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Abstract. Motivated by interpolation problems arising in image anal-
ysis, computer vision, shape reconstruction and signal processing, we
develop an algorithm to simulate curve straightening flows under which
curves in Rn of fixed length and prescribed boundary conditions to first
order evolve to elasticae, i.e., to (stable) critical points of the elastic
energy E given by the integral of the square of the curvature function.
We also consider variations in which the length L is allowed to vary and
the flows seek to minimize the scale-invariant elastic energy Einv, or the
free elastic energy Eλ. Einv is given by the product of L and the elastic
energy E, and Eλ is the energy functional obtained by adding a term
λ-proportional to the length of the curve to E. Details of the imple-
mentations, experimental results, and applications to edge completion
problems are also discussed.

1. Introduction

Many applications in signal processing, image analysis, shape reconstruc-
tion, and computer vision require interpolation tools in a Riemannian mani-
fold X. One often encounters a collection of points in X, or curves in X with
some “missing” pieces, and would like to interpolate curves between them
using a set criterion such as the minimization of a (total) cost function that
could be given, say, by an energy functional. In this paper, we investigate
interpolations based on various elastic energy functionals, to be discussed
below. The elastic energy was considered as early as 1738 by D. Bernoulli
and investigated by Euler [5].

As an example, in the problem of recognizing objects in a given image,
the extraction and use of edges or contours present in the image play an
important role. If an object of interest is partially obscured by some others,
an important task is to interpolate between the visible edges of the object to
complete the hidden contours. In [12], Mumford showed that in the planar
case – under a certain Brownian prior for edges – the most likely curves to
arise are the ones that are critical points of the (free) elastic energy.
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As another example, there is a growing literature on representing images
of particular types – such as facial images – as elements of a high-dimensional
“image manifold” and using the underlying topology and geometry for image
analysis. One idea is to represent images as points in an Euclidean space and
locally fit low-dimensional subspaces to images that are clustered together
[15]. Each cluster of images is then represented by an element of a real
Grassmann manifold G. Interpolation techniques in this manifold can be
used to predict properties of unobserved images. For instance, given images
of an object taken from azimuthal angles in the [0, 3π/2] range, interpolation
in G will allow us to predict properties of its image from the angle 7π/4.

The reconstruction of 3D shapes from a series of 2D cross-sections can be
viewed as an interpolation problem between points in an infinite-dimensional
function space. Jones and Chen [6] represent the contours of the 2D cross-
sections as functions using the associated distance fields and use linear inter-
polations to obtain a function with a 3D domain. The contour of the original
3D shape is reconstructed as an isosurface of this function. Alternative in-
terpolation techniques yield variants of this construction that may produce
smoother shapes and incorporate important additional features such as the
dependence of the interpolating surfaces on more than two adjacent slices,
thus yielding reconstructions that take into account more information about
the overall shape of the objects.

In this paper, we study interpolations in Euclidean spaces. We take a
geometric approach that, in principle, will apply to general Riemannian
manifolds, as the qualitative results of [11] indicate. In this preliminary
discussion, we assume that all curves are smooth. The actual class to be
considered will be made precise later. Let α : [a, b] → Rn be a curve param-
eterized by arc length, i.e., satisfying ‖α′(s)‖ = 1, for every s ∈ [a, b]. The
curvature of α at s is given by κ(s) = ‖α′′(s)‖ and the elastic energy E of
α is defined by

E(α) =
1
2

∫ b

a
κ2(s) ds.

Among all smooth curves α of a given fixed length L satisfying prescribed
boundary conditions to first order, we are interested in those that are critical
points of the energy functional E. These curves are known as elasticae. After
scaling, we may assume that L = 1. Hence, we consider curves α : I → Rn

parametrized by arc length, where I = [0, 1]. More precisely, given two
points p0, p1 ∈ Rn with ‖p1 − p0‖ < 1 and unit vectors v0, v1 ∈ Rn, we
are interested in the (stable) critical points of the functional E restricted to
curves α : I → Rn satisfying α(i) = pi and α′(i) = vi, for i = 0, 1. If ‖p1 −
p0‖ = 1, then a solution exists if and only if v0 = v1 = (p1 − p0)/‖p1 − p0‖,
and is given by a straight line segment.

Associated with α, there is a tangent indicatrix or direction function
v : I → Sn−1 ⊂ Rn given by v(s) = α′(s), as illustrated in Figure 1. The
elastic energy of α can be expressed as E = 1

2

∫ 1
0 vs · vs ds .
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Figure 1. The direction function associated with a curve in R3.

Curves with α(0) = p0 are determined by their direction functions via the
expression α(s) = p0 +

∫ s
0 v(u) du. The boundary conditions on α can be

rephrased as v(0) = v0, v(1) = v1 and
∫ 1
0 v(s) ds = d, where d = p1 − p0 is

the total displacement of α. This last condition ensures that the end point
of the curve α is p1.

We treat E as an energy functional defined on mappings v : I → Sn−1

and consider its restriction to the infinite-dimensional manifold M formed
by direction functions satisfying the three constraints above. We are inter-
ested in the flow on M associated with the negative gradient field −∇ME.
Flows that seek to minimize the elastic energy efficiently are known as curve
straightening flows. We take a computational approach and our main goal is
to develop an algorithm to simulate the flow on M associated with −∇ME,
whose flow lines approach elasticae asymptotically.

We also consider variations of this problem in which curves satisfy identi-
cal boundary conditions, but the length is allowed to vary. In this context,
we consider two types of energy functionals:

(i) the scale-invariant elastic energy Einv = L ·E, where L denotes the
length of the curve;

(ii) the free elastic energy Eλ = E + λL, where λ > 0.

Critical points of these functionals are known as scale-invariant elasticae
and free elasticae, respectively. Notice that as the value of the parameter λ
increases, the contribution of the length L to the free elastic energy becomes
more pronounced, so that it is natural to expect that elasticae minimizing
Eλ will start to resemble straight lines. This is illustrated by experiments
described in Section 6. The scale-invariant energy was introduced in [18, 1].

Energy minimizing elasticae are determined by first order boundary con-
ditions. Therefore, when used as interpolating curves, they disregard many
geometric properties of the curves to be completed which may be relevant to
a specific set of problems. One potential advantage of the present geometric
approach to curve straightening flows is that it is, in principle, possible to
incorporate further geometric restrictions on the curves under consideration
to reflect the known history of the curve we are trying to complete. This
problem will be investigated in a future paper.
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For closed curves, the qualitative properties of the flow in Rn associated
with−∇ME have been investigated by Langer and Singer [10]. In particular,
they study the stability of closed elasticae in Rn and establish the long-term
existence of flow lines. The arguments can be easily adapted to show long-
time existence of flow lines in the more general case. Variants of this flow
use different spaces of curves and metrics. For closed curves, they have
been studied in the planar case by Wen [20] and Koiso [8], and by Dziuk,
Kuwert and Schätzle in Rn [3], using different techniques. The investigation
of elasticae was pioneered by Euler [5] in his work on elastic properties of
rods. The reader may consult [17] for a survey of early developments. More
recent studies also include work by Bryant and Griffiths [2], Langer and
Singer [9, 11], Jurdjevic [7], and Mumford [12]. Other references can be
found in the aforementioned articles.

This paper is organized as follows. In Section 2, we study the geometric
properties of the manifoldM which will be needed in the development of our
algorithms. Section 3 is devoted to the calculation of the gradient field on
M associated with E. In Section 4, we present the implementation details
in the length constrained case and some experimental results. The reader
will notice that many standard numerical calculations employed in Section 4
can be easily modified for more efficiency or accuracy. Our intention was to
keep the details as simple as possible to not obscure the main argument. In
Sections 5 and 6, we extend the results to elastic curves of variable length.
In the last section, we discuss applications to edge completion problems.

2. A moduli space of curves

For technical reasons, instead of working only with smooth functions,
we consider the vector space H of all absolutely continuous functions with
square integrable derivatives, i.e., the collection of all functions f : I → Rn

whose derivatives exist almost everywhere and
∫ 1
0 ‖f

′(s)‖2 ds is well defined.
Define an inner product on H by

〈f, g〉1 = f(0) · g(0) +
∫ 1

0
f ′(s) · g′(s) ds.

We use the symbol · to denote the standard inner product on Rn and 〈 , 〉1 for
the inner product on H. The inner product 〈 , 〉1 has properties analogous to
the perhaps more familiar Sobolev inner product

∫ 1
0 f(s) ·g(s) ds+

∫ 1
0 f

′(s) ·
g′(s) ds, but it better suits our calculations. H equipped with this inner
product is an infinite dimensional Hilbert space.

2.1. The manifold C. Let C be the collection of all absolutely continuous
functions v : I → Sn−1 ⊂ Rn with square integrable derivative as a function
into Rn. C can be naturally viewed as a metric subspace of H and is known
to be a smooth infinite dimensional manifold. For most purposes, the reader
may think of elements of C as smooth maps.
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In order to describe the tangent vectors to the manifold C at v0 : I → Sn−1,
we first recall how this can be done for a finite dimensional manifoldM ⊆ RN

such as a smooth surface in R3. If p ∈M , any element w of the tangent space
TpM can be written as a velocity vector w = α′(0), where α : (−ε, ε) → M
is a smooth path in M with α(0) = p. We do the same in C. If v0 ∈ C, a
small path in C through v0 is known as a variation of v0. More precisely, a
variation of v0 is a map v : I × (−ε, ε) → Sn−1 such that:

(a) v(s, 0) = v0(s), for every s ∈ I;
(b) the time t map vt : I → Sn−1 given by vt(s) = v(s, t) is in C, ∀t ∈

(−ε, ε);
(c) the map (−ε, ε) → C given by t 7→ vt is smooth.

Any tangent vector f to the manifold C at v0 can be described as the
time derivative of a variation of v0 at t = 0. Therefore, f(s) = vt(s, 0) ∈
Tv(s)Sn−1, for every s ∈ I. As we let s vary, we obtain an absolutely contin-
uous (tangent) vector field with square integrable derivative on Sn−1 along
the curve v0. Hence, we will use the expressions tangent vector to C at v0
and vector field on Sn−1 along v0 interchangeably.

A vector field f along v ∈ C may be viewed as a map f : I → Rn with the
property that f(s) ⊥ v(s), for every s.

Definition 2.1. The covariant derivative Df of f along v is the vector field
along v obtained by projecting the usual derivative of f at s orthogonally
onto the tangent space of Sn−1 at v(s), for every s. One may interpret Df
as the derivative of f from a viewpoint intrinsic to the sphere. A vector
field f along v is said to be parallel if Df ≡ 0. Parallel fields along curves
in Sn−1 are the spherical analogues of constant vector fields along curves in
Rn.

Now, we introduce a Riemannian structure on C, i.e., we define an inner
product on each tangent space TvC that varies smoothly on C. Instead of
using the inner product that TvC inherits from H, we use a variant of 〈 , 〉1
that is intrinsic to C. Let f, g be vector fields on Sn−1 along v. The inner
product of f and g is defined by

〈f, g〉 = f(0) · g(0) +
∫ 1

0
Df(s) ·Dg(s) ds.

The manifold C is complete with respect to the metric 〈 , 〉 since C includes all
absolutely continuous curves v : I → Sn−1 with square integrable derivative.

2.2. The moduli space M. As discussed in Section 1, we are interested
in direction functions satisfying the constraints v(0) = v0, v(1) = v1 and∫ 1
0 v(s) ds = d. Therefore, we define a map φ : C → Sn−1 × Sn−1 × Rn by

φ(v) =
(
φ1(v), φ2(v), φ3(v)

)
= (v(0), v(1),

∫ 1

0
v(s) ds),
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and let M = φ−1(a), where a = (v0, v1, d). If ‖d‖ < 1, M is non-empty
and consists of the absolutely continuous maps v : I → Sn−1 with square
integrable derivative satisfying the desired constraints.

Remark 2.2. The functions f 7→ f(0) and f 7→ f(1) that evaluate f at the
end points are not continuous on the space of all square integrable functions
with the usual L2-norm. This is one of the reasons why we consider absolute
continuous functions and use the inner products 〈 , 〉1 and 〈 , 〉 on H and TvC,
respectively.

A geometric argument outlined below shows that dφv : TvC → Tφ1(v)Sn−1×
Tφ2(v)Sn−1 × Rn is surjective, for any v ∈ C. Therefore, if ‖d‖ < 1, M is a
submanifold of C of codimension 3n − 2. Here is a sketch of the argument.
Let α : I → Rn be a curve such that α′(s) = v(s) and α(0) = p0. Given 0 6=
w1 ∈ Tφ1(v)Sn−1, we construct a variation of v such that dφv(f) = (w1, 0, 0),
where f = vt(s, 0). Let Ot(v(0), w1) be the orthogonal transformation of Rn

which rotates the plane v(0)− w1 by an angle t‖w1‖ and is the identity on
its orthogonal complement. Let Rt = Rt(p0, v(0), w1) be the corresponding
rotation of Rn centered at p0. Then, a variation of α which coincides with
Rt in a small neighborhood of α(0) and is the identity on a neighborhood
of α(1) will induce a variation of v with the desired properties. Similarly,
we show that any vector of the form (0, w2, 0) is in the image of dφv. To
conclude, consider vectors of the form (0, 0, w3) with w3 ∈ Rn. In this case,
it suffices to consider a variation of α which coincides with translations of Rn

by tw3 in a small neighborhood of α(1) and is the identity on a neighborhood
of α(0).

Let f be a vector field representing a tangent vector to M at v. Then,
f can be written as f(s) = vt(s, 0), where v(s, t) is a variation satisfying
the constraints v(0, t) = v0, v(1, t) = v1 and

∫ 1
0 v(s, t) ds = d, for every t.

Differentiating these with respect to t at t = 0, we obtain the corresponding
constraints on f and conclude that f is tangent to M at v if and only if
f(0) = 0, f(1) = 0 and

∫ 1
0 f(s) ds = 0.

2.3. The derivative of φ. We now compute the derivative of φ explicitly.
This will allow us to rewrite the three conditions on f in terms of the inner
product 〈 , 〉. In particular, we will be able to exhibit a basis for the fiber of
the normal bundle of M in C at v and calculate the gradient of the elastic
energy functional E on M. The following well-known lemma on covariant
integration will be needed in our argument.

Lemma 2.3. Let f(s) be a square integrable vector field on Sn−1 along the
curve v : I → Sn−1, v ∈ C. Given a tangent vector F0 to Sn−1 at the point
v(0), there is a unique absolutely continuous vector field F (s) on Sn−1 along
v with square integrable derivative such that F (0) = F0 and DF (s) = f(s),
almost everywhere.

Proof. We only present a proof of the lemma in the smooth case, since the
differential equation that yields the solution will be used in our simulations.
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Viewing F as a map into Rn, we can rewrite the differential equationDF = f
as

(2.1) F ′(s) = f(s) + a(s)v(s),

where a(s) is a scalar function to be determined. For a solution F of Equa-
tion 2.1 to induce a vector field on Sn−1, we must have F (s) · v(s) = 0, for
every s. Differentiating this, we obtain F ′(s) · v(s) + F (s) · v′(s) = 0, or,
F ′(s) · v(s) = −F (s) · v′(s). Hence, we must have

−F (s) · v′(s) = F ′(s) · v(s) = (f(s) + a(s)v(s)) · v(s) = a(s).

Therefore, Equation 2.1 can be written as

F ′(s) = −
(
v′(s) · F (s)

)
v(s) + f(s),

which is a non-homogeneous linear equation and therefore admits a unique
global solution for any given initial condition. �

2.3.1. The derivative of φ1. Let f be a tangent vector to C at v. Write
f(s) = vt(s, 0), where v(s, t) is a variation of v. Here, we are abusing
notation and calling the variation v as well. Differentiating φ1(v(s, t)) =
v(0, t) with respect to t at t = 0, we obtain

dφ1
v(f) = vt(0, 0) = f(0).

We wish to write f(0) in terms of the inner product 〈 , 〉. Let {e10, e20, . . . , e
n−1
0 }

be an orthonormal basis of Tv(0)Sn−1. Abusing notation, for i = 1, . . . , n−1,
let ei0(s) denote the unique parallel field along v with ei0(0) = ei0. (It is well-
known that {e10(s), e20(s), . . . , e

n−1
0 (s)} is an orthonormal basis of Tv(s)Sn−1,

for every s ∈ I.) Then, we can write

dφ1
v(f) = f(0) =

n−1∑
i=1

(
f(0) · ei0(0)

)
ei0(0) =

n−1∑
i=1

〈
f, ei0

〉
ei0(0).

This is the desired expression for dφ1
v in terms of 〈 , 〉.

2.3.2. The derivative of φ2. In order to compute dφ2
v(f) = f(1), we express

it in the orthonormal basis {e10(1), e20(1), . . . , en−1
0 (1)} of Tv(1)Sn−1 as

f(1) =
n−1∑
i=1

(
f(1) · ei0(1)

)
ei0(1).

We write the coefficients f(1) · ei0(1) as follows:

f(1) · ei0(1)− f(0) · ei0(0) =
∫ 1

0

d

ds

(
f(s) · ei0(s)

)
ds

=
∫ 1

0
Df(s) · ei0(s) ds

=
〈
f, sei0

〉
.

(2.2)
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Here, we used the fact that ei0(s) is parallel, and D(sei0)(s) = ei0(s). This
implies that

f(1) · ei0(1) = f(0) · ei0(0) +
〈
f, sei0

〉
=
〈
f, ei0

〉
+
〈
f, sei0

〉
=
〈
f, ei0 + sei0

〉
.

Hence,

(2.3) dφ2
v(f) = f(1) =

n−1∑
i=1

〈
f, ei0 + sei0

〉
ei0(1).

2.3.3. The derivative of φ3. Since φ3(v) =
∫ 1
0 v(s) ds, we have that

dφ3
v(f) =

∫ 1

0
f(s) ds.

Let {e11, e21, . . . , en1} be an orthonormal basis of Rn. For each s ∈ I, project
ej1 orthogonally onto the tangent space of Sn−1 at v(s) to obtain vector fields
ej(s) on Sn−1 along v. Write f(s) as

f(s) =
n∑
j=1

(
f(s) · ej1

)
ej1 =

n∑
j=1

(f(s) · ej(s)) ej1.

Then,

(2.4) dφ3
v(f) =

∫ 1

0
f(s) ds =

n∑
j=1

(∫ 1

0
f(s) · ej(s) ds

)
ej1.

Let Ej(s) be the (unique) vector field along v such that DEj(s) = ej(s)
and Ej(0) = 0. The existence of Ej is guaranteed by Lemma 2.3. Integrating
by parts, we obtain∫ 1

0
f(s) · ej(s) ds = (f(s) · Ej(s))

∣∣1
0
−
∫ 1

0
Df(s) · Ej(s) ds

= f(1) · Ej(1)−
∫ 1

0
Df(s) · Ej(s) ds

= f(1) · Ej(1)− 〈f, εj〉,

(2.5)

where εj(s) is the vector field along v satisfying Dεj(s) = Ej(s) and εj(0) =
0. By Equation 2.3,

f(1) =
n−1∑
k=1

〈
f, ek0 + sek0

〉
ek0(1).

Therefore,

f(1) · Ej(1) =
n−1∑
k=1

〈
f, ek0 + sek0

〉(
ek0(1) · Ej(1)

)
.
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Using this in (2.5), we obtain∫ 1

0
f(s) · ej(s) ds =

n−1∑
k=1

〈
f, ek0 + sek0

〉(
ek0(1) · Ej(1)

)
− 〈f, εj〉

=

〈
f,

n−1∑
k=1

ajk(ek0 + sek0)

〉
− 〈f, εj〉

=

〈
f,

(
n−1∑
k=1

ajk(ek0 + sek0)

)
− εj

〉
,

(2.6)

where ajk = ek0(1) · Ej(1). Hence, by Equation 2.4,

dφ3
v(f) =

n∑
j=1

〈
f,

(
n−1∑
k=1

ajk(ek0 + sek0)

)
− εj

〉
ej1.

We summarize our calculations in the following proposition.

Proposition 2.4. Let v ∈ C, and let f(s) be a vector field on Sn−1 along v.
If hj =

(∑n−1
k=1 ajk(e

k
0 + sek0)

)
− εj, 1 ≤ j ≤ n, then

dφ1
v(f) =

n−1∑
i=1

〈
f, ei0

〉
ei0(0); dφ2

v(f) =
n−1∑
i=1

〈
f, ei0 + sei0

〉
ei0(1);

dφ3
v(f) =

n∑
i=1

〈f, hj〉 ej1.

Theorem 2.5. The map φ : C → Sn−1 × Sn−1 × Rn has the property that
dφv : TvC → Tφ1(v)Sn−1 × Tφ2(v)Sn−1 × Rn is surjective, for any v ∈ C. If
v0, v1 ∈ Sn−1, d ∈ Rn and ‖d‖ < 1, then the moduli spaceM = M(v0, v1, d) =
φ−1(v0, v1, d) is a (framed) submanifold of C of codimension 3n− 2. More-
over, the vector fields ei0, se

i
0, 1 ≤ i ≤ n−1, and εj, 1 ≤ j ≤ n, form a basis

of the orthogonal complement Nv of the kernel of dφv in TvC. In particular,
for any v ∈M, these vectors form a basis of the fiber of the normal bundle
of M in C.

Proof. It only remains to show that the vector fields ei0(s), se
i
0(s) and εj(s)

span Nv. By Proposition 2.4, a vector field f on Sn−1 along v is in the kernel
of dφv if and only if the following conditions are satisfied:

(i) 〈f, ei0〉 = 0, for i = 1, . . . , n− 1;
(ii) 〈f, ei0 + sei0〉 = 0, for i = 1, . . . , n− 1;
(iii) 〈f, hj〉 = 0, for j = 1, . . . , n.

Therefore, the vector fields ei0, e
i
0 + sei0 and hj =

∑n−1
k=1 ajk(e

k
0 + sek0) − εj

span Nv. Since these span the same linear subspace of TvC as ei0, se
i
0 and

εj , the result follows. �
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3. The gradient of the elastic energy

As a functional on C, the elastic energy E of v : I → Sn−1 can be expressed
as

(3.1) E(v) =
1
2

∫ 1

0
vs · vs ds.

We are interested in the gradient of E restricted to the moduli space M.
Given a tangent vector f to C at v, we write it as f(s) = vt(s, 0), for some
variation v. Differentiating (3.1), we obtain

(3.2) dE(f) =
∫ 1

0
vs · vst ds =

∫ 1

0
vs · fs ds =

∫ 1

0
vs ·Df ds

The last equality comes from the fact that vs is tangent to Sn−1 at v(s).
Let Y (s) be a vector field on Sn−1 along v such that DY = vs and

Y (0) = 0, whose existence is guaranteed by Lemma 2.3. Then, we can write
Equation 3.2 as

(3.3) dE(f) =
∫ 1

0
DY ·Df ds = 〈Y, f〉.

We view Y as a tangent vector to C at v. If v ∈M and f ∈ TvM, let X be
the orthogonal projection of Y onto TvM. Then, dE(f) = 〈Y, f〉 = 〈X, f〉 .
Therefore,

(3.4) ∇ME(s) = X(s),

i.e., the vector field X along v is the gradient of E : M→ R at v.
We are interested in the flow on M associated with the negative gradient

field −∇ME. Flows of this type that seek to minimize the elastic energy
efficiently are known as curve straightening flows. For closed curves (with
p0 = p1 and v0 = v1), a qualitative analysis was carried out by Langer and
Singer in [10]. They show that the energy functional E satisfies a property
known as the Palais-Smale condition [13, 14] which, among other things,
guarantees the long-term existence of flow lines. The arguments can be
easily adapted to show that the same is true in the more general setting.

4. Algorithms and Experimental Results

We take a computational approach to finding the optimal curves given
by limiting elasticae. In our simulations, we start with a curve in C, project
it onto M so that the constraints v(0) = v0, v(1) = v1 and

∫ 1
0 v(s) ds

are satisfied, and let it evolve under the flow associated with the negative
gradient field −∇ME. First order local approximations to flow lines are
used so that they may move points slightly off the manifold M. To account
for this, projections back onto M are used at each step. There are two main
computational tasks involved:
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(i) to project paths v ∈ C onto the manifold M to initialize the process
and keep the flow lines in M;

(ii) to compute the gradient vectors ∇ME for the updates.

We now describe the details of the implementation. To represent a di-
rection function v : I → Sn−1 on a digital computer, we divide the interval
[0, 1] into T equal segments of size ∆ = 1/T and use a discretized version of
v ∈ C given by {ṽ(s), s = 0, 1, . . . , T}. We adopt this convention in general:
given a function α defined on the interval I, α̃ will denote its discretization.

4.1. Integrating Vector Fields. Given a vector field f along v, Lemma
2.3 gives a vector field F along v such that DF = f and F (0) = F0. We use
the following discretized computation:

(4.1) F̃ (s+ 1) = F̃ (s) + ∆(f̃(s)− (ṽs · F̃ (s))ṽ(s)).

The vector field ṽs is computed using ṽs(s) = (ṽ(s+1)− ṽ(s))/∆. Equation
4.1 is used to compute the discretized vector fields Ẽj , j = 1, . . . , n and
ε̃j , j = 1, . . . , n.

4.2. Computation of the Jacobian. To project a curve v ∈ C onto M,
we use the derivative dφv restricted to the (3n − 2)-dimensional subspace
Nv orthogonal to the kernel of dφv. Proposition 2.4 shows how to compute
the Jacobian matrix J using the basis of Nv formed by the vectors ẽk0, sẽ

k
0

and ε̃j , where 1 ≤ k ≤ n − 1 and 1 ≤ j ≤ n. For the tangent space
Tφ(v)(Sn−1 × Sn−1 × Rn) = Tφ1(v)Sn−1 × Tφ2(v)Sn−1 × Rn, we use the basis
formed by (ek0(0), 0, 0), (0, ek0(1), 0) and the standard basis of Rn.

For k = 1, . . . , n− 1 and i, j = 1, . . . , n, define the following scalars:

ajk = ẽk0(T ) · Ẽj(T );

bjk =
∫ 1

0
ek0(s) · Ej(s)ds ∼ ∆

(
T−1∑
s=0

ẽk0(s) · Ẽj(s)

)
;

cij =
∫ 1

0
Ei(s) · Ej(s)ds ∼ ∆

(
T−1∑
s=0

Ẽi(s) · Ẽj(s)

)
.

Both a = (ajk) and b = (bjk) are n × (n − 1) matrices, and c = (cij) is an
n × n matrix. In this notation, the Jacobian J is given by the following
(3n− 2)× (3n− 2) matrix:

(4.2) J =

 In−1 0 0
In−1 In−1 bT

a a− b abT − c

 .
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4.3. Projecting a path v onto M. One of our tasks is to start with a
point v ∈ C and iteratively project it onto the manifold M. Recall that φ
maps C to the space Sn−1 × Sn−1 × Rn, while dφv maps the tangent space
Tv(C) to the tangent space Tφ(v)(Sn−1× Sn−1×Rn), as illustrated in Figure
2.

φ

dφ−1

v φ(v)

Figure 2. φ maps the manifold C to Sn−1 × Sn−1 × Rn,
while dφv maps the tangent space Tv(C) onto the tangent
space Tφ(v)(Sn−1 × Sn−1 × Rn).

The basic idea is to evaluate φ(v) and check how far it is from the desired
value a = (v0, v1, d) by computing the error vector w = (w1, w2, w3) ∈
Tφ(v)(Sn−1 × Sn−1 × Rn), characterized by the following properties:

(a) for i = 1, 2, if we travel ‖wi‖ units of length along the great circle
on Sn−1 starting at φi(v) in the direction of wi, we reach the point
vi−1;

(b) w3 = d− φ3(v).

Then, we pull back this error vector w to Nv ⊂ TvC under J to determine
how to move v in C, to first order. The vector w is computed as follows:

w1 = cos−1(v0 · ṽ(0))
u0

‖u0‖
, u0 = (v0 − ṽ(0))− ((v0 − ṽ(0)) · ṽ(0))ṽ(0);

w2 = cos−1(v1 · ṽ(T ))
u1

‖u1‖
, u1 = (v1 − ṽ(T ))− ((v1 − ṽ(T )) · ṽ(T ))ṽ(T );

w3 = (d−
∫ 1

0
v(s)ds) ∼ d−∆

(
T−1∑
s=0

ṽ(s)

)
.

Let γ = (γ1, . . . , γ3n−2) be the (3n − 2)-tuple consisting of the coordinates
of w in the orthonormal basis formed by the vectors ek0(0), ek0(1) and the
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standard basis of Rn, where 1 ≤ k ≤ n− 1. The scalars γi are given by:

γi = w1 · ẽi0(0), i = 1, . . . , n− 1;

γn−1+i = w2 · ẽi0(T ), i = 1, . . . , n− 1;

γ2n−2+i = w3(i), i = 1, . . . , n.

(4.3)

4.4. Updating the Curve v. Let β = J−1(γ), and define d̃v ∈ TvC by

d̃v(s) =
n−1∑
i=1

βiẽ
i
0(s) +

n−1∑
i=1

βn−1+is̃e
i
0(s) +

n∑
i=1

β2n−2+iε̃i(s).

To update v, as a first order approximation to geodesics in C, for each
s ∈ {0, . . . , T}, we follow ‖d̃v(s)‖ units of length along the great circle on
Sn−1 starting at v(s) in the direction of the vector d̃v(s), as illustrated in
Figure 3. If d̃v(s) 6= 0, the update is computed as follows:

(4.4) ṽnew(s) = cos(‖d̃v(s)‖)ṽ(s) +
sin(‖d̃v(s)‖)
‖d̃v(s)‖

d̃v(s).

Figure 3. The arrow represents the tangent vector dv(s) ∈
Tv(s)Sn−1. Each v(s) is updated along a great circle.

4.5. The Gradient of E. Let Ỹ be the vector field such that DỸ = ṽs
and Ỹ (0) = 0, which can be computed using Equation 4.1. Project Ỹ
orthogonally onto Tv(M) to obtain X̃. To implement this, we first apply
Gram-Schmidt to {ẽi0, sẽi0, ε̃j} to obtain an orthonormal basis of TvC. Since
{ẽi0, sẽi0} already is an orthonormal set, it suffices to correct the collection
{ε̃j} to obtain, say, {θ̃j}. Then, the vector field X̃ is given by:

(4.5) X̃ = Ỹ −
n−1∑
i=1

〈Ỹ , ẽi0〉ẽi0 −
n−1∑
i=1

〈Y, s̃ei0〉s̃ei0 −
n∑
j=1

〈Ỹ , θ̃j〉θ̃j .

The algorithmic steps are summarized next.

Algorithm 4.1 (Projection onto M). Start with a curve ṽ that is not in
M.

(1) Compute the vector γ according to Equation 4.3.
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(2) Compute the Jacobian matrix using Equation 4.2.
(3) Compute β and update ṽ according to Equation 4.4. Go to step 1.

Algorithm 4.2 (Finding Elasticae). Start with a curve ṽ in C.
(1) Project it onto the manifold M using Algorithm 4.1.
(2) Compute the gradient vector field X̃ according to Equation 4.5.
(3) Update the curve ṽ using Equation 4.4 with X̃ replacing d̃v.
(4) Go to step 1.

Shown in Figure 4 are some examples of elasticae satisfying boundary
conditions p0, p1, v0, and v1. To initialize the gradient search, we first
randomly generate many curves in C and select the one for which ‖φ(v)−a‖
is minimal. This curve is shown in broken line in each plot. Next, we project
it onto M using the steps described earlier; this projected curve is our initial
condition and is plotted in thin lines. Finally, we perform ten iterations of
the gradient flow to reach the elastica drawn in solid line. Figure 5 shows
some examples of elasticae in R3.
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Figure 4. Elastic curves in R2: in each panel, the broken
line shows an initial curve in C, the thin line shows its projec-
tion onto M, and the solid line shows the elasticae obtained
after ten gradient iterations.

Remark 4.3. To randomly initialize the gradient search as proposed, we
need the full description of error vectors given above. However, once the
curve v is in the manifold M, the conditions v(0) = v0 and v(1) = v1 are
automatically satisfied in subsequent steps since the gradient vector X has
the property that X(0) = 0 and X(1) = 0. This means that we may assume
that the error vectors needed during the gradient search have the simpler
form (0, 0, w3).
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Figure 5. Elastic curves in R3: broken lines show initial
curves in C, thin lines show their projections onto M, and
solid lines show the elastica obtained after ten gradient iter-
ations.

5. Scale-invariant and free elasticae

We now consider the analogous problem for curves with prescribed bound-
ary conditions to first order whose lengths are allowed to vary. We only
consider curves β : I → Rn parameterized with constant speed. Thus, if the
length of β is L, ‖β′(s)‖ = L, for every s ∈ I. Let α : I → Rn be the length-
one curve obtained by scaling β by a factor 1/L so that α(s) = β(s)/L,
and let v : I → Sn−1 be the direction function of α. Given p0 ∈ Rn, if we
impose the extra condition β(0) = p0, then β(s) = p0 + L

∫ s
0 v(u) du. This

establishes a one-to-one correspondence between the curves β under consid-
eration and pairs (L, v) ∈ (0,∞) × C. If we use a logarithmic scale for the
length by writing L = ex, then β is represented by a pair (x, α) ∈ R×C via
the expression β(s) = p0 + ex

∫ s
0 v(u) du.

Given p0, p1 ∈ Rn and v0, v1 ∈ Sn−1, we are interested in curves β sat-
isfying the boundary conditions β(0) = p0, β(1) = p1, β′(0)/L = v0 and
β′(1)/L = v1. These conditions can be rephrased in terms of the pair (x, v)
as v(0) = v0, v(1) = v1 and

∫ 1
0 v(s) ds = d/ex, where d = p1−p0. Therefore,

we consider the function ψ : R× C → Sn−1 × Sn−1 × Rn given by

ψ(x, v) =
(
v(0), v(1), ex

∫ 1

0
v(s) ds

)
,
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and define N = ψ−1(v0, v1, d). We are considering R × C with the product
metric denoted ( , ). The R factor is endowed with the usual Euclidean
metric and C is equipped with the metric 〈 , 〉 defined in Section 2. Hence,
if wi ∈ R and fi is tangent to C at v, for i = 0, 1, then

((w0, f0), (w1, f1)) = w0 · w1 + 〈f0, f1〉.

The adoption of a logarithmic scale for length measurements has the virtue
of turning the domain of ψ into a complete Riemannian manifold.

We consider two types of elastic energy functionals for curves of variable
length. The scale-invariant elastic energy Einv : R× C → R given by

Einv(x, v) =
1
2

∫ 1

0
vs · vs ds,

and, for each λ > 0, the free elastic energy Eλ : R× C → R defined by

Eλ(x, v) =
1

2L

∫ 1

0
vs · vs ds+ λL

=
1

2ex

∫ 1

0
vs · vs ds+ λex.

The scale-invariant energy of a curve β is simply the elastic energy of the
associated normalized length-one curve α = (1/L)β.

The critical points of the restriction of Einv and Eλ to N – which we
also denote by Einv and Eλ – are called scale-invariant elasticae and free
elasticae, respectively.

As before, a simple geometric argument shows that dψ(x,v) is surjective.
We now compute the derivative of ψ = (ψ1, ψ2, ψ3) explicitly. Any tangent
vector to N at (x, v) is of the form (w, f), where w ∈ R and f is a vector
field on Sn−1 along v. For any point (x, v) ∈ R × C, the calculations of
Section 2 imply that

dψ1(w, f) = f(0) =
n−1∑
i=1

〈f, ei0〉 ei0(0) =
n−1∑
i=1

(
(w, f), (0, ei0)

)
ei0(0)

and

dψ2(w, f) = f(1) =
n−1∑
i=1

〈f, ei0 + sei0〉 ei0(1)

=
n−1∑
i=1

(
(w, f), (0, ei0 + sei0)

)
ei0(1).
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As in Section 2, let ej1, 1 ≤ j ≤ n, be an orthonormal basis of Rn. Differen-
tiating ψ3(x, v) = ex

∫ 1
0 v(s) ds and using Proposition 2.4, we obtain

dψ3(w, f) = exw

∫ 1

0
v(s) ds+ ex

∫ 1

0
f(s) ds

= exw
n∑
j=1

(∫ 1

0
v(s) · ej1 ds

)
ej1 + ex

n∑
j=1

〈f, hj〉 ej1

= exw

n∑
j=1

(∫ 1

0
vj(s) ds

)
ej1 + ex

n∑
j=1

〈f, hj〉 ej1

= ex
n∑
j=1

(
(w, f),

(∫ 1

0
vj(s) ds, hj

))
ej1,

where vj(s) = v(s) · ej1, hj =
(∑n−1

k=1 ajk(e
k
0 + sek0)

)
− εj and ajk = Ej(1) ·

ek0(1), for 1 ≤ j ≤ n. This completes the calculation of dψ and yields the
following analogues of Proposition 2.4 and Theorem 2.5.

Proposition 5.1. Let (x, v) ∈ R× C and (w, f) ∈ R× TvC. Then,

dψ1(w, f) =
n−1∑
i=1

(
(w, f), (0, ei0)

)
ei0(0);

dψ2(w, f) =
n−1∑
i=1

(
(w, f), (0, ei0 + sei0)

)
ei0(1);

dψ3(w, f) =
n∑
j=1

(
(w, f), ex

(∫ 1

0
vj(s) ds, hj

))
ej1.

Theorem 5.2. The map ψ : R× C → Sn−1 × Sn−1 × Rn given by

ψ(x, v) =
(
v(0), v(1), ex

∫ 1

0
v(s) ds

)
has the property that dψ(x,v) : R × TvC → Tψ1(x,v)Sn−1 × Tψ2(x,v)Sn−1 × Rn

is surjective, for any (x, v) ∈ R × C. If v0, v1 ∈ Sn−1 and d ∈ Rn, then the
moduli space N = N (v0, v1, d) = ψ−1(v0, v1, d) is a (framed) submanifold
of R × C of codimension 3n − 2. Moreover, the vectors (0, ei0), (0, sei0),
1 ≤ i ≤ n − 1, and (−

∫ 1
0 vj(s) ds, εj), 1 ≤ j ≤ n, form a basis of the

orthogonal complement of the kernel of dψ(x,v), at any (x, v) ∈ R × C. In
particular, if (x, v) ∈ N , these vectors form a basis of the fiber of the normal
bundle of N in R× C at (x, v).

We conclude this section with a calculation of the gradient of Einv : N →
R and Eλ : N → R. Let (w, f) be a tangent vector to R × C at (x, v). As
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usual, we write (w, f) = (xt, vt) at t = 0. Differentiating

Einv(x, v) =
1
2

∫ 1

0
vs · vs ds

with respect to t at t = 0, and letting Y be the field along v whose covariant
derivative is vs and Y (0) = 0, we obtain

dEinv(w, f) =
∫ 1

0
〈fs, vs〉 ds =

∫ 1

0
〈Df, vs〉 ds = 〈Y, f〉

= ((0, Y ), (w, f)) ,
(5.1)

Projecting the vector (0, Y ) orthogonally onto the tangent space of N at
(x, v), we obtain the gradient of Einv at (x, v). Similarly, differentiating

Eλ(x, v) =
1

2ex

∫ 1

0
vs · vs ds+ λex,

we obtain

dEλ(w, f) = − 1
2ex

(∫ 1

0
vs · vs ds

)
w +

1
ex

∫ 1

0
vs · fs ds+ λexw

=
(
−E(v)

ex
+ λex

)
w +

1
ex

∫ 1

0
DY ·Df ds

=
(
−E(v)

ex
+ λex

)
w +

1
ex
〈Y, f〉

=
((

−E(v)
ex

+ λex,
Y

ex

)
, (w, f)

)
,

(5.2)

The orthogonal projection of the vector(
−E(v)

ex
+ λex,

Y

ex

)
onto T(x,v)N gives the gradient of Eλ at (x, v).

6. Algorithms and Experimental Results

The computational tasks for variable length elastic curves are similar to
the ones discussed in Section 4 with a few exceptions that are listed here.

6.1. Computation of the Jacobian. In the basis of the orthogonal com-
plement N(x,v) of the kernel of dψ(x,v) formed by the vectors (0, ek0), (0, sek0)
and (−

∫
vj(s) ds, εj), the Jacobian matrix of the restriction of dψ(x,v) to

N(x,v) is given by:

(6.1) J =

 In−1 0 0
In−1 In−1 bT

exa ex(a− b) ex(abT − c− ggT )

 ,
where a, b and c are as in Section 4 and g = (gj1) is the n× 1 matrix whose
entries are given by gj1 =

∫ 1
0 vj(s) ds =

∫ 1
0 v(s) · e

j
1(s) ds. Here, we are using
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the basis of T (Sn−1 × Sn−1 × Rn) formed by ek0(0), ek0(1) and the standard
basis of Rn .

6.2. Projecting (x, v) onto N . The projection of (x, v) onto N requires
that we compute the error vector w which is done as follows:

w1 = cos−1(v0 · ṽ(0))
u)

‖u0‖
, u0 = (v0 − ṽ(0))− ((v0 − ṽ(0)) · ṽ(0))ṽ(0);

w2 = cos−1(v1 · ṽ(T ))
u1

‖u1‖
, u1 = (v1 − ṽ(T ))− ((v1 − ṽ(T )) · ṽ(T ))ṽ(T );

w3 = (d− ex
∫ 1

0
v(s)ds) ∼ d− ex∆

(
T−1∑
s=0

ṽ(s)

)
.

The vector γ is the same as in Equation 4.3.

6.3. Updating (x, v). Let β = J−1γ. Then, x is updated as follows:

(6.2) xnew = x+ dx, dx = −
n∑
i=1

β2n−2+i

(
∆

(
T∑
s=0

ṽ(s) · ei1)

))
.

The curve ṽ is updated as before using Equation 4.4.

6.4. The Gradient of Einv and Eλ. Let Ỹ be the vector field such that
DỸ = ṽs and Ỹ (0) = 0, computed using Equation 4.1. By (5.2), to obtain
∇(x,v)Eλ, we project the vector (w1, Ỹ /e

x) orthogonally onto T(x,v)N , where
w1 = −E(v)/ex + λex. Let (zi, Zi), i = 1, . . . , 3n − 2, be an orthonormal
basis of the subspace spanned by (0, ẽi0), (0, sẽ

i
0), (−

∫ 1
0 v(s) · e

j
1ds, ε̃j), which

can be obtained using the Gram-Schmidt method. Then, the gradient of Eλ
is given by

∇(x,v)Eλ = (w1,
Ỹ

ex
)−

3n−2∑
i=1

(
(w1,

Ỹ

ex
), (zi, Zi)

)
(zi, Zi).(6.3)

A similar calculation yields using (5.1)

∇(x,v)Einv = (0, Ỹ )−
3n−2∑
i=1

(
(0, Ỹ ), (zi, Zi)

)
(zi, Zi).(6.4)

6.5. Experimental results. Shown in Figure 6 are some examples of free
elasticae computed using this approach. The left panel displays the vertices
of an equilateral triangle with tangent vectors as shown. The curves repre-
sent free elasticae between these points for the values 1, 11, 41, 91 and 161
of the parameter λ. As the value of λ grows, the contribution of the length
to the energy becomes more significant and the elasticae become tighter
trying to approach the straight line segment connecting the end points, as
expected. A similar result is displayed in the middle panel for two vertically
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displaced points with horizontal tangents pointing in opposite directions.
The last panel shows an example of a free elastica in R3.
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Figure 6. Free elastic curves: (i) The left panel shows a
sequence of free elasticae connecting points in a triangle for
several values of the parameter λ. (ii) A similar result for two
vertically separated points with opposite horizontal direction
vectors. (iii) A free elastica in R3.

Figure 7 displays several stages of the evolution of a planar curve towards
a free elastica, and a plot of the corresponding evolution of the free elastic
energy.
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Figure 7. Several stages of the evolution of a planar curve
towards a free elastica, and a plot of the corresponding evo-
lution of the free elastic energy.

7. Applications to edge completion

Edge completion is an important application of elasticae to computer
vision. If objects of interest in a given image are partially obscured, an
important task is to interpolate between the visible edges to complete the
hidden contours. Boundaries, or contours, of objects provide important clues
in object recognition. The ability of the human visual system to interpolate
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between the visible edges is well documented and we would like to develop
a computational approach to such interpolations.

Shown in Figure 8 are four examples of edge completion using scale-
invariant elasticae. The left panels show images of objects whose contours
were extracted using standard edge detection procedures. The middle panels
show the same images with some parts artificially obscured. The right panels
show superpositions of the interpolating scale-invariant elasticae and the
original contours. The actual boundaries are shown in broken lines and
the completion curves are drawn using solid white lines. The boundary
conditions for the interpolating elasticae were estimated using points near
the ends of the visible edges.
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Figure 8. Edge completion using scale-invariant elasticae.

Several researchers have proposed the use of elasticae for completing par-
tially occluded edges in a statistical framework. In [12], Mumford showed
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that – under a Brownian prior for edges – the most likely curves to occur are
free elasticae. The use of scale-invariant elasticae in this context has been
proposed in [4], [19], [16]. Other references can be found in [16]. These sta-
tistical formulations are especially useful in situations where several edges
are to be completed in the same image and the right pairings of edges are not
obvious. In these probabilistic models, one generates stochastic completion
fields and selects the most likely curves for edge completion. These high
probability curves are curves of least elastic energy, which can be produced
using the algorithms developed in this paper.
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