1. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 2 \\ 3 & 2 & 1\end{array}\right]$.
(a) Find the characteristic polynomial and the eigenvalues of A.
(b) For each eigenvalue of A, find a basis for the corresponding eigenspace.
2. Let $A=\left[\begin{array}{rrr}1 & 2 & 3 \\ -1 & -1 & -2 \\ -1 & 1 & 0 \\ 2 & 0 & 2\end{array}\right]$.
(a) Find a basis for the orthogonal complement, $(\operatorname{Col} A)^{\perp}$, of the column space of A.
(b) Find an orthogonal basis for $(\operatorname{Col} A)^{\perp}$.
3. Find an orthonormal basis for the subspace of \mathbb{R}^{4} spanned by the vectors u_{1}, u_{2}, u_{3}, where $u_{1}=\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 1\end{array}\right], u_{2}=\left[\begin{array}{r}1 \\ -1 \\ 2 \\ 0\end{array}\right]$ and $u_{3}=\left[\begin{array}{r}1 \\ -4 \\ 4 \\ -1\end{array}\right]$.
4. Let $Q=\left[\begin{array}{rr}1 / 2 & -1 / 2 \\ 1 / 2 & 1 / 2 \\ 1 / 2 & -1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right], R=\left[\begin{array}{ll}2 & 3 \\ 0 & 5\end{array}\right]$ and $b=\left[\begin{array}{r}-1 \\ 2 \\ 0 \\ 3\end{array}\right]$. If $A=Q R$ is the $Q R$-factorization of
A, find the least-squares solution of $A x=b$ and the orthogonal projection \hat{b} of the vector b onto $\operatorname{Col}(A)$, without computing the matrix A explicitly.
5. Consider the data set $D=\{(-2,1),(0,2),(1,3),(2,3)\} \subset \mathbb{R}^{2}$.
(a) Find the equation of the least-squares line $y=\beta_{0}+\beta_{1} x$ for the data.
(b) Describe the model that produces a least-squares fit by a function of the form $y=\beta_{1} x+\beta_{3} x^{3}$. Find the design matrix X, the parameter vector β, and the observation vector y explicitly. You do not need to find β_{1} and β_{3}.
6. Let $u_{1}=\left[\begin{array}{r}1 \\ -1 \\ 2 \\ 2\end{array}\right], u_{2}=\left[\begin{array}{r}1 \\ -1 \\ 2 \\ -3\end{array}\right]$, and $y=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$. (Note that $\left\{u_{1}, u_{2}\right\}$ is an orthogonal set.)
(a) Find the vector in $\operatorname{Span}\left\{u_{1}, u_{2}\right\}$ that is closest to y.
(b) Find the distance from y to $\operatorname{Span}\left\{u_{1}, u_{2}\right\}$.
7. True or False?
(a) The orthogonal projection of a vector $y \in \mathbb{R}^{n}$ onto a subspace W gives the vector in W closest to y.
(b) Let U be an $n \times n$ matrix. If the columns of U form an orthonormal set, so do the rows of U.
(c) If the columns of an $n \times n$ matrix are linearly independent, then $A^{T} A$ is invertible.
(d) The set of all vectors in \mathbb{R}^{3} that are orthogonal to a fixed nonzero vector $u \in \mathbb{R}^{3}$ is a 2dimensional subspace of \mathbb{R}^{3}.
