A. De Maziére, Marc M. Van Hulle
Laboratorium voor Neuro- en Psychofysiologie, Medical School,, Campus Gasthuishberg, K.U.Leuven, B-3000
Leuven, Belgium

Introduction

Traditional approaches for connectivity analysis of fMRI dataare SEM [Buechel and Friston, 1997] and DCM
[Friston, 2003]. These approaches are confirmatory since they start from a predefined network topology of nodes
and connections and they only quantify the strengths of the given connections. We introduce an exploratory
method, which precedes the previous ones, to discover the network topology for a set of given nodes.

Method

We apply the principle of causal networks [Pearl, 2000] to reveal the unknown network topology. Causal
networks rely on the Markov condition which states that each node x; in the network isindependent of all its

nondescendants, given its parents PA; . Hence, in a causal network indirect or spurious connections are not

modelled by a direct edge but are only represented by an indirect path in the network. This principle can be
implemented by an a gorithm which tests for the conditional independencies between the nodes in the network.
To test for the conditional independencies between the (fMRI) time series, we apply the principle of conditional
Granger causality. The traditional approach for testing the conditional Granger causality from x to y given a set of
nodes z is to compare the performance of arestricted model, which predicts the current fMRI signal value of y
from previous values of y and z, to that of an unrestricted model, which predicts the current signal value of y from
previous values of y, zand x. We have extended this principle (and accordingly the causal search algorithm) by
also taking the current value of x into account such that not only delayed or lagged connections but also
instantaneous connections between brain regions can be considered.

Results

We applied our method on fMRI data from a macague motion experiment, described in [Vanduffel et al., 2001].
Stimuli of moving and stationary dots were presented in blocks of 66.4 seconds (TR 3.321s) alternated with a
uniform gray screen, and each of the 15 runs consisted of 256.7 seconds. Data are analysed using SPM99. Nodes
for connectivity analysis are selected by looking for local minimain the p-values of the all stimuli versus
rest-contrast and by smoothing the time series of these voxels with those of the neighbouring voxels. Seven
regions were selected in the right hemisphere of the macague: V1,V2,V3 and MT in the occipital lobe; FST in the
temporal lobe; and MST, VIP in the parietal lobe. The discovered network topology has been shown in the figure
1.
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Connection pattern during the presentation of moving random dot pattern. Full lines represent connections
with instantaneous and delayed influence; dashed linesrepresent delayed connections; dot-dashed lines
represent instantaneous connections.
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Neuronal activity vs. fMRI : estimation of the Balloon M odel parametersusing extended Kalman filter

Thomas Deneux , Olivier Faugeras
Odyssée lab., INRIA, Sophia-Antipolis 06 902 CEDEX, France

ABSTRACT

We give a new method to estimate the parameters of the Balloon Model using an extended Ka man filter. We
present our experimental results on macaques involving two modalities : single cells measure and
contrast-enhanced MRI.

INTRODUCTION

BOLD signal is admitted to be a combination of blood vessels volume and their deoxyhemoglobin content
measures. Buxton and al. (1998) proposed the so-called ' Balloon Model’ to describe the metabolic processes
involved in these hemodynamic changes due to neuronal activity.

Friston and al. (2000) formalized that model, and described the hemodynamic filter as a 4-hidden states
dynamical system. The system is determined by 6 physiological parameters that need to be estimated if we want
to introduce the model in latter fMRI analysis.

METHODS

We introduce an innovative noise in the system, that can be interpreted as physiological noise. The extended
Kaman filter is auseful tool for such anon-linear dynamical system : provided we know the input of the system
(the neural activity), and its output (the BOLD signal, which is a noisy measure of a combination of volume and
deoxyhemoglobin), we can estimate simultaneously the 4 hidden states time courses and the 6 parameters.

We present numerical simulations of such estimations.

EXPERIMENTAL DATA

Experimental data where acquired at the Laboratorium voor Neuro- en Psychofysiologie. K.U.Leuven, Belgium
(Prof. G.A. Orban, director). Kinetic gratings were presented to a Macague. The same stimuli were used for single
cells and for MION-enhanced MRI acquisitions. These measures were used respectively as the input and output of
the’Balloon Model’, to feed the estimation of its physiological parameters.

It isimportant to note, first, that we used real neural activity measures as the input instead of the mere
experimental paradigm ; and secondly, that in the case of this experience, the Balloon Model was simplified, since
the MION-enhanced MRI is a measure of the solely blood volume. These two points reduce the incertitude in the
parameters estimation, compared to former studies.

IMPLICATIONS

The better understanding of the hemodynamic filter and the BOLD response that we get through such validations
of the Balloon Model will allow better fMRI analysis and even open the door to the fusion between fMRI and
other modalities, like el ectro-physiological measurements (EEG, MEG) for example.

REFERENCES

[1] Buxton R.B., Wong E.C. and Frank L.R. 1998. Dynamics of blood flow and oxygenation changes during brain
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An automated processing pipeline for anatomical and functional MRI data

James Dias , James T. Voyvodic
Duke-UNC Brain Imaging and Analysis Center , Duke University, Durham NC, USA

Functional MRI scanning generates large datasets (typically hundreds of Mbytes) that need to be efficiently and
reliably transferred from the scanner to data analysis computers and archival media. Processing of these data sets
aso typicaly involves some routine image processing procedures, which can be time consuming because of the
amount of datainvolved. In clinical cases where rapid processing of fMRI data isimportant, many potentially
useful processing steps may often be omitted to save time. In order to make these routine data manipulation steps
more efficient and more reliable, therefore, we have implemented a fully automated data processing pipeline that
detects MRI data as soon as it is acquired on the scanner and takes care of theinitial critical aspects of the
anaysis.

The automated pipeline consists of two custom-built software programs written in Perl: 1) atransfer daemon that
runs on each scanner computer, and 2) a processing daemon that runs on a separate analysis computer. Each
scanner data file contains an experiment 1D code, which is used to guide that file through the processing pipeline.
The transfer daemon detects raw functional MR data files (k-space files on our GE scanners) and copies those
files across the computer network to the analysis computer (currently aLinux PC). After verifying successful
transfer, the scanner raw datafile is deleted to make space for more data. Anatomical images acquired by the
scanner are also sent (using GEs automatic image transfer option) as DICOM files to the analysis computer.

The second program in the pipeline is a processing daemon running on the analysis computer. Raw k-space data
files are automatically reconstructed to images using pul se-sequence appropriate reconstruction programs for
spiral or echoplanar data. An XM L-based metadata descriptor file is also generated for each scan series (including
DICOM anatomical images). These XML headers provide a common data description that can be used by all
subsequent processing steps, they also contain a history of what processing steps have occurred.

Our processing daemon can then carry out any of the following optional analysis steps (depending on parameters
entered for that experiment ID): motion correction using AIR (Woods et al., 1998) or SPM (Friston et al. 1995),
TR aignment using SPM, motion and intensity stability quality assurance plots using fScan (V oyvodic, 1999),
and/or spatial smoothing using SPM. After al of the optional processing steps have completed, the resultant data
are al transferred across the network to the user directories specified for that experiment I1D. All original k-space
and DICOM datafiles are also copied to tape storage.

This automated pipeline has dramatically reduced the incidence of lost MRI data and has greatly increased the
efficiency and reliability of the initial data processing steps routinely performed in fMRI analysis.

Thiswork was supported by US PHS grant IPOINS41328.
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Applying the Target Field Method to Transcranial Magnetic Stimulation Coil Design.

Stephen J Dodd?, Jack L Lancaster?, Peter T Fox?2
1L aboratory for Functional and Molecular Imaging, NINDS, NIH, 2Research Imaging Center, University of
Texas Health Science Center at San Antonio

Introduction

Transcranial magnetic stimulation (TMS) involves the application of arapidly changing magnetic field next to the
skull and inducing an electric field in the tissue below, thereby forcing neurons to fire. Here we adapt some of the
magnetic coil theory, typically used in gradient coil design for MRI systems, namely the target field method (1,2),
to the task of magnetic stimulation.

Method

The target field method of Martens et al. (2) for design of low inductance bi-planar gradient coils has been
modified for TMS coil design. For the moment we have only considered the situation where thereisa
homogeneous media, i.e. for the moment we have neglected the effect of tissue boundaries, and so the electric
field may be calculated using the time derivative of the vector potential. This E-field may then be substituted for
the B-field in the design process, eventually leading to a solution for a continuous planar current density. This
current density may be split into discrete loops providing the coil pattern. The accuracy of the design isthen
dependent on the number of loops chosen to approximate the continuous current density. The inductance may be
estimated using W = 0.5*L.1 2, asthe energy, W, is used in the current density calculation. The design may be
checked by summing the electric field components of discrete coil sections. Estimates of the effect of placing the
coil next to spherical tissue boundaries may be determined using the method of Eaton (3).

Results

An example of acoil resulting from the design method is shown in Figure 1. The electric field was constrained at
three positions to the values listed in Table 1. These constraints were defined to be similar to the field profile of a
Cadwell B-shaped coil. The agorithm determined a current of 1382 A was required produce 96.8 V/m, or 1427 A
at 100 V/m. Thisis compared to arequired current of 1714 A for the B-shaped coil to produce a maximum of 100
V/m. An operating frequency of 5 kHz was assumed and that the coil lies on the z=0 plane. The inductance was
estimated to be 23 uH compared to ~27 uH for the B-shaped coil. The spatia extent of the target field design may
be reduced to a certain extent without affecting the field significantly (2).

Conclusion

A method for more efficient TM'S coil designs with a planar geometry has been proposed. The lower inductance
coils provided by the target field method allow for greater efficiency (by allowing more turns for the same
inductance). Alternatively, a coil with anarrower E-field profile may be designed using the same current as, say, a
B-shaped cail.

References
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Martens, M. et a. Rev. ci. Instrum. 62:2639-2645, 1991

Eaton H. Med BiolEng Comp 30:4337440, 1992

Table 1. Electric field (y-component) constraints and cal culated results for coil shown in Figure 1.

X (cm) y (cm) z (cm) Defined E-field (V/m) Figure 1 Coil (V/m)
0.0 0.0 3.0 100.0 96.8
3.0 0.0 3.0 50.0 48.2

0.0 4.5 3.0 50.0 47.8
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Figure 1. Target coil field example. The coil islying in the z=0 plane.
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How functional connectivity isinfluenced by physiology

Silke Dodel 1, Jean-Baptiste Polinel, Jean-Luc Anton?, Matthew Brett3
1UNAF/SHFJ Orsay, France, 2IFR 45, 3MRC Cognition and Brain Sciences Unit, Cambridge, United Kingdom

Functional connectivity in fMRI has been investigated most often using resting state data, i.e. the subject islying
in the scanner without any specific task or stimulus. In this case no external reference is available to validate the
results. Thereforeit is particularly important to distinguish signals reflecting functional activity from purely
physiological signals. To attain this goal we investigate functional connectivity in resting state data wherein
addition to high rate MRI we simultaneously acquired data from respiratory and cardiac influences (henceforth
called physiological effects). We cleaned the data from the latter and compared the resulting functional
connectivity networks (Fig.1) [1].

For the networks we found essentially that they were dlightly smaller after effect removal than before and that
effect removal led to the appearance of very small new parts of the network aswell. To understand this we
investigated more closely how correlation is affected by effect removal. We quantified the influence of
physiological effects on avoxel by the variance ratio of the signal (ratio of the variances after and before removal
of the effect). The lower the variation ratio, the stronger the voxel is influenced by the respective effect (Fig.2).
Our main results are:

1) Voxels highly influenced by physiology are localized consistently at similar identifiable regions. (Fig.2)

2) Respiration has less influence on the variance of the signals than cardiac effects (Fig.2).

3) High variance loss does not go along with high correlation loss. (Figs. 1, 3)

4) Therisk of false positive connectionsis particularly high for voxel pairs where one voxel isweakly and the
other strongly influenced by physiology (Fig.3d).

Fig. 3 shows representative results for correlation changes by effect removal (here: cardiac) for 10% of the voxels
showing, respectively, the strongest and the weakest influence by the effect. As one might expect we find
essentially no difference in correlation before and after effect removal among weakly influenced voxels (Fig.3b).
For strongly influenced voxels effect removal spreads out the correlations with a tendency towards zero (Fig.3c).
For pairs of strongly and weakly influenced voxels effect removal has a slight tendency to enhance the absolute
value of correlations (Fig 3d). This might lead to spurious connections, which could be the reason for the
persistence of the connectivity networks in regions that are highly influenced by non-functional physiology
(Fig.1).

We are able to explain our findings within atheoretical framework that investigates how the correlations are
affected by various effects. However this framework assumes linear influence of the effects. Furthermore
correlation as ameasure of functional connectivity islinear as well. We have shown that linear removal of the
physiological effectsis not enough to avoid spurious connectivity. It istherefore of great interest to investigate
nonlinear measures of functional connectivity as well as a possible nonlinearity of the physiological effects[2].
[1] S. Dodd et al., "Functional connectivity by cross-correlation clustering”, Neurocomputing, vol. 44-46, 2002
[2] Pierre-Jean Lahaye et d., ‘* Functional Connectivity: Studying Nonlinear, Delayed I nteractions between
BOLD Signals’, Neurolmage 20(2), 2003
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BOLD SINGLE-TRIAL VARIABILITY AND MODEL SELECTION

Sophie DONNET?, Marc LAVIELLE?, Jean-Baptiste POLINE22, Philippe CIUCIU 23
1L aboratoire de Mathématiques, Université Paris-Sud, 91405 ORSAY, France, 2SHFJCEA 4, Place du Général
Leclerc, 91406 Orsay, France, 31FR 49, Institut d’ Imagerie Neurofonctionnelle, Paris, France

The mechanisms coupling neuronal activity and the BOLD response
(Blood Oxygen level Dependent)[1] observed with fMRI are still
poorly understood. Changes in the BOLD contrast can by
characterized by the Hemodynamic Response Function (HRF). A
precise estimation of the HRF may help to quantify neuronal
activity. Advances have been made on the non parametric estimation
of HRF[2,3]. Smoothness constraints due to neurovascular
environment can now be taken into account. However, recent works
have addressed the non parametric estimation of the HRF under the
assumption of stationarity in time. In other words, previous works
have assumed that each occurrence of a given experimental
condition evoked a response constant in shape and in magnitude.
Recently, it was suggested that this might not always be the

casg[4]. Consequently, we propose to test a more flexible model that
alowsfor the variation of the magnitude of the HRF with timein
specific brain areas. This model istested against amodel with a
fixed magnitude using maximum likelihood procedures.

The model assumed to hold between the stimuli and the fMRI datais
a standard convolution model within a bayesian framework that
alowstheinclusion of prior information. To enforce the

positivity of the BOLD response that occurs in many paradigms
(\eg motor, visual responses), we introduce prior information

about the magnitudes through the definition of arelevant
probability density function. The parameters of interest (event
magnitudes, HRF shape) are estimated using a stochastic version of
the Expectation Maximization algorithm, the SAEM[5].

We tested this model on fMRI data acquired on eight subjects
during a paradigm involving eight types of events, (right and left
button click and visual stimuli that may involve motor

preparation). 3D scans were acquired with a 3 Tesla Brucker
scanner. Data from the left motor cortex were extracted and

filtered to remove low frequency drift.

Results show that the hypothesis of avariable BOLD responseis
usually validated for button click and often rejected for visual
stimuli. It is possible that motor responses are not well

controlled for their intensity and duration, while visual stimuli

are sensory conditions which may generate more stable responses.
These findings suggest that, in some cases at |east, the model
selected should alow for the variation of the HRF magnitude
across events occurrences. This may have important implications
for comparing different kinds of events since it reveals a new
variance component ignored so far.
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FMRI simulation and its application in modelling the interaction of motion and BO-inhomogeneities

Ivana Drobnjak , Mark Jenkinson
FMRIB Centre, University of Oxford, UK

Introduction
B g-inhomogeneities occur at interfaces of materials with different magnetic susceptibilities, such as tissue-air

interfaces. These differences lead to distortion in the local magnetic environment, causing signal loss and
geometric distortion of the image. Current methods for modeling and correcting these artifacts involve acquiring a
field map (i.e. an image of the perturbed field) and then transforming the image by warping from the distorted to
undistorted voxel positions. However, acquiring field maps at each time point is not practical in fMRI. Hence a
more quantitative and analytical approach is needed to examine the interaction of B 5-inhomogeneities and
motion[1].

Methods

A C++ MRI simulator was constructed to solve the Bloch equations for each object element (small rectangular
voxels). The perturbed field B, ) was calculated from a known susceptibility distribution using a perturbative

solution of Maxwell’s equationg 2]. To model general object motion, arigid-body coordinate transform, R(t),
relating the object and scanner coordinate systemsis specified as afunction of time; i.e. X =R(t)X op. Motion

parameters are specified at discrete time points via an input file and interpolated between these points. Integrating
the magnetization vector in time for each tissue type separately in avoxel element (in object space) givesthe MR
signal as shown in Equation 1, where M g is the transverse magnetization after RF excitation,p is the average spin

density of the tissue type in this voxel, G «(t) is the applied gradient vector (in scanner coordinates). B ;& @) is
the perturbed field (in scanner coordinates) evaluated according to Equation 2, where B, @ (q) isthefieldin

object coordinates calculated in the p direction (x, y or z) from an applied field B(9 = ¢ (being either x, y, or 2).
Thetotal signa is calculated as the sum of the contributions from each voxel.

Results/Discussion:

Figure 3 shows an image acquired by simulating an EPI pulse sequence and using the BrainWeb partial volume
tissue estimates| 3]. It shows effects of the B o-inhomogeneities, where the biggest distortion isin the frontal lobe

asitiscloseto alarge air/tissue boundary. The interaction of B artifact and motion is also significant and larger

than spin-history or interpolation artifacts in frontal regions for typical movements. Numerical measurements of
relative motion artifact levels for various movements are now available.
We have quantitatively simulated the effects of B g-inhomogeneities with and without motion effects, using a

theoretical model for the BO changeg[ 2]. Future work will seek to implement time varying signals of a
physiological nature (e.g. BOLD) to provide arealistic method of generating simulated data (see [1]) that includes
motion effects where the ground truth is known. Thiswill be valuable for testing and validation of statistical
analysis methods.
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Consistent task-related BOL D activity during smultaneous EEG/fMRI recording

Jeng-Ren Duann!2, Tzyy-Ping Jungl-2, Frank Haist3, Luca Finelli 12, Andrey Vankov?!, TerrenceJ.
Sejnowski 12, Scott Makeig?
1Swartz Center for Computational Neuroscience, Institute for Neural Computation of University of California
San Diego, La JollaCA, USA, 2Computational Neurobiology Lab., the Salk Institute for Biological Study, La
JollaCA, USA, 3Department of Psychiatry, University of California San Diego, La JollaCA, USA

Introduction

Here, we demonstrate the result of fMRI data acquisition and analysis obtained from simultaneous EEG/fMRI
recording experiments. Makeig et a. (2002), pointed out that the biophysical mechanismslinking BOLD and
EEG signals, while potentially very important, are still unknown. To investigate the linkage between these two,
we have customized our MR-compatible EEG system and have successfully acquired 15 experimental sessions
recording 71 EEG channels during continuous BOLD scanning at 1.5-Tesla. Here, we report the fMRI resullts.
EEG results will be reported separately in Jung et al. (HBM 2004).

Methods

Fifteen healthy young adults participated in this study. The subjects were fitted with 73 custom tin EEG
electrodes before the fMRI sessions and were asked to perform 3 6-min bouts of atwo-back working memory
task intersperced with 2 bouts of a simple eyes closed/open paradigm (Finelli, HBM 2004). EEG and fMRI
signals were recorded simultaneously. Working memory task bouts consisted of 5x40-s"on" aternating with
6x20-s "off" periods. During "on" periods, a series of letters (' A’ through ’'E’) was displayed at screen center in
random order. Subjects were asked to press a thumb button when the letter displayed was the same as the one
presented two back in the series. Each letter was displayed for 200 ms with an inter-stimulus interval of 1 s. Data
was analyzed with methods (preprocessing, infomax |CA, and visualization) implemented in FMRLAB (Duann et
a., http://sccn.ucsd.edu/~fmrlab). For each subject, the fMRI data from the 3 working-memory bouts was
concatenated. After preprocessing and ICA decomposition, the time course of each independent component was
compared to a reference function based on the experimental paradigm. The component with maximum correlation
was selected as the task-related component(s) of interest.

Results

EEG data recording produced no noticeable del eterious effects on the fMRI signals. For each subject, we found
one independent component whose region of activity (ROA) comprised bilateral dorsal and lateral prefrontal plus
inferior parietal cortices and whose time course was highly correlated with the reference function. This ROA was
reproduced near-exactly in each subject.

Discussion

Asis commonly known, EEG and fMRI data collection can interfere with each other during simultaneous
EEG/fMRI recordings. It isthus essentia to make sure that the interference does not contaminate the data quality
and degrade the data analysis. Our EEG acquisition system did not degrade our fMRI recordings or noticeably
interfere with the ICA dataanalysis. ICA analysis methods allowed estimation of the stability of BOLD regions of
activity ’ (ROAS) within and between individuals. ICA, applied to these data, found the same brain areasto be
involved in the two-back working memory task in each of the 15 subjects, without data smoothing, averaging or
lumping.
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Guessing the Sex from the Shapes of Cortical Folds

E Duchesnay , A Roche, D Riviéere, D Papadopoulos-Orfanos, Y Cointepas, J.-F. Mangin
Service Hospitalier Fréedéric Joliot, CEA, Orsay, France. Institut d’ Imagerie Neurofonctionnelle (IFR 49), Paris,
France

Recent advances in neuroimaging have led to an increasing recognition that certain neuroanatomical structures
may be preferentially modified by particular cognitive skills, genes or diseases. This recognition has mainly
resulted from the recent design of automated morphometric methods [1] relying on deformable atlases that enable
point-to-point comparisons of the local amounts of grey or white matter. Another approach (structural
morphometry [2]) isto extract "stable" cortical landmarks such as sulci, and compare the latter across subjectsin
order to show morphometric differences in the cortical shapes of two different populations.

We propose to go beyond the latter goal, by addressing a second level issue: isit possible to design a classifier
that will learn to distinguish two population based on their cortical sulci morphometric features? While the final
aim is automatic diagnostic, this abstract focuses on distinguishing males and females from alarge set of
measures on the shapes of the cortical sulci.

These sulci were first automatically identified in T1-weighted MR images using a pattern recognition system
described previoudly [3]. A set of 116 different sulci were identified in each brain of the database (that contains
60 females and 83 males). Each sulcusis described by 27 attributes:

(i)pure shape: surface, maximum and minimum depth;

(ii)localization: extremity and center of mass coordinates in a reference system;

(iii)orientation: sulcus surface averaged normal, sulcus outer line averaged direction;

(iv)structural: number of connected componentsin the sulcus and maximal gap between these components.
Preliminary experiments have shown that the two populations can usually not be differentiated from asingle
feature. Using all features together (116* 27=3132), however, leads to a curse of dimensionality preventing a good
generaization power of the classifier. Therefore, the first goal was to reduce the huge amount of morphometric
datato asmall set of features allowing good classification performance.

The datareduction is performed in two step :

(i)Feature selection: a greedy agorithm [4] explores the feature space in order to select the most discriminant
attributes.

(ii)Feature generation: because the previous subset of features may be too big and may cause over-fit problems. a
single new feature is generated for each sulcus, as alinear combination of the selected features.

Three different classifiers are then built upon the previous extracted features: linear discriminant analysis, one
hidden layer perceptron and support vector machine. After evaluating the classifiers' performances using a
bootstrapping technigue, the result of the best classifier is used to drive the next feature selection.

The algorithm stops when all available features have been discarded or selected. The final discriminant model
(subset of features, linear projectors, and a classifier) is then validated with aleave-one-out technique.
Asaconclusion, the best classifier built from an optimal set of 54 morphometric features

achieves a 96% correct generalization rate during a leave-one-out procedure.

[1] Ashburner et al, Neurolmage, vol. 11, pp. 805--821, 2000

[2] Mangin et al, Artificial Intelligence in Medicine, 2003, in press

[3] Riviere et al, Medical Image Analysis, val. 6, no. 2, pp. 77--92, 2002

[4] Pudil et a, Pattern Recognition Letters, vol. 15, pp. 1119--1125, 1994
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The design of the classifier
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Convolutive ICA (c-1CA) captures complex spatio-temporal EEG activity.

Mads Dyrholm?, Lars K Hansen®, Li Wang?, Lars Arendt-Nielsen?, Andrew CN Chen?
1Informatics and Mathematical Modelling, Technology University of Denmark, Denmark, 2Human Brain
Mapping and Cortical Imaging Laboratory, Aalborg University, Denmark

[Background]

Independent Component Analysis (ICA) isauseful tool for removing electroencephal ographic (EEG) artifacts
such as eye-hlink or eye-movement. Artifact activity that is spatially-separable and temporally independent from
other EEG activity will, in asuccessful ICA decomposition, appear in a separate component. The ICA method is
advocated because the obtained artifact components can be excluded from the EEG by alinear projection. Hence
it ispossible to clean EEG in itsfull length without loosing contaminated data segments. However, this approach
till requires an expert judgment to determine which of the obtained ICA components are wanted or unwanted. In
this work we show how Convolutive ICA (c-ICA) can capture more complex spatio-temporal behavior in asingle
component than is possible with conventional ICA. This creates components with more realistic temporal
structure and furthermore assi sts the component inspection procedure by reducing the number of components to
inspect. Convolutive ICA of EEG data has been studied by Makeig et a (2002,2003) in the complex frequency
domain, here we apply atemporal un-mixing c-ICA approach which does not require windowing or frequency
based representation of data.

[Methods|

The data used for the analysis was a 124 channel EEG recorded at 204.8Hz sampling rate. Electric pulses were
generated at approximately 2Hz and applied to the subjects little-finger as stimulus. An eighty seconds long
recording was obtained with approximately 150 stimulation epochs. DC components and slow drift were
eliminated from each channel separately by high-pass filtering with a 0.2Hz transition-band around 1Hz cutting
frequency. Five principal component features were extracted from the resulting data matrix for convolutive
independent analysis (fig. 1).

ICA agorithm: Maximum-Likelihood instantaneous ICA (Bell & Sejnowski, 1995). Convolutive ICA algorithm:
Maximum-Likelihood (Dyrholm & Hansen, 2003). The number of convolutive lags was set to fifty samples (0.25
SEC).

[Results]

The ICA and c-ICA algorithms each resulted in five components. We illustrate the difference between the two
ICA approaches by analysis of the components with the maximum correlation with the stimulus delivery. InFig. 2
and 3 we show time series for the conventional and c-1CA for the five spatial variance components. The
conventional ICA time series al follow a stereotypical time-course, hence appear as being completely time
synchronized. While the c-1CA time series show non-trivial delay structure between the five spatial patterns,
hence, can give rise to time variant scalp contours of activity. Thisis an important advantage for c-ICA because it
directly, within a single component can capture delayed correlations across the features and locations. In Fig. 4
we show the cross-correlation between time series associated with two of the spatial variance features. The
cross-correl ation function shows two off-center peaks characteristic of two symmetricaly delayed signal
components. The conventional |CA algorithm captures only the average behavior, while the c-ICA component
captures the delayed presence of one of these components.

[Conclusion]

Convolutive ICA (c-1CA) offers amore flexible representation with non-trivial temporal structure of the
component time series, highly relevant for EEG analysis.

Acknowledgement: supported by the Danish Technologica Council
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Whole head measurement NIRS system

Hideo Edal, Tsutomu Muratal, Satoru Kohno®, Akira Takatsuki 12, Akitoshi Seiyamal:3, Toshio
Y anagidal 234
1Brain Information Group, CRL, 2Graduate School of Engineering Science Osaka University, 3Osaka University
Graduate School of Medicine, 4Graduate School of Frontier Biosciences Osaka University, Medical Systems
Division, Shimadzu Corporation

Introduction

Light in the near infrared (NIR) region around 800nm wavelength can penetrate human tissue. Optical
measurements at multiple NIR wavel engths enable a spectroscopic technique that cal culates haemoglobin
parameters such as changes in oxygenated haemoglobin and deoxygenated haemoglobin. These parameters are
related to changes in blood volume resulting from neural activity in the brain. NIR spectroscopic (NIRS) imaging
system detects signals with a high time resolution and it is now widely applied for human brain mapping. The
system requires a probe holder that connects optical fiber pairsto the scalp. It is very important to attach holder at
the appropriate head location because measurement areas are limited by the holder. Especially for higher brain
function experiment, such as perceptual rivalry [1], severa brain areas activate and their interaction will be
discussed. We need to measure different brain areas precisely. In order to improve NIRS imaging system we here
introduce a whole head measurement system. It consists of two major discussions. One is the measurement
system with awhole head holder, the other is the data analysis with the optical path length.

Whole head holder for NIRS

Figure 1 shows NIRS measurement with Soft vinyl based whole head holder during perceptual rivalry
experiment. Measurement areas had been determined before the experiment. Figure 2 shows an experimental
setup with FLexible Adjustable Surface Holder (FLASH). This was developed by Shimadzu Corporation [2].
FLASH completely fits surface of human heads, and keeps the same measurement distance between aradiation
and detection.

Phase shift measurement system for the optical path length

Haemoglobin parameters are calculated based on the modified Lambert-Beers law which assumes tissue
homogeneities. Unit of the calculated parametersis not pure concentration (mM), but concentration multiplied by
distance (mM cm). The distance is defined as the optical path length. According to the brain structural
differences, it may vary from each portion of the head. If we want to discuss quantitative aspect of haemoglobin
changes, we have to correct the parameter by the optical path length. To know the optical path length, other
measurement system, atime resolved measurement system or a phase detection system, is needed. Figure 3isa
scheme of a phase detection system. A radiation fiber connected to alight source is placed on the object afew
centimeters apart from a detection fiber connected to a detector. Modulation frequency of the light source changes
from 10MHz to 1000MHz. Phase shifts are detected at every modulation frequencies. By fitting the frequencies
and phase shifts to the analytical solution of the optical diffusion equation, we can get two optical properties,
absorption coefficient and reduced scattering coefficient. The optical path length can be calculated by these
optical properties.

References

1 T.Murataet al., Discrete stochastic process underlying perceptual rivalry, NeuroReport, Vol.14, No.10,
1347-1352, 2003

2 S.Kohno et d., Development of FLASH (FLexible Adjustable Surface Holder) in functional near infrared
spectroscopic imaging system, HBM 2004 (abstract)
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Fig.1. Soft vinyl based whole head holder

Fig.2. FLexible Adjustable Surface Holder (FLASH)
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A new SPM toolbox for the combined analysis of fMRI data and probabilistic cytoar chitectonic maps

Simon Eickhoff 12, Hartmut Mohlberg®, Klaas E. Stephan3, Gereon R. Fink14, Karl Zilles:2, Katrin Amunts?
Lingtitut fir Medizin, Forschungszentrum Jilich, Julich, Germany, 2C. & O. Vogt Institut fir Hirnforschung,
Dusseldorf, Germany, 3Wellcome Dept. of Imaging Neuroscience, University College London, UK,
4Neurologische Klinik, Universitatsklinikum Aachen, Germany

The analysis of the relationship between structure and function of the human brain is one of the mgjor goalsin
neuroscience. Since the microstructural organization of the cortex constrains its functionsl, architectonically
defined areas represent the appropriate topographical reference for activations obtained in functional imaging
studies. In contrast to classical cytoarchitectonic maps (e.g.2), probabilistic cytoarchitectonic maps provide
stereotaxic information about the location and variability of cortical areas®. They have aready successfully been
applied for studying different cognitive functions, e.g. somatosensory processing and language®®. The maps are
now availablein MNI space®”, which is used as spatial reference system in SPM.

We here introduce a new SPM toolbox providing a convenient user-interface for structural-functional analyses.
At the beginning of a session, a summary map of the relevant probabilistic maps is calculated. This map defines
the most likely anatomical area at each voxel (maximum probability map). It therefore allows the definition of
non-overlapping volumes of interest for several areas, comparable to conventional brain atlases. The
cytoarchitectonic maps are now ready for analysis:

1) Cluster labeling can be used to allocate functional clusters of activation to cytoarchitectonic areas (e.g. 70% of
the volume of the cluster was located in BA44, 15% in neighboring BA45).

2) Loca maxima labeling gives cytoarchitectonic information with respect to the statistical peak of an activation
(e.g. the maximum showed a probability of 60% of lying in BA45, and only of 10% of lying in BA44).

3) The extent of the activation of a cortical area can be quantified (e.g. 30% of BA 44 was activated).

4) The relative percent signal change as the result of a certain experimental condition within a cytoarchitectonic
area can be calculated. Thus, functional data can be assessed based on a-priori anatomical knowledge, by
evaluating the relative involvement (defined by the percent signal change) of a given area at different conditions.
We have implemented this software as a new toolbox to the SPM 2 software package (www.fil.ion.ucl.ac.uk/spm).
Thisintegration into thiswidely used functional analysis software enables a user-friendly and routine use of
probabilistic cytoarchitectonic maps as anatomical references.

The probabilistic maps are available under www.bic.mni.mcgill.ca/cytoarchitectonic. A beta-release of the
toolbox can be can be obtained via S.Eickhoff @fz-juelich.de.

This Human Brain Project/Neuroinformatics research was funded jointly by the NIMH, NINDS, NIDA, the NCC,
the DFG and the V olkswagenstiftung.
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Functional Correlation Index: a useful parameter for characterizing functional correlation

Miklés Emril, Zsolt Lengyel 1, Déra Glaub?, Roland Berecz?, Istvan Degrell 2, Lagjos Trén3
1University of Debrecen, PET Center, 2University of Debrecen, Department of Psychiatry, 3PET Study Group of
the Hungarian Academy of Sciences

Introduction

One of the most self-evident methods to analyze human brain networks is based on the cross-correlation analysis
of voxels. The efficacy of thiskind of analysis can be dramatically increased by eliminating voxelsin correlation
with only few other voxels. For this purpose afunctiona correlation index FCI(X,y,2) isintroduced reporting on
the number of voxels correlated with the reference voxel (x,y,z) by R>R and being further away then distance

Dg. Thisindex can be calculated by voxel or cluster-based methods, although the latter one requires computing

capacity of GRID or a computer-cluster.

Here we present a method to the voxel-based calculation of the FCI-maps and investigate its applicability in a
cognitive brain activation study.

Methods

Calculation and analysis of the FCI-map

Adjusted rCBF-values to generate Student-T map in the SPM were used as input data of the FCI-map calculation.
FCI data were separately evaluated by a developed iterative FCI-map evaluation algorithm for voxel pairs of
positive and negative correlation. This algorithm generates a map containing only voxels of FCI>FCl 3 and

fulfilling R>Ry and D>D conditions. An additional 3D cluster-analysis can result in size of the clusters of the

map, the locations of local minima, the minimum and maximum FCI-values within the clusters and alist rendered
to the ith cluster indicating any jth cluster in correlation with the ith one. These lists characterize the clusters from
the point of view of correlation multiplicity and are useful in the further analysis of these regions as well.
Application of the FCl-analysis

Changesin rCBF, induced by a cognitive "odd-ball" paradigm, were analysed by PET in nine healthy volunteers.
The subjects underwent four reference and four "odd-ball" tasks. Activated areas were localised by SPM analysis,
and *FCI_ref, "FCI_ref, *FCl_odd, “FCI_odd (Figure 1) maps were generated.

Results

Areas of high correlation multiplicity (parietal gyrus, bilateral insular regions, cingular gyrus, frontal superior,
medial and inferior gyrus, parahippocampal/enthorinal region) identified by FCI-analysis met the expectation
based on neurabiology data indicating the usefulness of FCI to characterize the functionally correlated areasin the
human brain.

This project is supported by NKFP-1A/0010/2002 (National Research and Devel opment Program), and
IKTA-00006/2001 (Info Communications Technologies and Applications Program) projects.
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Negatively correlated FCI-map generated from adjusted r CBF-values of
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EEG / EOG - fMRI Cold head artifact removal

Eric Featherstone , Oliver Josephs, Ralf Deichmann
Wellcome department of Imaging Neuroscience, London, United Kingdom.

Introduction

InfMRI studiesit is often desirable to record EEG or EOG data during the scanning process. However, the
scanners cold-head refrigerant pump often causes problematic interference. EOG eye-blink signals are sufficiently
large that they can be seen despite the interference. Eye movement EOG signals and EEG signals are typically
much smaller and can be obscured. The interference is repetitive lending itself to being modelled and subtracted
from the data. Several techniques have been described; active noise cancellation (1-2), subtracting mean noise
(1,5). Here we describe a new method based on dividing the data into blocks of a suitable length and applying
high-pass filtering. This method works even if thereis aslow drift in pump timing.

Method

Apparatus : EOG signals were recorded from a subject inside a Siemens Allegra 3T MRI scanner. The scanner
was not operating. The EOG leads were connected viaan MRI compatible EEG amplifier system (1) to a CED
1401 (3) and PC running Spike (3) data acquisition software. The sampling rate was 5000/s to allow the
interfering signals to be characterised. One recording run of approximately two minutes was made whilst the
subject blinked normally.

Processing : The data was exported from Spike into Matlab (4) for processing. The data was divided into blocks
of 5012 samples (twice the cold-head pump period) and reformed into a matrix with the blocks vertical. The array
was high-pass filtered in the horizontal direction. The filter parameters were chosen by trial to best remove the
interference. The data was then reformed into atime series.

Results and Discussion

Figure 1 (top trace) shows atypical EOG recording. Eye-blinks are clearly identified as large negative spikesin a
background of interference and eye movement EOG signals. Closer inspection (figure 2, top trace) shows that the
artefact from the pump consists of short duration pulses with a frequency of ~30Hz, occurring every 500ms.
Figure 3 shows the EOG data as greyscale intensity after being divided into blocks of 5012 samples. The pump
artefact isnow evident as horizontal stripes, two cycles of the pump can be seen clearly. Eye-blinks show as black
points. The artefact drifts slightly in time, up-to ~15ms. Filtering removes almost all trace of the pump artefact
(figure 4). The eye-blinks are till clearly visible. Reforming the data into atime series (figure 1, bottom trace)
shows eye-blinks as before against a smaller background of noise. Close inspection (figure 2, bottom trace) shows
that the pump artefact has been successfully removed with little effect on the low level EOG or larger eye-blink
signals.

Conclusion

This method allows the reduction of interference artefacts caused by the cold head pump from the EOG signals,
revealing clearly the eye movement signals. This method works even where there is a very slow drift of the cold
head pump timing.

References

1. Allen, PJ et a. Neuroimage. 2000 Aug; 12(2):230-9

2. Featherstone, E et a. Proc. Intl. Soc. Mag. Reson. Med. 9 (2001):1226
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Multi-subject anatomo-functional classification for activation studies

Guillaume Flandin1:2#, Xavier Pennec®, Alexis Roche?#, Will Penny 3, Nicholas Ayache?, Jean-Baptiste
Poline24
1Epidaure project, INRIA Sophia Antipolis, France, 2Service Hospitalier Frédéric Joliot, CEA, Orsay, France,
3Wellcome Department of Imaging NeuroScience, UCL, UK, 41FR 49, Ingtitut d’ Imagerie Neurofonctionnelle,
Paris, France

One of the fundamental goals of functional neuroimaging isto
extract relevant information on the brain functional organization
across severa subjects. Mainstream methods use standard
normalization procedures to pool data from several subjectsin the
same anatomical space and these results are analyzed through
statistical hierarchical modelsin this standardized space

(Friston et a, Smith et al).

However, this (most useful) approach presents several fundamental
limitations. First, the procedure to place various subject anatomy
in asingle space suffers from the specific subject anatomical
variability. Second, the functional organization of thebrainis

not exactly similar across subjects, and indeed is aresearch

topic initself. Third, experimental protocols often include

several experimental conditions to better distinguish the various
components of brain organization. Current methods to analyze data
from group of subjects are not well adapted to take into account
these limitations.

We therefore propose a method that can complement current
procedures. The method is based on the classification of

functional and anatomical data and does not require the exact
voxel per voxel match between subjects. First, a standard SPM
procedure is applied on each subject, and several conditions or
contrasts of interest that summarize the pertinent functional

results are selected such that a vector of typicaly 5to 10
functional coordinatesis defined for each voxel. Second,
anatomical coordinates are included, that can be ssimply Talairach
coordinates, or more interestingly could be geodesic distances to
anatomical landmarks labelled subject per subject (Riviere et al).
These coordinates are then classified using a Gaussian mixture
model and an Expectation Maximization algorithm is used to
estimate the model parameters.

We exemplify this method on an fMRI protocol consisting of 6 pairs
of Condition-Control acquired on 10 subjects (Simon et a, Neuron,
2003) . Results show striking differences between the spatial
representation of clusters between subjects for some clusters, and
very reproducible results for others. For instance, clusters with

a high representation of motor task are found reproducible
(although their spatial extend may vary between subjects) while
other conditions are only represented on afew subjects. Figure 1
presents a reproducible functional cluster detected across subjects
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(shown on 5 subjects on a sagittal slice for visualization
purpose) with high values of motor response contrast in the

parietal cortex. Interestingly, the size of the cluster is
variable between subjects and its location not exactly similar,

showing how this method takes into account inter individual
variability. These results are further compared to the standard
SPM analysis.

This approach provides a new perspective on group analyzes of
functional MRI datathat may lead to a better understanding of
the inter subject anatomo-functional variability.

Ll m

Upper panel showsfunctional clusters (one color per cluster). The brown cluster islocated in the parietal
cortex and the amount of activity for each experimental condition isrepresented on theleft bottom panel.
The brown cluster shows high activity for grasping and pointing tasks. Right bottom pannel indicatesthe
orientation of the dlice displayed.
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Classification of fMRI-independent componentsin a multidimensional featur e space using least-square
support vector machines.

Elia Formisano?, Federico De Martinol-2, Francesco Gentile?1, Marco Balsi 2, Fabrizio Esposito3, Francesco
Di Salle, Rainer Goebel
1Department of Cognitive Neuroscience, Faculty of Psychology, Maastricht Universiteit, The Netherlands,
2Dipartimento di Ingegneria Elettronica, Universita, 3Second Division of Neurology, Second University of
Naples, Napoli, Italy, 4Department of Neuroradiology, Universita

Introduction

Independent component analysis (ICA) is being increasingly employed in fMRI[1]. It has the distinctive property
of not requiring a-priori specification of the temporal profile of the effect(s)/artifacts.

Spatial ICA decomposition of fMRI time-series typically produces alarge (up to the number of time-samples) set
of spatial maps and associated time-courses (independent components or ICs). Asthereis not an

intrinsic,’ meaningful’ relation between 1Cs, the experimenter is confronted with the problem of selecting
interesting subsets from the large set of 1Cs, for each subject. This problem has been rarely addressed[2] and
solutions proposed so far are often based on strongly constraining hypotheses on | C-time-courses.

Here we describe a novel approach that allows the inspection and classification of 'interesting’ 1Cs without any
strong constraint. It is based on: 1) arepresentation of the ICsin a multidimensonal space of features and on 2) a
least-square support vector maching(LS-SVM) classifier [3]. SVMs are kernel-based learning a gorithms which
are often used for classification problems.

Methods

FMRI data sets are decomposed using spatial ICA. Each IC is associated with itsfingerprint, i.e. with a
representation in a multidimensional space of components-descriptive parameters (Figure). These parameters
characterize spatia distribution and layout (kurtosis, skewness, entropy, degree of clustering) as well as temporal
and spectral properties (one-lag autocorrelation, entropy, power contribution of different frequency-bands) of the
ICs. Thismultidimensional space represents the input space for the LS-SVM. |Cs-classification proceeds as it
follows: Initialy, classes of ICsrelative to a subset of data (e.g. one functional run) are specified by visually
inspecting the corresponding fingerprints. Together with simulated data thisinitial classification is used to define
the optimal kernel parameters and train the LS-SVM. After training, the LS-SVM is used to classify automatically
the ICs abtained on all remaining data-sets (i.e. on the same subjects or other subjects new data).

Results

We tested this approach on data from avisual experiment using structure from motion stimuli[4]. The
multidimensional representation of |Cs presented a high intra- and inter-subject consistency. Classes of
fingerprints corresponding to expected (visual, task-related) and unexpected (transient) activations as well asto
head-motion and other artifacts showed characteristic, distinctive and well-reproducible features (Figure), even
across functiona runs having different stimulation conditions.

After training on asmall subset (30) of |Cs from one subject, the LS-SVM automatically and correctly classified
I Cs obtained from different runs of the same subject and in other subjects.

Conclusion

Our new method of inspection and classification of fMRI-1Cs can be used in any experiment, is largely
independent of a priori knowledge of the experimental protocol and thus preserves the richness and peculiarity of
information about brain processes that ICA provides.

The LS-SVM classifier we used has the potentia to recursively improve its performance and to 'transfer’ learned
knowledge of spatio-temporal structure of 1Cs across subjects and experiments.

References
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Figurel. (Up) An example of IC-fingerprint. Each axis of the plot represents an | C-descriptive (spatial,
temporal or spectral) parameter (seetext). Theremaining part of the figure shows a sample of theresults
of the LS-SVM classification on one subject. Each color correspondsto a different class (purple: highly
task-related activation, green: weakly task-related activation, blue: spatially distributed noise, red: high

temporal frequency noise, brown movement-related artifacts, light blue: lar ge vessels). Consistent results
wer e obtained in other subjects.

el479



Abstracts presented at the 10th International Conference on Functional Mapping of the Human Brain, June 13-17, 2004, Budapest, Hungary

WE 172
Insightsinto Multi-Site FMRI Repeatability: Scanner Differencesin Sensitivity and Spatial Smoothness

Lee Friedman?!, Stefan Possel, Functional BIRN 2
1The MIND Institute, Albuquerque, NM, 2www.nbirn.net

Introduction:

The FIRST-BIRN (FBIRN) project is composed of ateam of 11 universities studying brain dysfunction with
fMRI in schizophrenia. One goal of the project isto characterize the quality and sensitivity of fMRI dataat the 11
sites and to study the impact of possible inter-site differences on group studies. We have evaluated the sensitivity
(to the BOLD effect) and spatial smoothness (spatial correlation) of the fMRI images. Below, we report
substantial, highly significant inter-site differences in sensitivity and smoothness. Site differences in smoothness
may, in part, be related to site differences in sensitivity.

Methods:

The ten FBIRN sites reported on here have a variety of MRI scanners, and field strengths (5@1.5T, 4@3.0T,
1@4.0T, Siemens-4, GE-5 and Picker-1). They employ several different functional acquisition sequences (6 EPI,
3 spiral, 1 double echo EPI). Five volunteers traveled to 10 sites and had identical fMRI studies performed. All
the sites used a 3000 msec TR with 35 axial slices. The TE for 1.5T was 40 msec and for 3T and 4T was 30 msec.
The (nominal) voxel sizewas 3.44 X 3.44 X 4.00 mm. The sensorimotor paradigm (85 TRs, 5 TRsrest, 5 TRs
active,...) included a finger tapping component designed to activate primary motor cortex. The data were analysed
in aconventional manner with AFNI (slice-time corrected, motion-corrected, detrended, correlated with a square
wave convolved with a canonical HRF).

To measure sensitivity for the motor cortex ROI, we determined the correlation threshold (Pearson r) for each
study to optimally match a canonical motor cortex activation pattern. The threshold at which each study best
matched this pattern was considered an index of BOLD sensitivity for that study. Pearson r' s were converted to a
linear scale prior to statistics.

Smoothness was measured on unaltered functional images with the AFNI program 3dFWHM. It measures the
extent of spatial correlation corresponding to each axis as a Gaussian FWHM (Forman et al., 1995). We present
dataonly on the FWHM for the Y -axis.

Results:

There were highly significant differences between the sitesin the index of BOLD sensitivity effect in the motor
cortex (Fig 1) (F=22.4, df =8, 32, p <0.0001). There were also inter-site differences in spatial smoothness of
the raw functional images (Figure 2, A and B same subject, different 1.5T scanners) and in measured smoothness
(FWHM Y) (Fig 3) (F =590.4, df = 8, 45, p < 0.0001). There was a significant relationship between smoothness
and sensitivity across sites (Fig 4)(F(linear) = 5.5, df, 1, 83, p = 0.02; F(quad) = 3.84, p = 0.0535).

Discussion:

There are important "site" differences in sensitivity to the motor cortex BOLD effect. These differences will have
to be taken into account before data from the sites can be merged. There are also marked site differencesin
smoothness of raw functional images from the 10 fBIRN sites. These differences may be related to imaging
method (EPI vs. spiral), gradient performance, image reconstruction method, reconstruction filter settings, and
field strength. Thereisasignificant curvilinear relationship between smoothness and sensitivity across the sites.
The possibility of reducing inter-site differences in sensitivity by smoothing the functional images to an equal
level is under examination.

References; Forman SD et al. Magn Reson Med, 33:636-47, 1995;
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SNR-limited Confidence Ranges of Dipole Sour ce Reconstructions

Manfred Fuchs , Michael Wagner , Joern Kastner
Compumedics/ Neuroscan Germany, Lutterothstr. 28 e, 20255 Hamburg

Equivalent dipole models are widely used in Electro-Encephal o-Graphic (EEG) and Magneto-Encephal o-Graphic
(MEG) source reconstruction. Despite their point-like definition, the best-fit solutions have a certain probability
volume depending on the source position and orientation as well as on the actually used sensor set-up and the
Signal-to-Noise-Ratio (SNR). In order to avoid the misleading impression of exact localization results, a measure
of the standard deviation of the dipole localization is desirable.

This measure can be obtained by performing a deviation scan around the best-fit positions, where the explainable
field is determined and compared to the best-fit field. Using alinear approximation, confidence €llipsoids can
then be computed and their axes and volumes can be determined by relating the field differences to the noise of
the measured data.

Test-dipolesinside of athree spherical shells volume conductor model were used to simulate EEG- and
MEG-data with sources of known positions, orientations, and noise levels. Confidence ellipsoids were computed
for these test-dipole solutions and deviation scans around the best-fit dipole positions were performed in order to
compare the size and the shape of the confidence €ellipsoids with the real error hyper-surface. Standard deviations
of repeated dipole localizations at different depths were computed to show the validity of the linear approximation
over the whole eccentricity range.

The size of the axes of the confidence ellipsoidsisinversely proportional to the SNR of the measured data, thus
the confidence volume isinversely proportional to the third power of the SNR. Good agreement between standard
deviations of repeated dipole localizations and the confidence ellipsoids was found for both EEG- and
MEG-cases. The new method adds a new and important dimension to dipole source reconstruction results by
characterizing their reliability. It isalso very helpful in deciding how many dipoles are necessary to explain the
measured data, since superfluous dipoles exhibit rather large confidence volumes.

Somatosensory Evoked Potentials (SEP) experiment: electric M edianus nerve stimulation. N20 single
equivalent dipole reconstruction (white pole/ellipses) and two mirrored dipoles (black poleselipses). The
fit quality of the two-dipole reconstruction is slightly better dueto increased number of parameters (1.1%
versus 0.8% residual variance). However, the second, mirrored dipole shows a large confidence ellipsoid,
whereasthefirst dipole, that isreally needed to explain the measured data, stayswell described in left
central sulcus area. Dipoles are shown aswhite/ black polestogether with their confidence ellipsoids,
electrodes (left side view) and a rendering of the cortical surface.
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An XML -based Data Access Interface for Image Analysis and Visualization Software

Syam Gadde , Charles R. Michelich, James T. Voyvodic
Duke-UNC Brain Imaging and Analysis Center , Duke University, Durham NC, USA

Constructing arobust image analysis pipeline from several, often disparate, software elementsis not atrivial
process. Many valuable software tools have arbitrary data format requirements. Combining such software toolsin
analysis requires data conversion steps that may slow down processing and introduce errors.

We have defined a general data access interface in the form of a structured text file, written in XML (Extensible
Markup Language). This XML file provides instructions on how to extract image datafrom filesin any
uncompressed data format, without explicit conversion of data. This interface supports data of arbitrary
dimensionality, data type, and byte order, and is applicable to most MR image formats, physiologica and
stimulus data. The XML fileis placed alongside the data it "encapsulates’, and points to the raw datafiles by
reference.

The XML markup language provides several advantages over ssimpler plain text formats. Because XML is merely
structured text, it is easily parsed and used as a common access interface for image dimensions, subject
information, acquisition parameters, or transformations between image and world coordinate systems. The XML
structure itself is extensible using XML namespaces, facilitating the integration of additional metadata modules.
We have created subroutine libraries to provide software support for the XML file format for C, C++, and
MATLAB. These libraries employ XML tools based on platform- and language-independent standards such as
XPath and DOM. Incorporating these library tools into existing analysis programs allows those programs to read
images of many types (e.g. DICOM, GE Signa 5.x, Analyze 7.5/SPM, MINC, etc.) viathe XML file, and makes
them forward-compatible with future data formats that can be encapsulated within this XML specification.
Conversely, any image files with an associated XML file, regardless of the underlying format, are automatically
readable by al XML-aware applications that support thisinterface. The XML interface allows existing software
to take advantage of the additional information and data formats the metaheader supports. For example, our
analysis tools that formerly required users to manually specify orientation, position, and image dimensions now
obtain thisinformation from the XML files.

We a'so use this approach to support legacy software. Using an XM L-based metaheader as the common
intermediary greatly simplifies our conversion software; conversions between N formats require only 2N software
components, rather than the N2 required by a direct format-to-format approach. Moreover, the XML file

mai ntains the image metadata we might otherwise lose when converting from arichly annotated data format (e.g.
DICOM) to one that is sparsely annotated (e.g. Analyze 7.5).

This general framework, implemented as the BIAC XML Header (BXH), has been in wide use at the Duke-UNC
Brain Imaging and Analysis Center since late 2002. It has also been adopted as a component of the XML schema
developed by the Biomedical Informatics Research Network (BIRN).

Thiswork was supported by US NIH grants IPOINS41328 and 3M 01RR00030.
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Innovation approach to extracting connectivity information from fMRI time series

Andreas Galkal2, Tohru Ozaki 23, Jorge Bosch-Bayard#, Okito Y amashita®, Jorge Riera-Diaz®, Norihiro
Sadato®
lingtitute of Applied Physics, University of Kiel, Kiel, GERMANY, 2Ingtitute of Statistical Mathematics, Tokyo,
JAPAN, 3Department of Statistical Science, Graduate University for Advanced Studies, Tokyo, JAPAN, 4Cuban
Neuroscience Center, Havana, CUBA, >Advanced Science and Technology of Materials, NICHe, Tohoku
University, Sendai, JAPAN, éNational Institute of Physiological Sciences, Okazaki, JAPAN

Data sets obtained by functional magnetic resonance imaging (fMRI) represent both spatial and temporal aspects
of the hemodynamics of the human brain. Whereas usually in the analysis of fMRI data sets the focuslies on
spatial aspects, the temporal dimension has been receiving less attention. In this contribution we show that by
fitting spatiotemporal dynamical modelsto fMRI data sets information about the long-distance connectivity
structure of the investigated brain can be obtained.

The dynamical models are chosen from the class of linear multivariate autoregressions; extensions to nonlinear
model classes are straightforward. Stimulation terms can be explicitly included into the model. The spatial aspect
islimited to local neighbourhoods, i.e. to interactions between neighbouring voxels. This approach is equivalent
to fitting partial differential equationsto the data. Model selection and parameter estimation are performed by a
modified maximum-likelihood approach.

The connectivity structure can be quantified by estimating Mutual Information (M1) for each pair of voxels.
Presence and absence of afast connection between two voxels correspond to two

different dynamica models, which can compared within the likelihood framework. Ml is estimated not for the
pure data directly, but for the time series of residuals (or innovations) which are provided by these modelling
steps. This deviation from the usual procedure has the advantage that the distribution of the residuals will be close
to that of white Gaussian noise, such that error-prone nonparametric estimation of probability distributions can be
avoided; instead M| can be obtained directly from the difference of the log-likelihoods.

The modelling step implements a whitening filter which removes most spatial and temporal correlations from the
data; for this reason even weak correlations in the innovations (i.e. in the noise process driving the dynamics) can
be detected. This method is capable of producing useful results also from short single-trial time series.

Examples for the application of this method to simulated data and to real fMRI data from healthy subjects will be
shown.
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TurboFIRE: Real-TimefMRI with Automated Selection of Regionsfor ROI-Analysis based on
Standar dized Neuro-Anatomical Atlas

Kunxiu Gaol, Stefan Posse?
1The MIND Institute, Albuquerque, NM, USA, 2Dept. of Psychiatry, University of New Mexico School of
Medicine, Albuquerque, NM, USA

Introduction:

Quantification of brain activation in standardized neuro-anatomical space during the ongoing scan is desirable for
real-time fMRI. Based on our methodology for real-time spatial normalization with integrated Talairach Daemon
database (1), we developed areverse process to automatically select neuro-anatomically defined regions for ROI
analysis during the ongoing scan.

Methods and Results:

Our spatial normalization methodology with integrated Talairach Daemon database (1) assigns anatomical
structural information for voxels in non-normalized EPI or multi-echo EPI data (subject space), which requires a
coordinate-lookup table from subject space to normalized space (S2N). While generating the lookup table S2N
using affine and nonlinear transformations derived from SPM99 (2), an inverse lookup table (N2S) can also be
created, which allows mapping from normalized space to subject space. To do automated ROI analysisin
real-time, neuro-anatomical regions have to be selected from alist (e.g., BA 18, Amygdala, etc.). By scanning
anatomical information for every voxel in normalized space, contained in the Talairach Daemon database (3), we
can determine the corresponding voxels in normalized space for the selected region. Coordinates of all these
voxels are transformed back to MNI space using Mathew Brett’ s formula (4) and the resulting coordinates are
searched through lookup table N2S to determine their corresponding coordinates in subject space, and thus
identify the region (Fig.1). Not all voxelsin normalized space have a direct correspondence in subject space due
to nonlinear transformations. In these cases a weighted neighborhood search is performed. Subsequent time
course and cluster analysis of activated brain areas can be automatically limited to the selected region(s). When
integrated into the TurboFI RE real-time analysis tool (1), 10 Brodmann Areas could be selected within less than a
second (on average) using a 1.7 GHz Pentium M |aptop.

Discussion:

The ahility to select neuro-anatomically defined ROIs in subject space facilitates interpretation of activation maps
under the time constraints of real-time fMRI. Quantifying spatial extent of activation in relation to
neuro-anatomical boundaries may also help to increase the specificity of classifying activation patterns and to
perform group studies. The precision of spatial mapping, which islimited by digital resolution and ambiguity in
voxel mapping due to nonlinear transformation, could be increased by interpolation at the expense of real-time
performance.
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Supported by NIH NIBIB 1 RO1 EB002618-01. We thank Siemens Medical Systems (Erlangen, Germany), Jack
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Figure 1: An example of visual regions mapped onto an individual’s non-nor malized EPI using automated
ROI selection (green: BA 17, blue: BA 18, red: BA19)
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TurboFIRE: Real-TimefMRI with Online Gener ation of Reference Vectors

Kunxiu Gaol, Stefan Posse?
1The MIND Institute, Albuquerque, NM, USA, 2Dept. of Psychiatry, University of New Mexico School of
Medicine, Albuquerque, NM, USA

Introduction:

Fixed reference vectors limit the application of real-time fMRI in situations where subject responses cannot be
predicted before the scan starts or where physiological variables measured during the scan are required for
baseline detrending or for modeling covariates of interest. Here we show feasibility of creating multiple reference
vectors during the ongoing scan in atask design controlled by the subject at will.

Methods and Results:

For online reference vector creation, correlation analysis isimplemented such that once the reference vector is
modified it isimmediately used for the next available volume to update the correlation map The analysisis
initiated with a zero reference vector and no activation map isinitially generated, while data are accumulated. The
reference vector can be modified anywhere during the current TR period while data are being acquired. Up to four
independent reference vectors can be defined online. When integrated into the TurboFI RE real-time analysis tool
(1) the delay between modifying the reference vector and updating the correlation map was less than one TR
period. As an example of the application of this method, a healthy subject performed a self-controlled interleaved
left/right index finger tapping with eyes open during tapping and closed during rest in a Siemens Sonata 1.5T
scanner using whole brain EPI. A control experiment with afixed paradigm design was performed in which right
index finger tapping and open/closing the eyes was externally paced with an auditory cue. Two independent
reference vectors for the left and right finger movement were defined online in real time based on the subject’s
willed movements and two correlation maps were updated online (Figs.1,2). A third reference vector which
represents the combination of the two online created reference vectors revealed a network of frontal regions
including anterior cingulate (Fig.3), which was not present in the control experiment (Fig.4).

Discussion:

The results show feasibility of monitoring brain activation during self-generated movement in real-time.
Generating the reference vector online in neurocognitive experiments requires knowledge of subject dependent
delaysin response time relative to neuronal activation. Taking these delays into account may require retardation
of online processing or retrospective modification of the reference vector to maximize sensitivity. Adaptation of
online reference vector generation for General-Linear-Model analysis, which has already been implemented into
TurboFIRE using a modification of (2), is being investigated.

Acknowledgments:

Supported by NIH NIBIB 1 RO1 EB002618-01. We thank Siemens Medical Systems (Erlangen, Germany) for
software support.
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Figure 1: Activation map for left finger tapping using online creation of reference vector based on a
paradigm time cour se controlled by the subject.
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Figure 2: Corresponding activation map for right finger tapping in the same experiment as Figure 1.
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Figure 4: Activation map for right finger tapping using a fixed paradigm design.
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L ow-frequency coherent fluctuationsin BOLD activity : apreliminary report

Gagtan Garraux 12, Guido Nolte?, Mark Hallett?
1Cyclotron Research Center, University of Liége, Belgium, 2Human Motor Control Section, NINDS, NIH, USA

Background

Low frequency (<0.1Hz) fluctuations originating from blood flow and oxygenation have been observed in the
brain by different groups (Golanov et al. 1994; Biswal.et a. 1995). The goal of this study wasto use BOLD fMRI
to characterize coherent fluctuations in those low frequencies between spatially distant brain regions.

Methods

Thirteen right-handed subjects were studied using blocked-design BOLD fMRI at rest and as they performed
sequential finger movements at a slow rate (~0.5 Hz) with their right hand. Serial acquisitions of EPI images were
obtained at 3T using a single-shot 2D gradient-echo echo-planar imaging sequence. Data were processed and
analyzed using standard procedures implemented in the statistical parametric mapping software (SPM2).
Temporal profile of brain activity in 6 predefined regions (left SIM 1, right SIM1, SMA, left thalamus, right
cerebellum and CSF) were extracted on a subject-by-subject basis using the VOI tool in SPM2. After
deconvolution (Gitelman et al. 2003), time series data representing movement and resting conditions were
concatenated to create 2 within-condition time-series. After subtracting the mean over all epochs from each
epoch, the (complex) coherency was calculated in the 5 lowest frequency bins with afrequency resolution of
1/17.5Hz (0, 0.05, 0.11, 0.17, 0.23 HZ). Real and imaginary parts of coherency, representing correlation and
correlation of phase-shifted signals, respectively, were analyzed separately. Coherency was computed
independently for each region pairs and each subject. Significance was defined as p<0.05 Bonferroni corrected for
multiple comparisons.

Results

The main finding was the presence of coherent fluctuationsin BOLD signal mainly in the lowest frequencies for
(almost) al regions. Thereal part of coherency was equally pronounced during the movement and rest conditions.
The only exception was alarger coherence during rest than during the task condition in the lowest frequencies
between left and right SIM 1. We could not find any significant imaginary part of coherency indicating that the
time delays between dependent neural activations are negligible compared to the inverse frequencies under study.
Partialling out the datain any of the regions did not have any significant impact on coherence map. Importantly,
there was no evidence of coherent activity between any of the brain regions and CSF in any of the frequency
bands.

Discussion

BOLD signal recorded during different behavioral steady-states showed very similar coherent fluctuations for all
regions pairs studied mainly in the lowest frequencies. Those results are in good agreement with
electrophysiological recordings in monkeys in which high coherence in band-limited power of local field potential
signals have been reported at very low frequencies (<0.1Hz) (Leopold et a. 2003). In that study, coherence
patterns were also highly similar under distinctly different behavioral states. Task-independent coherence in lower
frequencies may be related to whole brain slow synchronous oscillations whaose significance remains to be
elucidated.
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BOLD contrast signal history contribution to the auditory cortex functional connectivity in resting state
fMRI data

Maria Gavrilescul2, Geoffrey W Stuart12, Alex A Serggjew 12, David Copolov12, Gary F Egan1:23
1Mental Health Research Institute, Melbourne, Australia, 2National Neuroscience Facility, Melbourne, Australia,
SHoward Florey Institute, Melbourne, Australia

Introduction

The BOLD contrast signal history determined by lagged linear correlation has asignificant contribution to
functional connectivity in activation data sets (1). Moreover, Cordes (2,3) demonstrated that in resting state
BOLD contrast data, the magjor contribution to synchronous correlation between functionally connected areas
arises from low frequencies contributions (< 0.1Hz) with physiological noise having a negligible contribution in
auditory and visual cortices. We have investigated the within subject across sessions reproducibility of low
frequency and signal history contributions to the functional connectivity in auditory cortex in resting state fMRI
data.

Methods

Two fMRI sessions consisting of 96 T2* weighted images were recorded for three healthy male subjects while
lying at rest with their eyes closed in a 3T scanner (acquisition parameters TR/TE/FA=3sec/40msec/60, and
1.88x1.88x5mm spatial resolution). The images were motion corrected and spatially normalised to the EPI
template using spm2 (www.fil.ion.ucl.ac.uk/spm). Two regions of interest were defined in one subject using
WFU_PickAtlas (4) in the primary auditory cortex (PAC-BA41) in the left and right hemispheres. The time
courses of the voxelsin these regions were averaged and the inter-regional correlation coefficient (r) was
computed separately for each session. The signal history contribution to r was estimated by computing the lagged
correlations between the signal in the left PAC y(t) and the lagged signal in the right PAC x(t-nTR) where
n=0,1,2,3,4 (3). The spectral decompoasition of r was performed for each lag according to (1) to obtain the
frequency content of the correlation coefficient. For each session a 2D map was constructed by plotting the
spectral decomposition of r for each lag (Fig.1 and 2). The spatia correlation (r_map) of these 2D maps was then
investigated in the raw and denoised data. Data denoising was performed using an ICA decomposition as
implemented in Melodic (www.fmrib.ox.ac.uk/fsl/melodic) to identify and remove components highly correlated
with the motion parameters (r>0.5) and other obvious artifacts (slice dropout, drifts, ghosting).

Resultsand discussion

The r values were significant for both sessionsin raw and denoised data with larger values for denoised data (raw
data: sessionl r=0.45, session 2 r=0.59; denoised data: session 1 r=0.57, session 2 r=0.77 ).

However, correlation map value (r_map showing the reproducibility of history and frequency contribution to
correlation coefficient r across sessions) was significant only for the denoised data (raw data: r_map=0.072,
p=0.211; denoised data: r_map=0.59, p=0.000). Similar results were obtained for r_map limited to
frequencies<0.08 (raw data: r_map=-0.13, p=0.239; denoised data: r_map=0.74, p=0.000). Signal history
contributions from n=0 and n=1 lags were significant and positive in all situations while the contributions from
n=2,3,4 lags were not always significant and switched sign across runs and preprocessing methods.

These results replicate the findings of Lahaye et a.(1) that signal history should be taken into account when
studying functional connectivity in fMRI data. Our study suggests that even when data denoising has arelatively
small impact on zero-lag temporal correlationsit may significantly improve the reproducibility of signal history
effects for the functional connectivity of auditory cortex. This hasimportant consequences for studying the
involvement of auditory cortex in schizophrenic patients experiencing auditory hallucinations.
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Thereproducibility of frequency content and signal history contributionsto functional connectivity in
fMRI data acquired during an orthographic lexical retrieval task

Maria Gavrilescul 3, Geoffrey W Stuart 3, Anthony Waites?, Graeme Jackson?, Gary F Egan1-34
1Menta Health Research Institute of Victoria, Melbourne, Australia, 2Brain Research Institute, Austin
Repatriation Center, Melbourne, Australia, 3National Neuroscience Facility, Melbourne, Australia, 4Howard
Florey Ingtitute, Melbourne, Australia

Introduction

Thereis significant interest in investigating functional connectivity beyond temporal correlation between spatially
separated neurophysiological measurements (1). We have investigated whether data denoising may improve the
across subject reproducibility of signal history (1) and frequency contributions (2) to the correlation coefficient
between brain regions activated by an orthographic lexical retrieval (OLR) task.

Methods

Twelve subjects were scanned using a 3T scanner while performing an OLR task (TR=3.6sec,see (4) for details).
During the task period the subjects were asked to silently generate as many words as possible starting with aletter
presented on a screen every 18 seconds. The task was presented in a block design with aperiod of 72 seconds. In
the rest condition the subjects were asked to fixate on a crosshair at the center of the screen. Beginning with rest
nine alternating block were presented (10 volumes/block).

For three subjects the images were motion corrected, smoothed with a 3x3x3mm Gaussian kernel and the
statistical analysis was performed using spm2 (www.fil.ion.ucl.ac.uk/spm). Two activated regions of interest were
defined as 4mm radius spheresin the left inferior frontal gyrus (LI1FG) and anterior cingulate (AC) based on thet
maps (fdr<0.05).

Data denoising was performed using an ICA decomposition as implemented in

Mel odic(www.fmrib.ox.ac.uk/fs/melodic) to identify and remove components highly correlated with the motion
parameters (r>0.5) and other obvious artifacts (slice dropout, drifts, ghosting). The task related component was
identified based both on the time course correlation with the experimental paradigm and on the number of voxels
in ROIs (5). After denoising, the images were reanalysed with spm2 with the same settings as for raw data.

The correlation coefficient (r) between the average time courses of the two regions was estimated within subject
for the residual s obtained after removing the task defined as. 1) aboxcar (boxcar); 2) aboxcar convolved with the
hrf function (hrf), and 3) task related component as identified by ICA (ICA). The average r value was then
calculated across subjects.

The signal history contribution to r was estimated by computing the lagged correl ations between the signal in
LIFG y(t) and the lagged signal in AC x(t-nTR) where n=0,1,2,3,4 (3). The spectral decomposition of r was
performed for each lag according to (1) to obtain the frequency content of the correlation coefficient. For each
subject a 2D map was constructed by plotting the spectral decomposition of r for each lag. The spatial correlation
(r_map) of these 2D maps was then estimated for each pair of subjectsin the raw and denoised data. An average
value for r_map was obtained as the mean of pair-wise values.

Results and discussion

While preprocessing and task removal methods had only arelatively small impact on ther values (Fig 1), r_map
values were significant and positive only for denoised data with the highest value for the ICA task-removal
method (Fig 2).

These results suggest that for more sophisticated functional connectivity measures, data denoising may
significantly improve the reproducibility across subjects.
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Influence of fMRI Smoothing Procedures on Replicability of Fine Scale Motor Localization

Alexander Geissler®, Andreas Gartus®, Markus Barth?, Rupert Lanzenberger1, Denny Milakara®l, Amir
Tahamtan®, Thomas Foki®, Gregor Mellerl, Roland Beisteiner!
1Study Group Clinical fMRI at the Departments of Neurology, 2Department of Radiology

A comparison between results of smoothed data using SPM 99 and a non smoothed correlational analysis
(risk-map techniqued) was performed to investigate the influence of smoothing procedures on localization
replicability of essential motor cortex areas.

M ethods:

11 healthy right handed subjects (mean age: 25.3 years; 7 males/ 4 females) and one right handed patient
suffering aleft postcentral-tumor (male, age 37) participated in this study. We compared the localizations of the
most active hand motor voxel (i.e. the voxel with the highest probability to represent a true positive) within two
conditions: opening and closing of (1) the dominant hand (condition hand isolated), and (2) both hand and jaw
movements simultaneously (condition hand simultaneous).

fMRI acquisition: 3T BRUKER Medspec scanner using a single shot EPI-sequence (TE/TR = 55.5/4000ms,
128x128 matrix, 230x230 FOV, 25 axial dlices, slice thickness 3mm, sinc-pulse-excitation). Individual plaster
helmetsl were applied for optimised head fixation.

The movements were self-initiated and self-paced at a subjective convenient frequency. One run consisted of 4
rest and 3 movement phases with 20s duration each. Prior to further analysis, all volumes of every subject were
realigned to the first volume of the first run using AIR2.

We performed two different spatial smoothing analysis with a 4mm and a 8mm FWHM Gaussian smoothing
kernel using SPM993 All scans of a condition were analyzed together. The smoothed data were calculated with a
fixed response Box-car function shifted by 8 seconds. No cluster criterion was applied for generating t-value maps
(p < 0.001, corrected p < 0.05 for multiple comparisons). Based on SPM T-maps, the voxel with the highest
t-value within the primary sensorimotor cortex was determined as the most active one.

For the correlational risk-map analysis4 the same reference function and the same ROIs asin SPM were used. The
hand motor center was defined as the voxel with the largest minimum correlation coefficient over al runs. This
corresponds to avoxel with 100% reliability at the highest possible correlation threshold.

For each subject and both data analysis technique (SPM, risk-map) 3D localization difference (Euclidean
distance: V((x1-x2) 2+(y1-y2)2+(z1-z2) ) of the hand motor center between conditions was (x1, y1, z1 and X2,
y2, z2 are the Cartesian- coordinates of the hand motor center in the simultaneous and isolated conditions
respectively).

Results and Discussion:

The localization differences of the movement representation centers for isolated and simultaneous movements are
depicted in table 1. Here, identical movement representation centers were found in 6/12 subjects for the risk-Map
analysis, 2/12 for the SPM 4mm kernel and 1/12 for the SPM 8mm kernel smoothed analysis. As presented in
figure 1, the localization variability between isolated and simultaneous movements was larger with smoothed
compared to non-smoothed data. Table 2 shows the appropriate Wilcoxon tests indicating a significant decrease in
localization replicability with smoothed data analysis techniques (fig. 2). There is no significant difference
between both smoothed data analysis techniques. Our results show a significant decrease in localization
replicability due to smoothing procedures

Difference Risk Map Difference SPM 4mm
Hand isolated vs. Hand simultaneous Hand isolated vs. Hand simultaneous
Subject mi ap s 3D dist ml ap S 3D dist

BJ 0 0 0 0 18 0 0 18
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GS -1.8 3.6 0 4.025 -1.8 18 0 2.55
HP 0 0 0 0 54 -7.2 6 10.8
Kil 0 0 0 0 0 0 0 0
LR 0 0 0 0 0 0 3 3
SC -1.8 0 0 18 0 -1.8 0 18
AM 0 -1.8 -6 6.3 0 3.6 6 7
LuR 0 0 0 0 -9 198 3 22
MG -1.8 1.8 0 2.546 -1.8 0 0 18
SL -1.8 0 0 18 -1.8 3.6 0 4.02
TN 0 18 0 18 -1.8 0 -3 35
TH 1.8 3.6 0 4.025 0 0 0 0

Difference SPM 8mm

Hand isolated vs. Hand simultaneous

Subject mi ap s 3D dist
BJ 18 -1.8 0 2.55
GS 0 0 0 0
HP 0 -9 9 12.7
Kl 0 -3.6 3 4.69
LR 0 -1.8 0 18
SC 7.2 -7.2 0 13.6
AM -3.6 0 0 3.6
Lur -3.6 144 0 14.8
MG 3.6 0 3 4.69
SL -1.8 54 0 5.69
TN 0 18 0 18
TH 3.6 27 0 27.2

Individual localization differ ences of motor centers between isolated and simultaneous hand
movements. The ml = medio-lateral, ap = anterior-posterior, s = superior-inferior axis and the 3D
distances are given in mm. Pixel dimensions. 1.8mm x 1.8mm X
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Fig. 1 Box Plot illustration of the mean 3D distances of the motor centers for isolated
and similtaneois hand movements.

The box siretches from the lower hinge (defined as the 25™ percentile) to the upper
hinge {the 75" percentile), the range of the whiskers is from the 5" 1o the 95" percentile.
Median: line across the box; mean: litthe square; the crosses indicate sutliers; small
sized straight lines: minimom and maximom value,
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RiskMap/SPM99
4mm

RiskMap/SPM99 | SPM99 4mm / |
smm SPM99 8mm |

Double sided 0021
__ significance

0.028 0.480 ‘

Table 2: Wilcoxon results testing for significa
smoothed and smoothed analysis technigues.

nt increases in 3D differences between non-

3D Distance Mean Standard deviation
RiskMap 1,333 1,57482
SPM4mm | 4,85583 6,18152
SPMEmm | 1.76 T.89033

Table 3: Mean 3D distances per analysis method in mm,
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Spatial semivariance analysis of fMRI data

YuliaGel1, Rgjesh Nandy 2, Dietmar Cordes?
1George Washington University, USA, 2University of Washington, Department of Radiology

Introduction The overall objective of this research isto adapt spatio-temporal methods of geostatisticsto fMRI
analysis and to develop spatio-temporal models for fMRI data. Our current focus is on the spatial pattern of the
data.

Theory and methods In first, we apply a segmentation based approach to isolate gray matter, white matter and
CSF, which makes each individual segment more homogeneous. Then we investigate the spatial dependency of
the signal by semivariance analysis. We fit avariogram curve with an exponential covariance function and
estimate spatial covariance parameters such as variance (sill), range (degree of correlation of signal at neighbor
pixels), and nugget (the level of microscale variability) for CSF, white and gray matter separately. We repeat our
experiments for a number of healthy subjects. The research addresses the following questions. @) How to identify
pathological areas in the brain? In fact, assuming that we accumulate a sufficient database of covariance
parameters, we can check whether the parameters of the new subject fall within certain confidence interval. If not,
we can subdivide the brain into local subareas and identify a region with the unusual covariance parameters and
hence suggest a further medical examination of this part of the brain. Such an approach might open the possihility
to identify even atumor with significantly small size. b) How to achieve an image of high resolution from the data
of low resolution i.e. iskriging a useful approach for fMRI data? c) How do the covariance parameters evolvein
time, i.e. how does the brain change over age?

Results We apply our analysis to 4 normal subjects and 4 subjects with dyslexia. In Figures 1 and 2, we provide
the estimated density functions of the sill &2, the range r and the nugget a for white matter (WM) and gray matter
(GM) for normal subjects and subjects with dyslexia, respectively. The normal subjects show tendencies to
bimodal behavior of range parameter in WM and more significant small-scale variability (nugget variability) for
GM. Inter-subject variability for the sill 82 appears to be less for normal subjects. However, such patterns may be
dueto outlier influence or lack of data. Although the results are preliminary, the plots show the relative
consistency of fitting the exponential covariance function to the spatial data, and we found this approach to be
promising. To test our method further, we plan to apply the method to a higher number of normal and affected
subjects.

A i R

The density functions of covariance parametersfor normal subjects
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Repeatability of Brain Tissue Volume Quantification using M agnetic Resonance | mages

Juan D. Gispert , Santiago Reig , Javier Pascau , Juan J. Vaquero , Manuel Desco
Medicinay Cirugia Experimental. Hospital General Universitario Gregorio Marafion. Madrid, Spain.

INTRODUCTION

The conventional way to characterize MR tissue measurements has been to assess accuracy and precision (or
repeatability) (i.e. systematic and random errors). Sources of error (contributing to both inaccuracy and
imprecision) arise both in the data collection procedure and in the image analysis procedure. Two main sources of
systematic error in data acquisition are B1 non-uniformity and partial volume effects. Precision may have alarge
biological component because of the significant intra-subject biological variation. Besides, patient positioning and
movement contribute to random errors (Tofts, 2003). Accuracy of MR quantification methods has received
greater attention than precision. However, systematic errors do not mask differences in group comparisons whilst
imprecision decreases the statistical power of the statistical test. Early works that measured the reproducibility of
MRI analysis procedures have little practical value, since patient positioning was not considered and can be a
major source of variation (Gawne-Cain et al., 1996; Tofts, 1998).

The aim of thiswork is to study the repeatability of brain tissue volume quantification achieved by different MRI
segmentation methods. We have quantified the variance components associated to different sources, considering
both data acquisition variability (including biological, scanner and positioning variability) and image
post-processing variability (introduced by intensity inhomogeneity and segmentation algorithms). We have also
measured the reproducibility of eight different MRI tissue segmentation algorithms under different acquisition
and post-processing conditions by calculating the standard deviation of the repeated measurements (absolute
variability, in cm3) and the coefficient of variation (CV) (relative variability, in percentage).

MATERIAL AND METHODS

Two experiments were conducted using an MR dataset consisting in atotal of 24 MR images of 4 different
subjects, acquired in 2 different MR scanners of different static field (0.5 and 1.5 Tesla) and repeating the
acquisition in each scanner 3 times. All these images were then corrected for intensity inhomogeneities with the
N3 algorithm. Both the corrected and uncorrected images were segmented by using eight different MRI
segmentation algorithms, selected on the basis of being representative of the use of partial volume modeling
(Santago and Gage, 1995; Laidlaw et al., 1998; Grabowski et al., 2000; Ruan et al., 2000) or the use of statistical
templates (Ashburner and Friston, 1997; Van Leemput et al., 1999). Images were also segmented by a baseline
reference agorithm which does not implement any partial volume modeling nor uses statistical templates (Wells
et a., 1996).

RESULTS

Figures 1 to 3 show the percentage of variance explained by the 5 sources of variability considered and Table 1
the reproducibility of the 8 segmentation algorithms under the different measurement conditions.
CONCLUSIONS

Our resultsindicate that the explicit modeling of partial volume effects improves the MRI segmentation
repeatability. The inclusion of spatial information by using anatomical templates and spatial normalization
techniques enables a greater improvement in the repeatability, although it is very sensitive to eventual registration
errors.
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Figure 1. Percentage of variance explained in Gray Matter quantification by the different factors. Subject
(Biological variability), MR scanner, Positioning (nested in MR scanner), I ntensity inHomogeneity
Correction and Segmentation Algorithm
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Figure 2: Percentage of variance explained in White Matter quantification by the different factors: Subject
(Biological variability), MR scanner, Positioning (nested in MR scanner), I ntensity inHomogeneity
Correction and Segmentation Algorithm
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Figure 3: Percentage of variance explained in Cerebrospinal Fluid quantification by the different factors:
Subject (Biological variability), MR scanner, Positioning (nested in MR scanner), I ntensity | nhomogeneity
Correction and Segmentation Algorithm
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Table 1: Mean values of the standard deviation (Abs., in cm3) and the coefficient of variation (Rel., in %)
of the tissue volumes estimated using 0.5 T and 1.5 T MR scans and with and without intensity
inhomogeneity correction (N3, None).
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Asymmetry Analysis Along Cingulum Using Diffusion Tensor Imaging

Gaolang Gong?, Tianzi Jiang®, Chaozhe Zhu?, Yufeng Zang?, Yong Hel, Sheng Xie?, Jiangxi Xiao?, Xuemei
Guo?
INational Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing
100080, P. R. China, 2Department of Radiology, Peking University First Hospital, Beijing 100034, P. R. China

Introduction

So far, analysis of diffusion tensor imaging (DTI) is often based on region of interesting (ROI) in image dataset,
which is specified by user. However, this method is not always reliable because of the uncertainty of manual
specification. Here, we introduce an improved fiber-based scheme rather than ROI-based analysis to study
asymmetry of the cingulum in DTI dataset, which is the most prominent white matter fiber tract of the limbic
system. The present method can automatically extract the quantitative anisotropy properties along the cingulum
bundles from tractography.

Method

Thirty-one healthy, right-handed volunteers with informed consent were scanned on a 1.5-Tesla MR scanner (GE
Signa 1.5T Twinspeed), The diffusion sensitizing gradients were applied along 25 non-collinear directions with
b-value=1000 mm?2, together with an acquisition without diffusion weighting. Totally 12 slices were gathered
with the most caudal dlice passing through the genu of corpus callosum to cover most cingulum bundles as
possible. The acquisition parameter was as follows. TR=4000ms; TE=80ms; matrix=128x128; FOV=24x24cm;
number of excitation (NEX)=3; dlice thickness=3mm without gap. Total scan time for DTI sequence was 5
minutes 20 seconds. Moreover, high-resolution 3D T1-weighted image (TR=11.3ms, TE=4.2ms,

FOV =24x24mm, matrix=128x128, slice thickness=2.4mm, NEX=2) was also obtained.

The cingulum bundle was first reconstructed by fiber tracking algorithm. All traced fibers with the common origin
were then parametrized by arc-angle. In this case, the plane passing the anterior commissure (AC) point and
perpendicular to the anterior commissure-posterior commissrue (AC-PC) line was assigned as the reference plane,
in which seed ROI for cingulum bundle tracking can be specified. The left-right line passing AC point was
assigned as the axis of rotation, then al traced fibers were parameterized by arc-angle automatically in the new
polar coordinates. After such anatomical correspondence of cingulum of subjects was established, paired t-test
was then employed to access the difference of FA value along the cingulum.

Result and conclusion

Averaged FA value of the 31 subjects corresponding to arc-angle in bilateral cingulum was shownin Fig.1, and
standard deviations for FA distribution were also presented. Significant difference in FA distribution between |eft
and right was found with a left-greater-than-right asymmetry pattern in the most segment of cingulum, except
extreme posterior portion. And such asymmetry pattern was verified by the P-value distribution in Fig.2, where
significant difference (P<0.05) was approximately distributed in -50°~40°.
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Application of Voxel-Based Group Analysisin a small group of former professional deep-sea divers

Renate Griiner 13, Karsten Specht?1, Lars Ersland®1, Gunnar Moen31
1University of Bergen, Norway, 2Research Center Jilich, Germany, 3Haukeland University Hospital, Norway

Introduction

The mechanism by which divers damage their brain, is still unknown. Polkinghorne et.a