
11.3: Heat Equation in 1D

We consider a simple heat equation, where the unknown function u(t, x) is the tem-
perature at time t at the point x, in a rod of unit length. This equation has the
form

@u

@t
=

@2u

@x2
() ut = uxx 0  x  1 for t 2 [0, T ] .

How many conditions do we need to impose to solve this? Hint: what’s the ‘order of
the equation’ with respect to x? And t?

We want to find the temperature u(t, x) for t 2 [0, T ] and x 2 [0, 1]. To solve this
problem, we set up a uniform grid on the rectangle [0, T ]⇥ [0, 1].

Our goal is to find approximate solutions at discrete points, un
j ⇡ u(tn, xj) .
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1. Forward Euler scheme for the heat equation

We use a central finite di↵erence for the double derivative in space, and forward Euler
for the time derivative. What do these look like, and what order accuracy do they
have?

What do we get for our approximation when we substitute those into the PDE?

To compute un+1
j , we only need values of u at the previous time-step n with the given

formula. Algorithms where the next time step is given solely in times of the previous
time-steps is called an explicit method.
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Example 1.1. Create some pseudo-code to approximate solutions u(t, x) of
8
>><

>>:

ut = uxx on 0  x  1 for t 2 [0, T ]

u(t, 0) = u(t, 1) = 0 for t � 0,

u(0, x) = f(x)

(⇤)

with �x = 1/N and �t = T/M.
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Example 1.2. Use your code to approximate the solutions u(t, x) to the problem:
8
>>><

>>>:

ut = .1 uxx on 0  x  1 for t 2 [0, .3]

u(t, 0) = u(t, 1) = 0 for t � 0,

u(0, x) = 10e�((x�.8)/.1)2 for 0  x  1,

with the parameters: �x = 1/100 and �t = 3⇥ 10�5.
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Example 1.3. Use your code to approximate the solutions u(t, x) to the problem:
8
>>><

>>>:

ut = .5 uxx on 0  x  1 for t 2 [0, .3]

u(t, 0) = u(t, 1) = 0 for t � 0,

u(0, x) = �50x(x� 1)(x� 1
3)(x� 1

2) for 0  x  1,

with the parameters: �x = 1/100 and �t = 3⇥ 10�5.
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2. Maximum principle for the heat equation

The solution u(t, x) of the heat equation with the boundary conditions from (⇤)
satisfies the following maximum principle:

min
0y1

u(t1, y)  u(t2, x)  max
0y1

u(t1, y) for all x,

for any t1  t2 .

By looking at the maximum values, we can obtain a more ‘intuitive’ statement of the
maximum principle:

max
0x1

|u(t2, x)|  max
0x1

|u(t1, x)|

for any t1  t2 . This means that the maximum value of |u(t, x)| over x is non-
increasing in time t.

With Dirichlet boundary conditions set to 0, what does this say about the solution
u(t, x) as t increases?

Since we’re working with discrete approximations of the solution, we have to satisfy
a discrete version of the maximum condition, namely

max
j

|un+1
j |  max

j
|un

j | for every n .

This is not always satisfied by numerical solutions. For some methods, we have to
satisfy certain stability criteria for this condition to be imposed.

To satisfy the discrete maximum principle of the heat equation with the Dirichlet
boundary conditions, we need to choose a time-step that satisfies:

�t  1

2
(�x)2 .

This is called a stability condition.

If �x = .01, how small does �t have to be?


