1. Find the inverse of the matrix $A=\left[\begin{array}{rr}3 & 2 \\ -1 & -2\end{array}\right]$ and use it to solve the equation $A x=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
2. Let $A=\left[\begin{array}{rrrrr}1 & 4 & -2 & 3 & -2 \\ -2 & -8 & 4 & -5 & 7 \\ 3 & 12 & -6 & 9 & -9\end{array}\right]$.
(a) Find the rank of A.
(b) Find a basis of the null space of A.
(c) Find a basis of the column space of A.
3. Let $A=\left[\begin{array}{llll}2 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 1 & 1 & 4\end{array}\right]$.
a. Find the eigenvalues of A; for each eigenvalue λ, find a basis of the corresponding eigenspace of A.
b. Is A diagonalizable? Why?
4. Let $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 1 & 1 & 3\end{array}\right]$. Find an invertible matrix P and a diagonal matrix D such that $A=$ $P D P^{-1}$.
5. Find the characteristic polynomial of the matrix $A=\left[\begin{array}{rrr}1 & 0 & 1 \\ 1 & 3 & 0 \\ 2 & -1 & 2\end{array}\right]$.
6. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $T(x)=A x$, where $A=\left[\begin{array}{rr}2 & -1 \\ 0 & 2\end{array}\right]$. Find the matrix $[T]_{\mathcal{B}}$ of T relative to the basis $\mathcal{B}=\left\{b_{1}, b_{2}\right\}=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{r}-1 \\ 1\end{array}\right]\right\}$.
7. A 2×2 matrix has eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=1 / 2$ with corresponding eigenvectors $v_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$. Find a formula for A^{k}, where k is a positive integer.
8. True or False?
(a) If A is an $n \times n$ matrix such that the linear transformation $T(x)=A x$ is one-to-one, then A is invertible.
(b) The null space of a 4×5 matrix of rank 4 must be trvial; that is, it must equal $\{0\}$.
(c) If an $n \times n$ matrix A has n linearly independent eigenvectors, then A has n distinct eigenvalues.
(d) If $\lambda=0$ is an eigenvalue of A, then A is not invertible.
