MAS 3105-2

(a) Find the characteristic polynomial and the eigenvalues of A.

(b) For each eigenvalue of A, find a basis for the corresponding eigenspace.

2. Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & -1 & -2 \\ -1 & 1 & 0 \\ 2 & 0 & 2 \end{bmatrix}$$
.

(a) Find a basis for the orthogonal complement, $(\operatorname{Col} A)^{\perp}$, of the column space of A.

(b) Find an orthogonal basis for $(\operatorname{Col} A)^{\perp}$.

3. Find an orthonormal basis for the subspace of \mathbb{R}^4 spanned by the vectors u_1, u_2, u_3 , where $\begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$

$$u_1 = \begin{bmatrix} 2\\0\\1 \end{bmatrix}, u_2 = \begin{bmatrix} -1\\2\\0 \end{bmatrix}$$
 and $u_3 = \begin{bmatrix} -4\\4\\-1 \end{bmatrix}$.

4. Let
$$Q = \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \\ 1/2 & -1/2 \\ 1/2 & 1/2 \end{bmatrix}$$
, $R = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix}$ and $b = \begin{bmatrix} -1 \\ 2 \\ 0 \\ 3 \end{bmatrix}$. If $A = QR$ is the QR-factorization of

A, find the least-squares solution of Ax = b and the orthogonal projection \hat{b} of the vector b onto Col(A), without computing the matrix A explicitly.

5. Consider the data set $D = \{(-2, 1), (0, 2), (1, 3), (2, 3)\} \subset \mathbb{R}^2$.

(a) Find the equation of the least-squares line $y = \beta_0 + \beta_1 x$ for the data.

(b) Describe the model that produces a least-squares fit by a function of the form $y = \beta_1 x + \beta_3 x^3$. Find the design matrix X, the parameter vector β , and the observation vector y explicitly. You do not need to find β_1 and β_3 .

6. Let
$$u_1 = \begin{bmatrix} 1 \\ -1 \\ 2 \\ 2 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} 1 \\ -1 \\ 2 \\ -3 \end{bmatrix}$, and $y = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$. (Note that $\{u_1, u_2\}$ is an orthogonal set.)

(a) Find the vector in Span $\{u_1, u_2\}$ that is closest to y.

(b) Find the distance from y to Span $\{u_1, u_2\}$.

7. True or False?

- (a) The orthogonal projection of a vector $y \in \mathbb{R}^n$ onto a subspace W gives the vector in W closest to y.
- (b) Let U be an $n \times n$ matrix. If the columns of U form an orthonormal set, so do the rows of U.
- (c) If the columns of an $n \times n$ matrix are linearly independent, then $A^T A$ is invertible.
- (d) The set of all vectors in \mathbb{R}^3 that are orthogonal to a fixed nonzero vector $u \in \mathbb{R}^3$ is a 2-dimensional subspace of \mathbb{R}^3 .