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1. Introduction

ANR homology n-manifolds are �nite-dimensional absolute neighborhood retracts X

with the property that for every x 2 X, Hi(X;X � fxg) is 0 for i 6= n and ZZ for i =

n. Topological manifolds are natural examples of such spaces. To obtain nonmanifold

examples, we can take a manifold whose boundary consists of a union of integral homology

spheres and glue on the cone on each one of the boundary components. The resulting

space is not a manifold if the fundamental group of any boundary component is a non-

trivial perfect group. It is a consequence of the double suspension theorem of Cannon and

Edwards that, as in the examples above, the singularities of polyhedral ANR homology

manifolds are isolated. There are, however, many examples of ANR homology manifolds

which have no manifold points whatever. See [12] for a good exposition of the relevant

theory. The purpose of this paper is to begin a surgical classi�cation of ANR homology

manifolds, sometimes referred to in the sequel, simply as homology manifolds.

One way to approach this circle of ideas is via the problem of characterizing topological

manifolds among ANR homology manifolds. In Cannon's work on the double suspension

problem [6], it became clear that in dimensions greater than 4, the right transversality

hypothesis is the following (weak) form of general position.

The Disjoint Disks Property (DDP). For any � > 0 and maps f; g : D2 ! X, there

are maps f 0; g0 : D2 ! X so that d(f; f 0) < �, d(g; g0) < � and f 0(D2) \ g0(D2) = ;.

The following result is an astonishing, powerful extension of the double suspension

theorem.

Theorem (Edwards, [12]). Let Xn, n � 5, be an ANR homology manifold satisfy-

ing the DDP. If � : M ! X is a resolution of X, then � is the limit of a sequence of

homeomorphisms hi :M ! X.

1 Partially supported by an NSF grant.
2 Partially supported by a Presidential Young Investigator award.

1



Recall that resolutions are maps � : M ! X with the property that �j��1(U) :

��1(U) ! U is a homotopy equivalence for every open set U � X, where M is a topolog-

ical n-manifold. Resolutions are therefore, �ne homotopy equivalences that desingularize

homology manifolds; they were introduced by Lacher in [22]. The conclusion of Edwards'

theorem is that in the presence of the disjoint disks property, any resolution can be approxi-

mated by homeomorphisms. An important consequence is that a resolvable ANR homology

manifold of dimension � 5 is a manifold if and only if it has the DDP.

A natural question then arises: Are all homology manifolds resolvable? In other words,

is every homology manifold with the DDP a manifold? In [5], Cannon proposed the

following conjecture.

The Resolution Conjecture. Every ANR homology manifold is resolvable.

This in turn, by Edwards' theorem, implies the topological manifold characterization

conjecture.

The Characterization Conjecture. Every ANR homology manifold of dimension

� 5 with the DDP is a topological manifold.

Early results supporting these conjectures were obtained by Cannon and Bryant-Lacher

[7], when the dimension of the singular set of the homology manifold is in the stable range.

Quinn made a critical advance with the following resolution theorem.

Theorem (Quinn, [29]). There is a locally de�ned invariant {(X) 2 1+8ZZ for connected

ANR homology manifoldsX which measures the obstruction to resolution. X is resolvable,

if and only if, {(X) = 1.

The local character of Quinn's invariant implies that if X is connected and any open

subset of X is a manifold (or even just resolvable), then X is resolvable. Thus, if X is

an ANR homology manifold which is a \manifold with singularities" of any sort, then

it is resolvable. The existence problem of nonresolvable homology manifolds, however,

remained unanswered.

The main result of this paper is a systematic disproof of the Resolution Conjecture, one

that yields many positive results. Before stating our main theorem we discuss some of its

consequences.
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Let Mn be a closed, simply connected manifold, n � 6.

Corollary. Given { 2 1 + 8ZZ, there is a canonical choice of an s-cobordism class of

homology manifolds homotopy equivalent to M with resolution obstruction {.

Hence, simply connected manifolds have, via the resolution obstruction, homotopy

equivalent homology manifold parallels, one (s-cobordism class) for each { 2 1 + 8ZZ.

There is also a relative version of this result for 2-connected manifold pairs, which has

yet another corollary regarding the bordism of homology manifolds, answering a question

of David Segal.

Let 
SH
�

and 

STop
� denote the oriented bordism rings of ANR homology manifolds

and topological manifolds, respectively.

Corollary. In dimensions� 6, there is an isomorphism
SH
�

! 

STop
� [1+8ZZ] of graded

(oriented) bordism rings, where 

STop
� [1 + 8ZZ] has the monoid ring structure induced by

multiplication in 1 + 8ZZ.

One shows that every connected homology manifold is cobordant by a simply connected

bordism to a simply connected homology manifold (a well-known fact for manifolds), and

then uses the correspondence between between manifolds and homology manifolds given by

the resolution obstruction. Note that there is no analogue of connected sum; disconnected

homology manifolds whose components have di�erent local indices need not be bordant to

connected homology manifolds.

The fact that for 2-connected bordisms, the local type can be freely changed is not

without parallel in other problems in geometry and topology (see e.g. [19]). When this is

the case, it is important to considerK(�; 1) spaces. The following observation is somewhat

more elementary than the main theorem.

Proposition (Compare [16]). If X is a closed K(�; 1) homology manifold, and the

Novikov Conjecture holds for the group �, then every ANR homology manifold homotopy

equivalent to X has the same local type.

Thus, it follows from [18] that for groups of nonpositive curvature, the local type is rigid.

For example, any ANR homology manifold which is a homotopy torus is resolvable (and in

fact, by a torus). This was observed in [16]. Similar considerations give rise to (necessarily

nonsimply connected) homology manifolds not homotopy equivalent to manifolds.

The main theorem requires a certain amount of surgery theory to state. Before dis-

cussing the result in its general form, we consider a slightly weaker version, suggested by

Cappell, that supports our contention that homology manifolds are as natural as manifolds

and should be present in any complete theory of topological manifolds.
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Recall that classical surgery theory can be phrased as being the study of manifold

structures on Poincar�e spaces X. We shall consider more generally, ANR homologymanifold

structures on X. De�ne the homology manifold structure set of X, SH(X), to be the set

of equivalence classes of pairs (Y; f), where Y is a homology manifold and f : Y ! X

is a (simple) homotopy equivalence. (Y; f) and (Y 0; f 0) are equivalent if there exist an

s-cobordism (Z;Y; Y 0) of homology manifolds and a map F : Z ! X extending f and f 0.

As usual, we shall use S(X) to denote the manifold structure set of X. For objects with

boundary, where the boundary is already given the structure of a (homology) manifold,

we will write SH(X;@) for the structure set relative to the boundary.

Siebenmann observed that S(X) almost has a four-fold periodicity if X is a manifold.

See [25] for a detailed treatment explaining how a ZZ factor obstructs genuine periodicity.

Corollary. If X is a manifold, SH(X) �= SH(X �D4; @).

The right hand side of the formula is a set which consists entirely of structures with

manifold representatives, due to the rel @ condition. Thus, to get a fully periodic theory

of manifolds, we need homology manifolds to �ll in for some \missing objects". Note that

this formula fails for manifold structure sets, for example, when X = Sn.

While surgery theory is usually stated using the language of normal invariants and

surgery obstructions (see [3] and [33]), for the purposes of this paper it is more convenient

to work with a variant of the more algebraic formulation due to Ranicki [16] that makes

use of advances in controlled topology (see also [28] and [35]).

In conventional surgery theory one starts with a degree one normal invariant, which can

be viewed as a �rst approximation to a given Poincar�e space by a manifold; it corresponds

to a topological reduction of the Spivak normal bundle of X (not all Poincar�e spaces have

normal invariants, but all ANR homology manifolds do [16]). The surgery obstruction is

an element of a Witt group of quadratic forms (or their automorphisms) and measures the

obstruction to �nding a normal cobordism from this normal map to a (simple) homotopy

equivalence.

Ranicki, following an earlier lead of Mischenko, viewed the surgery obstruction as just

the algebraic cobordism class of the chain complex (with duality) of the mapping cone

of the normal map. In [16], the group of controlled algebraic Poincar�e complexes over

X was identi�ed with a group isomorphic to the normal invariant group of X. One can

now consider the algebraic mapping cone of the duality of a Poincar�e space X; it is the

assembly of the local mapping cones of X. This is often called the peripheral complex.

Since X satis�es Poincar�e duality, the algebraic mapping cone is (globally) contractible,

but its local structure re
ects the local geometry of X. The total surgery obstruction of

4



X is the obstruction to algebraically cobording the peripheral complex of X to a locally

contractible complex through contractible algebraic complexes. For a homology manifold,

the total surgery obstruction vanishes since duality holds locally.

Let Xn, n � 6, be a (simple) Poincar�e complex.

Main Theorem. There is a homology manifold (simple) homotopy equivalent to X, if

and only if, the total surgery obstruction of X vanishes. If this is the case, there is a

covariantly functorial 4-periodic exact sequence of abelian groups,

: : :! Hn+1(X; IL)! Ln+1(ZZ�1(X))! SH(X)! Hn(X; IL)! Ln(ZZ�1(X));

where IL is the simply connected surgery spectrum.

The di�erence between this spectrum and G=Top (i.e., the 1-connective surgery spec-

trum [30]) accounts for Quinn's obstruction. There is also a relative version of this theorem

which we will not state here, although relative constructions are necessary for the proof of

the main theorem. A weaker form of this result was announced in [4].

A word about the organization of the paper. In order to prove the above theorem, we

will use results regarding controlled surgery proven in [17]. The idea is to perform con-

structions of ordinary surgery while keeping careful control on the size of handles. This will

be reviewed in x2. In section 3, we reprove Quinn's resolution theorem using this surgery

theory. This serves as an introduction to our setup and also shows how the resolution

obstruction of the homology manifolds constructed will be detected. We are led to the

use of controlled topology since homology manifolds can be characterized as those spaces

which are controlled Poincar�e complexes over themselves. The self-referential aspect of

the solution will necessitate consideration of �-Poincar�e complexes realizing the resolution

obstruction. Section 4 contains a discussion of these approximate homology manifolds and

of other homotopy theoretical aspects of the problem. Section 5 gives a detailed construc-

tion of homology manifolds modelled on simply connected closed manifolds with arbitrary

resolution obstruction. The main theorem is proved in x6 using similar techniques. In

section 7 we apply the theorem to the construction of homology manifolds that are not

homotopy equivalent to any closed manifold and in the �nal section of the paper we dis-

cuss re�nements of the construction that yield nonresolvable homology manifolds with the

disjoint disks property.

2. A review of (�; �)-surgery theory

This section contains a discussion of the controlled surgery theory we will be using in

this paper. Quinn discussed such a theory in lectures given in the late 1970's and early

1980's, but details, except for those in [28], [29], and [35] have never appeared.
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Definition 2.1. If p : N ! B is a map and � > 0 is given:

(i) A map f : M ! N is said to be a p�1(�)-equivalence if there exist a map g : N ! M

and homotopies ht : g � f ' idM , kt : f � g ' idN so that diam(p � f � ht(x)) < � for

all x 2M and diam(p � kt(x)) < � for all x 2 N . That is, we require that the tracks of

the homotopies have diameter less than � as viewed from B. We will also refer to such

an f as an �-equivalence over B.

(ii) Maps f; g :M ! N are said to be �-homotopic over B if there is a homotopy ht : f ' g

so that diam(p � ht(x)) < � for all x 2M .

Definition 2.2. A proper surjection p : K ! L is a UV 1 map, if for every � > 0 and every

map � : P 2 ! L of a 2-complex into L with lift �0 : P0 ! K de�ned on a subcomplex

P0, there is a map �� : P ! K with ��jP0 = �0 and d(p � ��;�) < �. This is more-or-less

equivalent to saying that p has simply-connected point-inverses. See [23] for details.

Definition 2.3. If N is a manifold and p : N ! B is a UV 1-map, S
0

�

 
N

#

B

!
is the set of

equivalence classes of p�1(�) equivalences f : M ! N where \equivalence" is the relation

generated by saying that f1 : M1 ! N and f2 : M2 ! N are equivalent if there is a

homeomorphism h :M1 !M2 so that the diagram

M1

M2 N

B

h

��

f1

NNNNNNNNNNN&&f2 //

p

��

�-homotopy commutes.

Theorem 2.4 ((�; �)-surgery exact sequence [17]). If Nn is a compact topological

manifold, n � 6 or n � 5 when @N = ;, B is a �nite polyhedron, and p : N ! B is UV 1,

then there exist an �0 > 0 and a T � 1 depending only on n and B so that for every � � �0

there is a surgery exact sequence

: : : �! Hn+1(B; IL) �! S�

 
N

#

B

!
�! [N;G=Top] �! Hn(B; IL)

where IL is the periodic L-spectrum of the trivial group and

S�

 
N

#

B

!
= im

 
S
0

�

 
N

#

B

!
�! S

0

T�

 
N

#

B

!!
:
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Moreover, for � � �0, S�

 
N

#

B

!
�= S�0

 
N

#

B

!
.

Remark 2.5.

(i) If we rewrite [N;G=Top] = H0(N ;G=Top) asHn(N ;G=Top), then the surgery sequence

is functorial in the obvious fashion with respect to UV 1 maps B ! B1. The cases

B = pt (for N simply connected) and B = N are particularly instructive. We have a

diagram:

: : : Hn+1(N ; IL) S�

�
N

#
N

�
Hn(N ;G=Top) Hn(N ; IL)

: : : Hn+1(B; IL) S�

�
N

#

B

�
Hn(N ;G=Top) Hn(B; IL)

: : : Hn+1(pt; IL) S�

�
N

#

pt

�
Hn(N ;G=Top) Hn(pt; IL)

// //

��

//

��

//

�� ��
// //

��

//

�� ��

//

��
// // // //

The �-approximation theorem of Chapman-Ferry ([10]) shows that S�

� N

#

N

�
is trivial,

so the diagram becomes:

: : : Hn+1(N ; IL) 0 Hn(N ;G=Top) Hn(N ; IL)

: : : Hn+1(B; IL) S�

� N

#
B

�
Hn(N ;G=Top) Hn(B; IL)

: : : Ln+1 S(N) Hn(N ;G=Top) Ln

//

p�

��

//

��

//

�=

��

//

p�

��
//

proj

��

//

��

//

�=

��

//

proj

��
// // // //

where p� is the induced map on homology, S(N) is the ordinary structure set of N , proj

is the composition Hn(B; IL)! Hn(pt; IL) �= H0(pt;Ln) �= Ln, and Lk = ZZ; 0;ZZ=2ZZ; 0,

for k = 0; 1; 2; 3 mod(4). This computes the map Hn(N ;G=Top) ! Hn(B; IL) in

the surgery exact sequence of a manifold N as being the composition of the map

from the connective L-theory to the nonconnective L-theory with the induced map

Hn(N ; IL) ! Hn(B; IL). The reader should be careful hereabouts when working with

Poincar�e duality spaces rather than manifolds. The map Hn(X;G=Top) ! Hn(B; IL)

in Theorem 2.8 below is an equivariant map of Hn(X;G=Top)-sets with action on

Hn(B; IL) induced by p�, rather than a homomorphism. The fact that 0 need not go to

0 gives rise to the resolution obstruction.
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(ii) The homology groups Hn(X;G=Top) and Hn(X; IL) are easily computed, since away

from odd primes these spectra are products of Eilenberg-MacLane spectra and at odd

primes, they give real K-theory [24], [32]. This means that in the absence of odd torsion,

Hn(X; IL) �= �p+q=nHp(X;Lq) and Hn(X;G=Top) �= �p+q=n;q>0Hp(X;Lq). Induced

homomorphisms between such groups are the induced homomorphisms on ordinary

homology.

(iii) The (�; �)-surgery exact sequence is proven in [17] by comparing the �-structure set to

the bounded structure set of [16].

There is a corresponding surgery theory at the existence level. In order to state the

theorem, we need some de�nitions.

Definition 2.6. If X and B are �nite polyhedra and p : X ! B is a UV 1 map, we say

that X is an (oriented) �-Poincar�e complex of formal dimension n over B if there exist

a subdivision of X so that images of simplices have diameter � � in B and a cycle y

in the simplicial chains Cn(X) so that \y : C#(X) ! Cn�#(X) is an �-chain homotopy

equivalence.

This last means that the morphism \y and the chain homotopies have size < � in the

sense that the image of each generator � only involves generators whose images under p

are within � of p(�) � B. We de�ne Poincar�e duality as usual in the unoriented case by

using an orientation double cover.

Definition 2.7. Let X be an �-Poincar�e duality space of formal dimension n over a

metric space B and let � be a (Top, PL or O) bundle over X. An �-surgery problem or

degree one normal map is a triple (Mn; �; F ) where � : M ! X is a map from a closed

n-manifoldM to X such that ��([M ]) = [X] and F is a stable trivialization of �M � ���.

Two problems (M;�;F ) and (M; ��; �F ) are equivalent if there exist an (n+1)-dimensional

manifold W with @W = M
`
M , a proper map � : W ! X extending � and ��, and

a stable trivialization of �W � ��� extending F and �F . Such an equivalence is called a

normal bordism. See p. 9 of [33] for further details.

Theorem 2.8 ((�; �)-surgery existence [17]). If B is a �nite complex and n � 5 is

given, then there exist an �0 > 0 and a T � 1 so that for every � with �0 > � > 0,

if
Mn f

! X

# p

B

is an �-surgery problem with UV 1 control map p, then there is a well-

de�ned obstruction in Hn(B; IL) which vanishes if and only if f is normally bordant to a

T�-equivalence over B.

Remark 2.9.
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(i) We will refer to �0 as the (n-dimensional) stability constant for B. T will be called the

(n-dimensional) stability factor for B.

(ii) The situation is similar in the non-simply connected case, i.e., for control maps that

are not UV 1, but it is somewhat more complicated because the surgery groups are not

quite homology groups.

3. Quinn's resolution theorem and the obstruction to resolution

To acclimate the reader to our notation and to our setup, we reprove Quinn's resolution

theorem and interpret the obstruction to resolutions from our (�; �) point of view. The

argument we give is similar to proofs given by Quinn in lectures and is even more similar

to the bounded proof given in [16]. It di�ers from the proof in [28], [29] in that the use of

a full-featured �-surgery theory makes parts of the argument easier to describe.

Theorem 3.1(Quinn [28], [29]). Let X be a connected ANR homology n-manifold, n � 5.

Then there is an integral invariant {(X) of X such that:

(i) {(X) � 1(mod 8).

(ii) If U � X is open, then {(X) = {(U).

(iii) {(X � Y ) = {(X) � {(Y ).

(iv) {(X) = 1 if and only if there is a topological manifoldMn and a CE map f :Mn ! X.

Proof. By theorem 15.6 of [16], there is a degree one normal map f :M ! X. By Theorem

2.8, there is a surgery obstruction �f 2 Hn(X; IL) �= [X;G=Top�ZZ] which vanishes if and

only if f is normally bordant to an �-equivalence f� : M� ! X for each � > 0. Changing

the map f changes �f by an element of [X;G=Top], so we have an invariant in [X;ZZ]

which measures the component of G=Top�ZZ which is hit by X under �f . This is Quinn's

invariant {(X).

Property (ii) is clear, since U and X must map to the same component of G=Top� ZZ.

Properties (i) and (iii) follow from the interpretation of {(X) as a di�erence of signatures.

This is discussed in [29], where Quinn de�nes the invariant by crossing with CP 2 and

looking at the signature of the inverse image of � � CP 2 in M � CP 2.

Suppose that the invariant is 1. Choose a sequence f�ig with limi!1 �i = 0. The

�-structure set of X parameterized over itself is trivial, since we have:

Hn+1(X;G=Top)
�=
�! Hn+1(X; IL) �! S�

 
X

#

X

!
�! Hn(X;G=Top)

1�1
�! Hn(X; IL):

The \�=" and the \1�1" follow immediately from the Atiyah-Hirzebruch spectral sequence

and the fact that H�(X;ZZ) = 0 for � > n.
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Thus, we can choose a sequence f�ig so that for each i there is a homeomorphism

M�i

hi
�!M�i+1 with the property that d(f�i+1 � hi; f�i ) < �i. Consider the maps

f�i � hi�1 � : : : � h1 :M�1 ! X:

Since

d(f�i+1 � hi � : : : � h1; f�i � hi�1 � : : : � h1) = d(f�i ; f�i+1 � hi) < �i;

the sequence converges to a map f :M�1 ! X, provided that
P

�i <1. Since f�i �hi�1 �

: : : � h1 is a �i-equivalence, f is CE, giving a resolution of X.

Remark 3.2.

(i) There is a technical point which should be addressed here { strictly speaking, X is

not a polyhedron, so (�; �)-surgery theory does not apply to maps parameterized over

X. Such di�culties are only apparent and are discussed in [26]{[29]. A quick way of

avoiding the problem in the present case is to letM be a mapping cylinder neighborhood

of X in IR
`, ` large. If Q is the Hilbert cube, there is a homeomorphismX�Q!M�Q

whose inverse is as close as we like to c� id, where c :M ! X is the mapping cylinder

projection [9]. Thus there is a CE map c1 : X � Q ! M so that c � c1 is as close as

we like to projection. On the other hand, there is a UV 1 map c2 : T
5 ! Q� T 5 ([15],

[2]) so that composition with projection is as close as we like to id. Composition gives

a UV 1 homotopy equivalence

X � T 5 id�c2
���! X �Q� T 5 c1�id

���!M � T 5

so that composition with c � id : M � T 5 ! X � T 5 is as close as we like to the

identity. We can consider the structure set S�

0
@X � T 5

#

M � T 5

1
A, where our UV 1 homotopy

equivalence is used as a control map. The argument goes through as before to show

that there are manifold structures on X �T 5 which are arbitrarily well controlled over

M � T 5, and therefore over X � T 5 via c � id. This leads as above to a resolution

of X � T 5. Passing to a cyclic cover and applying Quinn's End Theorem leads to a

resolution of X � T 4 and repeating the destabilization process leads to a resolution of

X.

(ii) It is not really necessary to invoke Theorem 15.6 of [16]. We could work with small

patches of X over which the Spivak normal bundle is trivial. On the other hand, that

is the road to the proof given in [16] that Top reductions exist. Alternatively, we could
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work with a controlled version of Ranicki's total surgery obstruction and avoid making

explicit assumptions about the Spivak bundle.

4. Some technical preliminaries

This section contains technical lemmas which will be needed in the construction of the

counterexamples. The reader is advised to skim this section quickly and then come back

to it as needed.

Definition 4.1. We will say that a map p : L ! B between �nite polyhedra has the

absolute �-lifting property ALk(�) if whenever (P;Q) is a polyhedral pair with dim(P ) � k,

�0 : Q ! L is a map, and � : P ! B is a map with p � �0 = �jQ, then there is a map

�� : P ! L extending �0 with d(p � ��;�) < �.

Remark 4.2. Note that p : K ! L is UV 1 if and only if it is AF 2(�) for all �.

Here is our �rst main technical result concerning UV k maps. Results of this sort

are originally due to Bestvina-Walsh-Wilson [2]. This particular formulation appears as

theorem 3.1 of [15].

Proposition 4.3. Let Mn be a compact connected manifold and let B be a connected

�nite polyhedron. For every � > 0 there is a � > 0 so that for every � > 0, if p : M ! B

is ALk+1(�), 2k+3 � n, then p is �-homotopic to an ALk+1(�)-map. It follows that there

is a �0 > 0 so that every ALk+1(�0)-map is homotopic to a UV k map. If U � B is open,

pjp�1(U) is UV k, and C � U is compact, then we may choose the limiting UV k map to

be equal to p on the inverse image of C.

The next theorem is a global version of the result above in the sense that it dispenses

with the ALk(�) hypothesis and replaces it with the hypothesis that the map have simply

connected homotopy �ber. Theorems of this type �rst appeared in Bestvina's thesis [2].

Theorem 4.4. If f : (Mn; @M) ! K is a map from a compact manifold to a polyhedron,

n � 5, and the homotopy �ber of f is simply connected, then f is homotopic to a UV 1

map. If f j@M is UV 1, f is homotopic rel @ to a UV 1 map.

We will also need some results concerning controlled Poincar�e duality. In his thesis,

Spivak proves that a polyhedronX is a Poincar�e duality space of formal dimension k, if and

only if, whenN(X) is a regular neighborhood ofX in IRn+k, n large, the inclusion @N ! N

has homotopy �ber Sk�1 [31]. This says that (N; @N) looks like a tubular neighborhood of

X from the viewpoint of homotopy theory. If X is a Poincar�e duality space, a cycle which

links the top class of X generates the homology of the �ber. Conversely, if Sk�1 ! @N !
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X is nullhomotopic, we have a cocycle in (N; @N) corresponding to (Dk ; Sk�1) whose dual

in Hn(X) is the top class of X. The next proposition is an estimated version of this result.

Proposition 4.5. Given n and B, there is an �0 > 0 and T > 0 such that if 0 < � � �0

and X is an �-Poincar�e duality space of topological (not formal) dimension � n over B

with UV 1 control map p : X ! B, then for every abstract regular neighborhoodN of X in

which X has codimension at least 3, the restriction of the regular neighborhood projection

to @N has the T�-lifting property.

Proof. Let N be a regular neighborhood of X with dimN = n + m, m � 3, and with

regular neighborhood retraction 
 : N ! X. The composition 
 � p : N ! B provides a

control map for N .

Assume N � X are triangulated so that 
 is simplicial and diam(
 � p)(�) � � for

each simplex � in N . By hypothesis, there is an n-cycle y in Cn(X) such that \y :

C](X) ! Cn�](X) is an �-chain homotopy equivalence over B. Given � > 0 the inclusion

induced maps i] : C](N) ! C](X) and i] : C](X) ! C](N) can be chosen to be �-chain

homotopy equivalences over X by taking a su�ciently �ne triangulation of N . Similarly,

there is a fundamental cycle z 2 Cn(N; @N) giving a �-chain homotopy equivalence \z :

C](N; @N)! Cn+m�](N) over X. Consider the following diagram

Cm+q(N; @N) Cn�q(N) Cn�q(X)

Cq(N) Cq(X)

\z // i]oo

Gq

ggOOOOOOOOOO
\i](y)

OO

i] //

\y

OO

Since \y is an �-chain homotopy equivalence over B, we can make � su�ciently small so

that \i](y) is an �-equivalence. We get Gq by composing \i](y) with a chain homotopy

inverse to \z. Hence, we may assume that Gq is a �-chain homotopy equivalence over B

and that the left triangle is �-chain homotopy commutative. By [31], we may take Gq = [g,

where g = G0(1), since for each c 2 Cq(N), (c [ G0(1)) \ z = c \ (G0(1) \ z), which is

�-chain homotopy equivalent to c \ (1 \ i](y)) = c \ i](y).

Let ! : P ! X denote the path �bration associated with the map 
j@N : @N ! X.

Here, P = f(x; �) 2 @N�XI : 
(x) = �(0)g and !(x; �) = �(1). The inclusion j : @N ! P

given by j(x) = (x; �x), where �x is the constant path at x, is a homotopy equivalence.

Let C! denote the mapping cylinder of ! with mapping cylinder retraction ! : C! ! X.

Since N is the mapping cylinder of 
 : @N ! X, the inclusion @N � P extends to an

inclusion j : (N; @N) ! (C!;P) such that ! � j = 
j@N and ! � j = 
. By [31], ! is a

spherical �bration, since m � 3. Thus, given � > 0, one can take a �ne triangulation of

12



X and inductively construct, as in the proof of theorem 5.3 of [15], a �nite CW complex

P and a spherical block bundle w : P ! X, for which there is a homotopy equivalence

h : P ! P with homotopy inverse h0 : P ! P , such that the diagram

P P

X

h //

w

@@@@@@  
!

~~~~
~~
~~

is �-homotopy commutative. In particular, w : P ! X will have the �-homotopy lifting

property. One can construct a Thom cocycle � 2 Cm(Cw; P ) such that [� : Cq(Cw) !

Cm+q(Cw; P ) is a �-chain homotopy equivalence over X. Assume that h0 � j is a cellular

map. Consider the diagram

Cm+q(N; @N) Cm+q(Cw; P )

Cq(N) Cq(Cw)

Cq(X)

h1oo

[g

OO

h2oo

[�

OO


]

ggNNNNNNNNNN w]pp
pp
pp
pp
pp

88

where the maps h1 and h2 are induced by h0 � j. The de�nition of � guarantees that

the upper square is �-chain homotopy commutative. The maps 
], !], [�, and h2 are

controlled chain homotopy equivalences over X, hence over B, and the map [g is an �-

chain homotopy equivalence over B. Hence, h1 is an �-chain homotopy equivalence over

B. Comparing the short exact sequences of chain complexes for the pairs (N; @N) and

(Cw; P ), one sees that the map h0 � j : @N ! P , which we may assume is an inclusion,

induces an �-chain homotopy equivalence h3 : C
](P ) ! C](@N). Consequently, the pair

(P; @N) is homologically (�; k)-connected for all k � 0 (see [26]).

Pick �0 > 0 and a T > 0 such that if 0 < � � �0, then any two maps of a space into

B within � of each other are T�-homotopic, and any subset of B of diameter < � can be

contracted in a subset of diameter < T�. The constants �0 and T can be obtained, for

example, from a �xed regular neighborhood � : W ! B, using the fact that the regular

neighborhood projection is Lipschitz. For such a choice of �, the pair (P; @N) is (T�; 1)-

connected, since all control maps are UV 1. We may assume that w is UV 1 by Proposition

4.3. By the controlled Hurewicz theorem [1], it follows that (P; @N) is (T�; k)-connected

for all k so that h0 � j : @N ! P is a T�-homotopy equivalence over B. Therefore,


j@N : @N ! X has the T�-homotopy lifting property over B.

13



If we paste together two Poincar�e pairs using a homotopy equivalence on the boundary,

we get a Poincar�e duality space. The following is an �-controlled analogue of that result.

Proposition 4.6. Given n and B there is an �0 > 0 and T > 0 such that if 0 < � � �0,

(M1; @M1) and (M2; @M2) are orientable manifolds, p1 : M1 ! B and p2 : M2 ! B are

UV 1 maps, and h : @M1 ! @M2 is an orientation preserving �-equivalence over B (this

includes d(p1; p2 � h) < �), then M1 [h M2 is a T�-Poincar�e duality space over B.

Proof. As in the proof of Proposition 4.5, there is an �0 > 0 and a T > 0 such that if

0 < � � �0, then any two maps of a space into B that are within � of each other are T�-

homotopic. Given 0 < � � �0, suppose that (M1; @M1), (M2; @M2), and h : @M1 ! @M2

are given, where h is an �-equivalence over B. Assume M1 and M2 are equipped with

triangulations such that h : @M1 ! @M2 is simplicial. Let Ch be the simplicial mapping

cylinder of h. We can take Ch to be a subcomplex of (@M1)
0 � (@M2)

0, the join of �rst

barycentric subdivisions of @M1 and @M2; Ch is homeomorphic to the topological mapping

cylinder of h [11]. The maps pi : @Mi ! B extend to a map p0 : Ch ! B with respect to

which @M1 is a T�-deformation retract of Ch. Hence, the chain complexes C](M1; @M1)

(C](M1; @M1), resp.) and C
(])

] (M1 [ Ch; @M2) (C
](M1 [ Ch; @M2), resp.) are T�-chain

homotopy equivalent.

Let X1 =M1[@M1
Ch, X2 =M2, X = X1[X2, X0 = X1\X2 = @M2, and p : X ! B

be the union of the pi's, i = 0; 1; 2. The fundamental cycles yi 2 Cn(Mi; @Mi) give rise

to �-chain homotopy equivalences \yi : C
](Mi; @Mi) ! Cn�](Mi) and \yi : C

](Mi) !

Cn�](Mi; @Mi), where � can be made arbitrarily small by re�ning the triangulations of

M1 and M2. Let y1 2 Cn(X1;X0) be the fundamental cycle corresponding to y1 under

the T�-chain equivalence C](M1; @M1) ! C](X1;X0). Choose orientations of y1 and y2

so that @y1 = �@y2 2 Cn�1(X0). Then y = j1(y1) + j2(y2) 2 Cn(X) is a fundamental

cycle for X, where ji is the composition C](Xi;X0)! C](Xi) ! C](X). Write C](X) =

C](X1)� C](X2;X0) and Cn�](X) = Cn�](X1;X0) �Cn�](X2). Then, \y = \(j1(y1) +

j2(y2)) : C
](X1)�C](X2;X0)! Cn�](X1;X0)�Cn�](X2) is easily seen to be a T�-chain

homotopy equivalence.

A map between simply connected Poincar�e spaces which is an equivalence through the

middle dimension is a homotopy equivalence. The following is an � version of that (see

[17]).

Proposition 4.7. Given n and B there is a T > 0 so that if p1 : X1 ! B and p2 : X2 ! B

are �-Poincar�e spaces over B of the same formal dimension and topological dimension � n

with UV 1 control maps, and f : X1 ! X2 is a map with d(p2 � f; p1) < � such that

14



the algebraic mapping cone of f is �-acyclic through the middle dimension, then f is a

T�-equivalence.

We will also need an estimated version of the classical homotopy extension theorem.

Theorem 4.8 (Estimated homotopy extension theorem). If X is a metric space,

f : X ! Z and p : Z ! B are maps, A � X is closed and Z is an ANR, and Ft : A ! Z

is an �-homotopy over B starting at F0 = f , then there is an �- homotopy �Ft : X ! Z

extending Ft. Moreover, we can take �Ft = f outside of any neighborhood of A� I.

Proof. The proof is the usual one. The map F extends to a map X�0[A� I! Z. Since

Z is an ANR, this map extends to a neighborhood U of X � 0 [A� I ! Z in X � I. We

construct a map r : X � I ! U by pushing down lines fxg � I to the graph of a function.

Composing with the extension of F gives �F .

Remark 4.9. A similar argument works if A is an ANR and Z is arbitrary.

The next proposition shows that if r : V ! X is a retraction and X is controlled

homotopy equivalent to Y , then there is a retraction s : V ! Y which is � close to r. This

will be used in showing that the limit space we construct is an ANR.

Proposition 4.10. Suppose that X and Y are �nite polyhedra, V is a regular neighbor-

hood of X with dim V � 2 dim Y + 1, p : V ! B is a map, r : V ! X is a retraction

and f : Y ! X is an �-equivalence over B. Then we can choose an embedding i : Y ! V

so that there is a retraction s : V ! i(Y ) with d(p � r; p � s) < 2�.

Proof. Since r � f = f , given � > 0, we can choose an embedding i : Y ! V with r � i

�-homotopic to f . If g : X ! Y is an �-inverse for f , then we can choose � small enough

that g � r � i is �-homotopic to idY , which implies that g � rjY is �-homotopic to idY .

By the estimated homotopy extension theorem, there is a retraction s : V ! i(Y ) with

d(p � r; p � s) < 2�.

5. The construction of simply connected examples

Let Mn be a simply connected closed manifold of dimension n � 6. We begin the

construction of a nonresolvable ANR homology manifold homotopy equivalent to M . We

start by choosing a sequence f�i; i � 0g, with �i > 0 and
P

�i <1.

Step I.

Let �0 be the stability constant for M and T0 the stability factor. Given �0 > 0, our

goal in this step is to produce p0 : X0 !M , where:

(a0) p0 is UV
1.

15



(b0) X0 is �o-Poincar�e over M .

(c0) p0 is a homotopy equivalence.

Choose �0 � �0. Take a triangulation of M with mesh < �0 and consider a regular

neighborhood C0 of the 2-skeleton.

C 0

N 0

D0

M

Let N0 be the boundary of the regular neighborhood C0 and D0 be the closure of the

complement of C0 in M . By Proposition 4.3, there is a UV 1 map q0 : M ! M close to

the identity that restricts to UV 1 maps on N0, C0 and D0. The restriction of q0 to N0

will be denoted q0 : N0 !M . Let

� 2 Hn(M ; IL) �= Hn(M ;L0) �Hn(M ;G=Top)

be a nonzero element of Hn(M ;L0) �= ZZ.

According to the controlled analog of Wall's realization theorem (theorem 5.8 of [33])

applied to the controlled surgery target N0 � I ! M obtained by composing q0 with the

projection, for each � > 0, there is a cobordism (V ;N0;N
0

0) over M and a degree one

normal map F� : V ! N0 � I so that

(i) F�jN0 = id

(ii) f� = F�jN
0

0 is a �-equivalence over M.

(iii) The controlled surgery obstruction of F� rel @ over M is �.

By Proposition 4.3, we can take f� to be a UV 1 map. The map f� : N0 ! N 0

0

obtained at the upper end of the normal cobordism represents a �-controlled structure on

N0. We compare the controlled and uncontrolled surgery exact sequences to analyze f� as

an uncontrolled structure:

: : : [�N0; G=Top] Hn(M ; IL) S�

0
@N0

#

M

1
A [N0; G=Top]

: : : [�N0; G=Top] Ln(e) S(N0) [N0; G=Top]:

// //
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

//

A

��

//

��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

// // // //
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By theorem 15.8 of [16], the vertical map A : Hn(M ; IL) ! Ln(e) is the surgery

assembly map. Since M is simply connected, A can be factored as

Hn(M ; IL) �= Hn(M ;L0)� [M;G=Top]
�
�! [M;G=Top]! Ln(e);

where � denotes projection. This implies that � 2 kerA and therefore, f� : N 0

0 ! N0 is

trivial as an uncontrolled structure on N0. By the h-cobordism theorem we can assume

that V = N0�I. By Proposition 4.4, we can also assume that F� is UV
1 after a homotopy

relative to the boundary.

id fσFσ

N      I0 X

N      I0 X

Choose such f� : N0 ! N0, for � = �0. Form X0 by cutting M open along N0 and

pasting the pieces back together using f�, where the copy of N0 in D0 is viewed as the

domain of f�. X0 is homeomorphic to the space obtained by splitting M along N0 and

pasting in a copy of the mapping cylinder Cf� .

C0 f
C

σ D0 =  X0

We extend to X0 the map that coincides with q0 on D0 [ C0 � X0, to obtain a UV 1

homotopy equivalence p0 : X0 ! M , by collapsing the bottom half of Cf� to N0 and

de�ning p0 to be the composition

N0 � I
F�
�! N0 � I ! N0

q0
�!M

on the upper half which is identi�ed to N0 � I along mapping cylinder lines.
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C0 D0 =  M

D0C0 =  M

id

-N  x I
0

D0C0

fC
σ

=  X
0

q
0

p
0

id
opr  (-F  )σ

By Proposition 4.6, if �0 is small enough so that T�0 < �0, then X0 is an �0-Poincar�e

duality space over M . This completes Step I.

Step II.

Embed M into IR
L, L large, and approximate p0 by an embedding �0 : X0 ! IR

L.

From now on we identify X0 with �0(X0). This �xes a metric on X0. Let W0 be a

regular neighborhood of X0 in IR
L with regular neighborhood collapse r0 : W0 ! X0.

Let 0 < �0 < �0 be such that L-dimensional (�0; h)-cobordisms over M admit �0-product

structures1 [26], and let �1 > 0 be the stability constant for X0 and T1 the stability factor.

Our goal in this step is to show that if �0 was chosen su�ciently small, then for any �1 > 0

we can construct X1 and p1 : X1 ! X0 such that:

(a1) p1 is UV
1.

(b1) X1 is �1-Poincar�e over X0.

(c1) p1 : X1 ! X0 is a �0-equivalence over M .

(d1) There exist an embedding X1 ! W0 and a retraction r1 : W0 ! X1 such that

d(r0; r1) < �0.

Let f0 :M ! X0 be the degree one normal map indicated in the picture below.

1 Recall that the sequence f�ig was chosen at the very beginning.
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C0 D
00

N     Ix =  X
0

Cfσ

C0
D

00
N     Ix

0
N     Ix

N    0
0

x
0

N    1x
0

N    2x

σF

=  M

idπid

Here, � denotes the obvious quotient map. Since f0 induces a homeomorphism on the

complement of N0�[1; 2] inM , its controlled surgery obstruction overM is � 2 Hn(M ; IL).

By Proposition 4.4, after a homotopy, we can assume that f0 is a UV
1 map.

Given an arbitrary �1 > 0, triangulateM so that the image of the triangulation under

f0 has mesh� �1. Let C1 be a regular neighborhood of the 2-skeleton in this triangulation

and let the closure of the complement of C1 be D1. Set N1 = C1\D1 and let q1 :M ! X0

be a UV 1 map close to f0 that restricts to UV
1 maps on C1, D1 and N1. The restriction

of q1 to N1 will be denoted q1 : N1 ! X0.

Since p0 : X0 ! M is UV 1, (p0)� : Hn(X0; IL) ! Hn(M ; IL) identi�es the surgery

obstruction groups so that we can think of � as an element of Hn(X0; IL). This isomor-

phism maps the component Hn(X0;L0) � Hn(X0; IL) onto the corresponding component

Hn(M ;L0) of Hn(M ; IL). As in Step I, realize � 2 Hn(X0; IL) by a controlled surgery

problem
N1 � I �! N1 � I

#

X0

Cut M open along N1 and paste in a copy of the mapping cylinder of the UV 1 controlled

equivalence obtained at the upper end of this normal problem, to obtain a singular spaceX 0

1

which satis�es �1-Poincar�e duality over X0, if �1 is small enough. The surgery obstruction

ofX 0

1 ! X0 overM is 0, so we can do surgery to get a T0�0-controlled (overM) equivalence

p001 : X1 ! X0. The homotopy equivalence is this large becauseX0 is an �0-Poincar�e duality

space over M .

Constructing p001 involves surgery on a singular space, but this is not di�cult in our case.

The spheres we need can be moved o� of the 2-dimensional spine of C1 and pushed away

from the singular set by small moves. The bundle data tells us how to thicken the handles

in the manifold part of X1, so the problem is the same as a controlled manifold surgery
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problem. It is important to note that F� preserves the bundle data so the map X 0

1 ! X0

is a degree one normal map between Poincar�e spaces respecting the given reductions of

the Spivak normal bundles. This kind of Poincar�e surgery goes back to Lowell Jones [20].

After surgery, we approximate the resulting homotopy equivalence by a UV 1 map

p1 : X1 ! X0, which is a 2T0�0-equivalence. The existence of the embedding and the

retraction follow immediately from Proposition 4.10. Choosing �0 small allows us to verify

conditions (c1) and (d1).

Step III.

Steps I and II di�er in that p1 is a controlled homotopy equivalence, while p0 is

not. We continue the construction as in Step II, starting with a degree one normal map

fi : M ! Xi with surgery obstruction � 2 Hn(Xi�1; IL). Let 0 < �i < �i be such that

L-dimensional (�i; h)-cobordisms over Xi�1 admit �i-product structures. If �i and Ti are

the stability constant and stability factor for Xi�1, we choose �i so that for any �i+1 > 0

we can construct Xi+1 and pi+1 : Xi+1 ! Xi so that:

(ai) pi+1 is UV
1.

(bi) Xi+1 is �i+1-Poincar�e over Xi.

(ci) pi+1 is a �i-equivalence over Xi�1.

(di) There is an embedding Xi+1 !Wi �W0 and a retraction ri+1 :W0 ! Xi+1 so that

d(ri; ri+1) < �i. Here, Wi is a (very thin) regular neighborhood of Xi.

Step IV.

Let X = \1i=1Wi. Taking the limit of the ri's gives a retraction r : W0 ! X; this

shows that X is as ANR. X is homotopy equivalent to Xi, because for i large, we can

retract a straight line homotopy from ri to r into both X and Xi. We now re�ne the maps

frig to retractions �i :W0 ! Xi in order to argue that X is a homology manifold.

Let Wi be a small regular neighborhood of Xi. Wi�1 n int(Wi) is a thin h-cobordism

with respect to the control map ri : W0 ! Xi. Deforming W0 n int(Wi) to @Wi along

(thin) product structures and composing with a regular neighborhood collapse Wi ! Xi

induces a retraction �i : W0 ! Xi. In the limit, we obtain a new retraction � : W0 ! X.

By Proposition 4.5, the restriction of ri to @(Wi) has the T�i�1-lifting property. Hence,

�ij@W0 has the T�i�1-lifting property and the restriction of � : W0 ! X to @(W0) is an

approximate �bration. This shows that X is a homology manifold by [13].

Next, we show that the resolution obstruction of X is �. It su�ces to exhibit a degree

one normal map f :M ! X whose surgery obstruction over X is �, since as pointed out

earlier, [X;G=Top] acts trivially on the Hn(X;L0) �= ZZ summand of Hn(X; IL) that gives

rise to Quinn's obstruction. We assume that X is a polyhedron, since by Remark 3.2 (i)
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we can do so after crossing with T 5 and replacing the control map id : X � T 5 ! X � T 5

by the UV 1 composition X � T 5 ! X �Q�T 5 !W0� T 5, where Q denotes the Hilbert

cube. Let
M

fk
�! Xk

# pk

Xk�1

be the surgery problem with surgery obstruction � 2 Hn(Xk�1; IL) obtained in Step III

of the construction. We show that for k large enough, the composition M
fk
�!Xk ,!

W0
�
�!X is a degree one normal map with surgery obstruction � 2 Hn(X; IL). After a small

deformation, we can assume that the restriction of � to Xk�1 is a small UV 1 homotopy

equivalence, provided that k is large enough. This implies that �� : Hn(Xk�1; IL) !

Hn(X; IL) is an isomorphism, and therefore fk : M ! Xk has surgery obstruction � 2

Hn(X; IL) with respect to the control map Xk
pk
�!Xk�1

�
�!X. Let sk : Xk�1 ! Xk be

a �ne homotopy inverse to pk : Xk ! Xk�1 over X. The inclusions Xk�1 � W0 and

Xk � W0 extend to a map Hk : Csk ! W0 de�ned on the mapping cylinder of sk, that

sends mapping cylinder lines to straight lines in W0 connecting points x 2 Xk�1 to their

images sk(x) 2 Xk. Composing Hk with the retraction � induces a homotopy between the

control maps Xk
pk
�!Xk�1

�
�!X and Xk

�
�!X as indicated in the picture.

k
X     Ix

Xk-1

X k

Cs
k

H k

p
k

W0

ρ

id

X

For k large, we can assume that all maps are UV 1 after small homotopies. This shows that

the surgery obstruction of the normal map fk :M ! Xk with respect to the control map

Xk
�
�!X is also � 2 Hn(X; IL). Since � : Xk ! X can be assumed to be a UV 1 controlled

equivalence, it follows that the surgery problems

M
fk
�! Xk and M

��fk
���! X

# � # id

X X

have the same obstruction over X. This concludes the construction.
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6. The general case

Let Zn, n � 6, be a (simple) Poincar�e complex.

Theorem 6.1. There is a homology manifold (simple) homotopy equivalent to Z, if and

only if, the total surgery obstruction of Z vanishes. If this is the case, there is a covariantly

functorial 4-periodic exact sequence of abelian groups

: : :! Hn+1(Z; IL)! Ln+1(ZZ�1(Z))! S
H(Z)! Hn(Z; IL)! Ln(ZZ�1(Z));

where IL is the simply connected surgery spectrum.

Proof. Consider Ranicki's algebraic surgery sequence

: : :! Hn(Z; IL)! Ln(ZZ�1(Z))! Sn�1(Z)! Hn�1(Z; IL)! : : : :

A Poincar�e duality space Z has a total surgery obstruction O(Z) 2 Sn�1(Z) with the

property that the image of O(Z) in Hn�1(Z; IL) is the obstruction to lifting the Spivak

�bration to Top. When this vanishes, O(Z) is the image of �(f) 2 Ln(ZZ�1(Z)), where

f : M ! Z is any degree one normal map. If Z is an ANR homology manifold and

f :M ! Z is a degree one normal map as promised by [16], the obstruction �c(f) to doing

surgery to an �-equivalence with respect to the control map Z
id
�! Z lies in the controlled

Wall group Hn(Z; IL). By naturality, the ordinary surgery obstruction �(f) is the image of

�c(f) in Ln(ZZ�1(Z)). Since O(Z) is the image of �(f), O(Z) = 0. When Z is homotopy

equivalent to a homology manifold, the result follows from the functoriality of the surgery

sequence.

Conversely, suppose that Z is a Poincar�e duality space with O(Z) = 0. If f :M ! Z

is a degree one normal map, the surgery obstruction �(f) lies in the image of the controlled

surgery obstruction group Hn(Z; IL). Choose � 2 Hn(Z; IL) so that the image of � is �(f)

under the natural map Hn(Z; IL)! Ln(ZZ�1(Z)).

Let f�i; i � 0g be a sequence with �i > 0 and
P

�i <1.

Step I.

We may assume that f : M ! Z is connected up to the middle dimension. By

Proposition 4.3, we may take f to be a UV 1 map. Let �0 be the stability constant for Z

and T0 the stability factor. Take a triangulation of M with mesh < �0, where �0 � �0,

and consider the regular neighborhood C0 of the 2-skeleton.
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C0
N

D
M

0

0

As before, we call the boundary of the regular neighborhood N0 and let D0 be the

closure of the complement of C0 inM . Let q0 : N0 !M be a UV 1 map close to the identity

such that its restrictions to C0, D0 and N0 are also UV
1. We denote the restriction of q0

to N0 by q0 : N0 !M . Consider the surgery exact sequence

: : :! Hn(Z; IL)! S�

0
@N0

#

Z

1
A! [N0; G=Top]:

By Wall realization, for � = �0, there is a cobordism (V ;N0;N
0

0) and a degree one normal

map F� : (V ;N0;N
0

0)! (N0 � I;N0 � f0g;N0 � f1g) realizing �.

id F f

x0

N’

  V

N

N     I

σ

00

σ

We can assume that F�jN0 = id and that f� = F�jN
0

0 is a UV 1 �0-equivalence over Z.

Doing surgery below middle dimension, by Proposition 4.4 we can also assume that F� is

UV 1. Unlike the simply connected case, however, V is not necessarily a product since the

uncontrolled surgery obstruction of F�, which coincides with �(f), may be nontrivial.

Let X 0

0 be the space obtained by splitting M along N0 and pasting in a copy of V

together with a copy of the mapping cylinder of f�.
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C0 Cfσ
D0 =  X0

N0N’0N0

-V

Our next goal is to construct a degree one UV 1 map X 0

0 ! Z. Let g� : N0 ! N 0

0 be

a UV 1 �0-controlled homotopy inverse to f� and let G0� : V ! N 0

0 � I be the composition

G0� = (g� � id) � F�. Using the controlled homotopy extension theorem and Proposition

4.3, we can construct G� homotopic to G0� so that:

(i) G�jN
0

0 = id.

(ii) G�jN0 = g�.

(iii) G� is UV 1.

Form the space X 00

0 and de�ne a map X 0

0 ! X 00

0 as pictured below.

C0 Cfσ
D0

N’0 N0N0

C0 Cfσ
D0

idGσ

Cgσ 0=  X"

0=  X’

N0 N’0 N0

id id

-V

We obtain a UV 1 map X 0

0 ! M by constructing a UV 1 map c : Cg� [N 0
0
Cf� ! N0

which is the identity on the two ends and forming the quotient space X 00

0 [c N0 = M .

The map c is constructed by collapsing Cf� and the bottom half of Cg� to N0 and using

Proposition 4.3 to extend to a UV 1 map over the top half of Cg� relatively to the ends.

The composition X 0

0 ! X 00

0

c
! M

f
! Z gives a degree one UV 1 map p00 : X

0

0 ! Z with

respect to which X 0

0 is a T�o-Poincar�e duality space. If �0 is small enough, we have that
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T�0 < �0.

C0 Cfσ
D0 0=  X’

C0 D0

-V

Z

=  M

The ordinary surgery obstruction of P 00 is � + (��) = 0, so we can do surgery on X 0

0 to

obtain an �0-controlled Poincar�e space X0 with respect to a UV 1 homotopy equivalence

p0 : X0 ! Z. This involves surgery on a singular space as discussed in the last section.

The rest of the construction proceeds essentially as in the simply connected case {

starting with a degree one normal map f0 : M0 ! X0, we construct an �1-Poincar�e

space X1 over X0 with respect to a �0-equivalence to X0 over Z, an �2-Poincar�e space X2

over X1 with a �1-equivalence to X1 over X0, et cetera. We embed the Xi's in a large

Euclidean space RL and take the limit. If the �i's are such that L-dimensional (�i; h)-

cobordisms over Xi�1 admit �i-product structures, we obtain an ANR homology manifold

X homotopy equivalent to Z. The only di�erence is that, as in Step I, in the cut-paste

construction we insert a copy of the mapping cylinder of the gluing map together with a

copy of (the negative of) the cobordism obtained from the surgery obstruction realization

theorem. We need this variant of the construction since, as observed earlier, the image of

� under the forget control map may be nontrivial. This concludes the proof of the �rst

assertion of the theorem.

Our argument up to this point establishes the following bounded analog of the existence

result (see [16]for a discussion of bounded surgery theory).

Theorem 6.2. Let X be a bounded Poincar�e complex controlled with respect to a UV 1

map X ! Z. If the bounded total surgery obstruction vanishes, there is a homology
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manifold W bounded simple homotopy equivalent to X over Z.

Remark 6.3. One could, of course, relax the UV 1 condition and prove controlled rather

than bounded versions of this result.

Now we can complete the proof of exactness of the ordinary surgery exact sequence

(and, by the \same" argument, the controlled and bounded surgery exact sequences).

Suppose � : X1 ! X2 are simple homotopy equivalent homology manifolds. Consider

X = O�1(X1) [M(�) [O�1(X2);

where O�1(X) denotes the part of the open cone on X which lies outside of the unit ball.

An easy calculation identi�es the total surgery obstruction of this Poincar�e duality space

with the structure on X2 represented by �. If this obstruction vanishes, we can glue copies

of X1 and X2 onto the ends of the resulting ANR homology manifold, obtaining an ANR

homology manifold s-cobordism connecting X1 and X2.

7. Homology manifolds not homotopy equivalent

to any manifold

In this section, we apply Theorem 6.1 to the construction of homology manifolds that

are not homotopy equivalent to any closed manifold.

Take a very �ne triangulation of Tn, n � 6, and consider the regular neighborhood C0

of the 2-skeleton. As before, let N0 be the boundary of C0 and let D0 be the closure of

the complement of C0 in Tn. Let p00 : N0 ! Tn be a UV 1 map close to the inclusion and

� 2 Hn(T
n; IL) �= �

p+q=n
Hp(T

n;Lq)

be a non-zero element of Hn(T
n;L0) �= ZZ. As before, by Wall realization, there is a

cobordism (V ;N 0

0;N0) and a degree one normal map F� : V ! N0 � I realizing �, such

that F�jN0 = id and f� = F�jN
0

0 : N
0

0 ! N0 is a �ne homotopy equivalence over Tn.

Form the Poincar�e complex Z by pasting Cf� [N 0
0
(�V ) into Tn, and construct a UV 1

control map p0 : Z ! Tn as in the previous section.
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C0 Cfσ

N0 N’0 N0

D0

p
0

C0 D0
=  T n

-V =  Z

We show that Z is a Poincar�e space whose total surgery obstruction O(Z) vanishes

and that Z is not homotopy equivalent to any closed manifold. By Theorem 6.1, there is

a homology manifold homotopy equivalent to Z.

Let M0 be the manifold obtained by splitting Tn along N0 and pasting V [N 0
0
(�V )

between the two parts. Consider the normal map f0 :M0 ! Z indicated below.

N0

C0

C0
Cfσ

D0-V

N’0 N’0 N0

0N     Ix

x0N’    I D0 =  M0-V

idFσ π idid

V

=  Z

The surgery obstruction of f0 : M0 ! Z over Tn is � 2 Hn(T
n; IL). Since the ordi-

nary surgery obstruction of f0 is the image of � under the natural map Hn(T
n; IL) !

Ln(ZZ�1(T
n)), it follows from Ranicki's algebraic surgery sequence that O(Z) = 0, as

discussed in the proof of Theorem 6.1.

Any other degree one normal map f : M ! Z, di�ers from f0 by the action of

Hn(Z;G=Top). Hence, the controlled surgery obstruction of f has � as its Hn(T
n;L0)
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component since choosing a di�erent normal map changes the surgery obstruction by the

action of Hn(Z;G=Top) on Hn(T
n; IL) induced by (p0)�, and this does not a�ect the

Hn(T
n;L0) component.

The forgetful map from the controlled surgery obstruction group Hn(T
n; IL) to the

uncontrolled surgery obstruction group Ln(ZZ(ZZ
n)) is an isomorphism (in [21], this appears

disguised as the map [Tn�D4; @;G=Top]! Ln+4(ZZ(ZZ
n))). Thus, the uncontrolled surgery

obstruction of any degree one normal map f : M ! Z is also nonzero. This implies that

Z does not have the homotopy type of any closed topological manifold.

Remark 7.1. The same construction works if we replace Tn by any closed manifold Mn

for which the summandHn(M ;L0) ofHn(M ; IL) injects in Ln(ZZ�1(M)) under the assembly

map A : Hn(M ; IL) ! Ln(ZZ�1(M)). Hence, manifolds for which the Novikov conjecture

holds give rise to homology manifolds not homotopy equivalent to manifolds.

Using techniques from [8], we can vary the construction to obtain a ZZ-homology

Tn with fundamental group ZZ
n which is not homotopy equivalent to a manifold. Since

S(M) �= S(N) if there is a mapM ! N which is a �1-isomorphism and an integral homol-

ogy equivalence, this gives a counterexample to a \homology" analog of the well-known

conjecture that every Poincar�e duality group is the fundamental group of an aspherical

manifold. See [34].

Remark 7.2. Here is a more concrete construction of the cobordism V used above. We

begin with the Milnor plumbing, which gives us a degree one normal map f : M8 ! D8

which is a homeomorphism on the boundary. Take the product withn T 8. The result

is a 16-dimensional surgery problem which cannot be solved rel boundary since it has

nontrivial normal invariant which is detected by the signature of the inverse image of the

D8 and there are no nontrivial structures on Tn � Dk rel @. This problem is invariant

under passage to �nite covers of the torus.

Do surgery up to middle dimension. Call the resulting problem (M16
1 ; @) ! (D8 �

T 8; @). The remaining obstruction is a quadratic form on the 8-dimensional homology of

M1. Pass to a large �nite cover of T 8. We obtain a \geometric quadratic form" over T 8,

that is, a quadratic form for which the basis elements are associated to points in T 8 and

for which basis elements only interact with nearby basis elements.
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N
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0
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8

The cobordism V used in the �rst stage of the construction is obtained by pushing the

geometric quadratic form o� of the 2-skeleton and out of C0 by general position and then

doing a \geometric" Wall realization of this form over T 8 starting with N0 � [0; 1]. Notice

that we have shifted dimensions. The original form was on 8-dimensional homology, while

the construction of V uses the \same" form on 4-dimensional homology.

8. Final comments and conjectures

A. Using a mild re�nement of the arguments, we can arrange that the homology manifolds

we construct have the disjoint disks property.

Definition 8.1. Given � > � > 0, we say that a spaceX has the (�; �)-DDP if for each pair

of maps f; g : D2 ! X there is a pair of maps f ; g : D2 ! X so that d(f (D2); g(D2)) > �,

d(f; f ) < � and d(g; g) < �.

Proposition 8.2. If Mn is a PL manifold, n � 5, then for every � > 0 there is a � > 0

such that M has the (�; �)-DDP.

Proof. Choose a �ne triangulation of M so that maps D2 !M can be displaced into the

2-skeleton or the dual (n � 3)-skeleton by �-moves. The distance between the 2-skeleton

and the dual (n � 3)-skeleton gives the desired �.

Remark 8.3. Using [21], one can show that Proposition 8.2 is also valid for topological

manifolds.

Proposition 8.4. Let fXig
1

i=1 and X be subsets of IRL and ri : Xi ! X, si : X ! Xi be

maps so that limi!1 supfd(x; ri(x)); x 2 Xig = 0 and limi!1 supfd(x; si(x)); x 2 Xg =

0. If Xi has the (�; �)-DDP for each i, then X has the (2�; �=2)-DDP.

Proof. Choose i large enough so that d(x; ri(x)) < �=4 and d(x; si(x)) < �=4. Given

f; g : D2 ! X, consider the compositions si � f , si � g : D2 ! Xi. By hypothesis, there
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are maps f 0, g0 : D2 ! Xi such that d(si � f; f
0) < �, d(si � g; g

0) < � and d(si � f(D
2); si �

g(D2)) > �. Then, ri � f
0, ri � g

0 : D2 ! X are maps with d(ri � f
0(D2); ri � g`(D

2)) > �=2,

d(f; ri � f
0) < �+ � < 2� and d(g; ri � g

0) < 2�.

IfX has the (�i; �i)-DDP for some sequence �i ! 0, thenX has the DDP. This suggests

a method for manufacturing ANR homology manifolds with the DDP. In step II of x5, we

start with a map f0 : M ! X0. Let �0 > 0 be given. After surgery below the middle

dimension and a homotopy, we can assume that this map is UV 1. Choose an embedding

f 00 so that f0 = r0 � f
0

0 (add some extra Euclidean factors, if necessary, and push up to the

graph) and so that f 00 is �-close to f0, where � � �0T0. Here, r0 : W0 ! X0 is a regular

neighborhood collapse. We may assume that W0 was chosen so that d(r0; id) < �0=4.

By Propostion 8.2, there is a �0 so that f 00(M) has the (�0=2; �0)-DDP. By simplicial

approximation, any su�ciently �ne 2-skeleton of M will also have the (�0=2; �0)-DDP.

Continue the construction of X1, taking C1 to be a regular neighborhood of a �ne 2-

skeleton of this embedded copy ofM and taking the map p1jC1 to be a UV
1 approximation

to the restriction of r0 � f0. As before, we extend this to a UV 1 map p1 : X1 ! X0. Using

the same graphing trick, we can arrange that p1 = r0jX1. It follows that X1 has the

(�0; �0)-DDP. If f; g : D
2 ! X1 are maps, then there are lifts r0 � f and r0 � g of r0 �f and

r0 � g into C1 which are �0=2-close to f and g. These can be pushed �0 units apart using

a move of no more than �0=2 units.

If the �i's are small enough, Proposition 8.4 guarantees that the ANR homology man-

ifold X constructed by our process will have the (2�0; �0=2)-DDP. Choosing �1 � �0, doing

surgery below the middle dimension to produce a UV 1 degree one normal map, and re-

peating the process at the next stage of the construction guarantees that the limit space

will have the (2�1; �1=2)-DDP, as well. Iterating the process for all n produces an ANR

homology manifold X with the DDP. Note that the various approximations in this process

reinforce each other { choosing a triangulation of �ner mesh leads to a smaller Poincar�e

duality constant �1 while allowing a smaller homotopy from r0 � f
0

0 to a UV 1 map and

preserving the (�; �)-DDP.

B. To what extent do these new spaces resemble manifolds? We made a number of

conjectures in [4]. Here is a uni�ed version of those conjectures.

Unified conjecture. There exist spaces IR
4
k, k 2 ZZ, so that every connected ANR

homology manifold Xn, n � 5, with the DDP and {(X) = 8k + 1 is locally homeomorphic

to IR
4
k � IR

n�4. These ANR homology manifolds are classi�ed up to homeomorphism by

Ranicki's algebraic surgery theory. In particular, we conjecture that high-dimensional
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ANR homology manifolds with the DDP are homogeneous, that the s-cobordism theorem

holds for ANR homology manifolds with the DDP and that such homology manifolds are

classi�ed up to homeomorphism by a surgery exact sequence

: : :! Hn+1(X; IL)! Ln+1(ZZ�1(X))! S
H(X)! Hn(X; IL)! Ln(ZZ�1(X)):

As \evidence" for the conjecture, we point out that we could have performed the con-

struction in x5 using any element of the controlled surgery obstruction group Hn(M ; IL).

In case the Hn(M ;L0)-component of this obstruction is zero, the construction yields a

resolvable ANR homology manifold with the DDP, i.e., a topological manifold. Our con-

jecture says that the case when the Hn(M ;L0)-component vanishes is not anomalous and

that equally canonical results can be achieved in all cases.
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