
5.1: Equilibrium Point Analysis

From our work in Chapter 3, we are able to understand the solutions of linear systems

both qualitatively and analytically. Unfortunately, nonlinear systems are in general

much less amenable to the analytic and algebraic techniques that we have developed,

but we can use the mathematics of linear systems to understand the behavior of

solutions of nonlinear systems near their equilibrium points.

Consider the Van der Pol equation:
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dt
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= �x+ (1� x2
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This is nonlinear, so we don’t have a lot of tools to analyze it right now. But we can

use linear tools to analyze what’s happening near equilibrium solutions.

To find equilibrium solutions, we’re interested in where x0
= 0 and y0 = 0 at the same

time. These curves are called nullclines. Nullclines divide the phase space and give

us information about where each component of the direction field is zero. Equilibrium

solutions are found where a nullcline from one component a nullcline from another

component.

Example 0.1. Determine the equilibrium solution(s) to the Van der Pol equation
above using nullclines.
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We can understand why solutions spiral away from the origin by approximating the

Van der Pol system with another system that is much easier for us to analyze– a

linear system.

So, we can linearize the system around the equilibrium point (0, 0). This gives us

the linear approximation of the system close to the origin:

What does this tell us about the equilibrium point at the origin? How can we classify

it?
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Example 0.2. Consider x and y as two populations competing for some resource,
with the system below governing their behavior:
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dx

dt
= 2x

⇣
1� x

2

⌘
� xy ,

dy

dt
= 3y

⇣
1� y

3

⌘
� 2xy .

For a fixed x value, if y increases then dx
dt < 0 due to the �xy term. Similarly, for

a fixed y value, if x increases then dy
dt < 0 due to the �2xy term. So, an increase in

either population has an adverse e↵ect on the growth rate of the other species.

What are the nullclines and the equilibrium solutions?
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The equilibrium point (1, 1) is of particular interest to us; its existence indicates that

it is possible for these two species to coexist in equilibrium! In the phase portrait,

we saw most solutions tended towards (2, 0), (0, 3), and (1, 1), since they all had

trajectories pointing toward them.

Two important questions remain though...

First, what solutions tend to the equilibrium point (1, 1)? In particular, is the set of

these solutions large enough that we could hope to find an example of such a solution

in nature?

Second, what separates the initial conditions that yield solutions for which x tends

to zero from those solutions for which y tends to zero? To answer these questions, we

study the system near the equilibrium point (1, 1) using linearization.

We’ve only worked with linear systems and classifying equilibrium points at the origin,

so we need to define a new system that shifts the equilibrium point we’re interested

in to the origin! This change of variables would be:

With that change, what would
dx

dt
and

dy

dt
become in terms of u and v?

Now, the point (x, y) = (1, 1) has become the origin with the variable (u, v) = (0, 0).
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With our new nonlinear system, we still don’t have tools to describe the behavior

of our system. However, with (u, v) ⇡ (0, 0), we can reduce the system to a linear
system by using linearization:

This is a valid local approximation about the point (0, 0) since near the origin (u, v) ⇡
(0, 0), the nonlinear terms are much smaller than the linear terms. This allows us

to classify the equilibrium solution (x, y) = (1, 1) by looking at the classification of

(u, v) = (0, 0).

What would the equilibrium solution at (u, v) = (0, 0) be classified as? Then look at

how this relates to the phase space from earlier.
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Sometimes our systems won’t have polynomials... How can we deal with systems like

this? 8
>><

>>:

dx

dt
= y

dy

dt
= �y � sin(x) .

What are the nullclines and equilibrium solutions?

To classify the equilibrium point at the origin of the nonlinear system, we’d need to

linearize the system so that we can use the tools we’ve developed in Chapter 3. How

could we do that with sin(x)?
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Linearization in the general case

Consider the nonlinear system
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dx

dt
= f(x, y) ,

dy

dt
= g(x, y) ,

with the equilibrium point (x0, y0). What would a change of variables with u, v look

like for the transformation (x0, y0) to the origin (u, v) = (0, 0)?

What’s the new nonlinear system?

With this, we can use a (first-order) linear approximation/Taylor series for a function

of two-variables:

(This is similar to tangent planes from Calc. III!) And what’s linearized system from

using this approximation?

We can use the Jacobian matrix to classify the system! This process takes the

translation and linearization into one-step.
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Example 0.3. Consider the nonlinear system
8
>><

>>:

dx

dt
= x(2� x� y) ,

dy

dt
= y(y � x2

) .

Find and classify all of the equilibrium points for this system.
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Two cases where the behavior of a nonlinear system and its linearization di↵er:

• When the linearized system is a center (that is, when the real component of a

complex eigenvalue is 0),

• When the linear system has a zero eigenvalue.

Section Recap

What are some take-away concepts from this section?


