MAS 3105-1

Spring 2005

1. Is the matrix $A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & -1 \end{bmatrix}$ diagonalizable? Explain!

2. Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & -1 & -2 \\ -1 & 1 & 0 \\ 2 & 0 & 2 \end{bmatrix}$$

(a) Find a basis for the orthogonal complement, $(\operatorname{Col} A)^{\perp}$, of the column space of A.

(b) Find an orthogonal basis for $(\operatorname{Col} A)^{\perp}$.

3. Find an orthonormal basis for the subspace of \mathbb{R}^4 spanned by the vectors u_1, u_2, u_3 , where $\begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$

$$u_{1} = \begin{bmatrix} 2\\0\\1 \end{bmatrix}, u_{2} = \begin{bmatrix} -1\\2\\0 \end{bmatrix} \text{ and } u_{3} = \begin{bmatrix} -4\\4\\-1 \end{bmatrix}.$$
4. Let $Q = \begin{bmatrix} 1/2 & -1/2\\1/2 & 1/2\\1/2 & -1/2\\1/2 & 1/2 \end{bmatrix}, R = \begin{bmatrix} 2 & 3\\0 & 5 \end{bmatrix} \text{ and } b = \begin{bmatrix} -1\\2\\0\\3 \end{bmatrix}.$ If $A = QR$ is the QR factorization of

A, find the least-squares solution of Ax = b and the orthogonal projection \hat{b} of the vector b onto Col(A), without computing the matrix A explicitly.

5. Consider the set of data $D = \{(-2, 1), (0, 2), (1, 3), (2, 3)\} \subset \mathbb{R}^2$.

(a) Find the equation of the least-squares line $y = \beta_0 + \beta_1 x$ that best fits the data.

(b) Describe the model that produces a least-squares fit of the data by a function of the form $y = \beta_1 x + \beta_3 x^3$. Find the design matrix X, the parameter vector β , and the observation vector y explicitly.

6. Let
$$u_1 = \begin{bmatrix} 1 \\ -1 \\ 2 \\ 2 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} 1 \\ -1 \\ 2 \\ -3 \end{bmatrix}$, and $y = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$. (Note that $\{u_1, u_2\}$ is an orthogonal set.)

(a) Find the vector in Span $\{u_1, u_2\}$ that is closest to y.

(b) Find the distance from y to Span $\{u_1, u_2\}$.

7. Let $Q(x) = 2x_1^2 - 4x_1x_2 + 5x_2^2$.

(a) Find a symmetric matrix A such that $Q(x) = x^T A x$, for every $x \in \mathbb{R}^2$, and an orthogonal matrix P that orthogonally diagonalizes A.

(b) Is the curve Q(x) = 3 an ellipse or a hyperbola?

- 8. True or False?
 - (a) The orthogonal projection of a vector $y \in \mathbb{R}^n$ onto a subspace W gives the vector in W closest to y.

- (b) Let U be an $n \times n$ matrix and I_n the $n \times n$ identity matrix. If $U^T U = I_n$, then $UU^T = I_n$.
- (c) A set of linearly independent eigenvectors of a symmetric matrix must be orthogonal.
- (d) The set of all vectors in \mathbb{R}^3 that are orthogonal to a fixed nonzero vector $u \in \mathbb{R}^3$ is a 2-dimensional subspace of \mathbb{R}^3 .