
In this section, we will study inconsistent systems of linear equations and learn how
to find the ‘best possible solutions’ of such systems. The necessity of ‘solving’ incon-
sistent systems arises in the computation of least squares regression lines, as shown
below.

1. Least Squares Motivation

Suppose we have three data points on a graph and we want to find a line through
them. Unless the data points are already on a line, there is not a line (a linear
function!) that will go through all three points. To compromise, we will search for
the line y = c0 + c1 x that ‘best’ fits the data.

How can we write this as a system of equations? And how can we write this in matrix
form?

The points are not collinear (along the same line), so the system is inconsistent.
Although it is impossible to find x such that Ax = b, we look for an x that minimizes
the norm of the error kAx� bk. The smaller the norm of kAx� bk, the better the

approximation. The solution x =


c0
c1

�
of this minimization problem results in the

least squares regression line y = c0 + c1 x.
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6.5: Least-Squares Problems 2

To get started on this problem, we need one big piece of information from a section
we didn’t cover, Section 6.3 which discussed ‘Orthogonal Projections.’

Theorem 1.1. The Best Approximation Theorem: Let W be a subspace of Rn,
let y be any vector in Rn, and let ŷ be the orthogonal projection of y onto W . Then,
ŷ is the closest points in W to y in the sense that

ky � ŷk < ky � vk
for all v in W which are distinct from ŷ.

In essence, this tells us that the orthogonal projection ŷ in W is the ‘best’ approxi-
mation of y. The statement in the theorem ky � ŷk < ky � vk states:

We see illustrations of this below in 2D and 3D.










































































































6.5: Least-Squares Problems 3

With the motivating problem for this section, we are trying to find the vector x =


c0
c1

�

that minimizes kAx� bk, where A is an m⇥ n matrix and b is a vector in Rm.

We are attempting to find the vector b that is as close as possible to the vector Ax
in the space S = span{columns of A}, or the range of the matrix A. From the Best
Approximation Theorem, we know that the desired vector is the projection of b onto
S.

Without getting into some of the details we glossed over in Chapter 4... we have
the following property based on orthogonality AT (Ax� b) = 0. Manipulating this
equation gives us the following:

AT (Ax� b) = 0

ATAx�ATb = 0

ATAx = ATb

The solution of the least squares problem comes down to solving the n ⇥ n system
ATAx = ATb for the vector x. These equations are known as the normal equations
of the least squares problem Ax = b.










































































































6.5: Least-Squares Problems 4

Example 1.1. Find the solution of the least squares problem Ax = b defined below.
Using that solution, find the equation of the line noted below.
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6.5: Least-Squares Problems 5

Example 1.2. Find the equation y = c0 + c1 x of the least-squares line that best fits
the data points (2, 1), (5, 2), (7, 3), (8, 3). First, write out the system in matrix form
Ax = b, then determine the normal equations for the least squares problem.










































































6.5: Least-Squares Problems 6

Example 1.3. The table below show the world population for six different years.

Year 1985 1990 1995 2000 2005 2010
Population
(in billions) 4.9 5.3 5.7 6.1 6.5 6.9

Let x = 5 represent the year 1985. Find the least squares regression quadratic poly-
nomial y = c0 + c1 x+ c2 x2 for the data and use the model to estimate the population
for the year 2020.




