6.S* least- squdres proBlems:

In this section, we will study inconsistent systems of linear equations and learn how
to find the ‘best possible solutions’ of such systems. The necessity of ‘solving’ incon-
sistent systems arises in the computation of least squares regression lines, as shown

below.

1. LEAST SQUARES MOTIVATION

Suppose we have three data points on a graph and we want to find a line through
them. Unless the data points are already on a line, there is not a line (a linear
function!) that will go through all three points. To compromise, we will search for
the line y = ¢y 4 ¢; x that ‘best’ fits the data.

How can we write this as a system of equations? And how can we write this in matrix

form?
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The points are not collinear (along the same line), so the system is inconsistent.
Although it is impossible to find x such that Ax = b, we look for an x that minimizes
the norm of the error ||Ax — b||. The smaller the norm of ||[Ax — b||, the better the

approximation. The solution x = 01 of this minimization problem results in the
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least squares regression line y = ¢y + ¢y x.
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To get started on this problem, we need one big piece of information from a section
we didn’t cover, Section 6.3 which discussed ‘Orthogonal Projections.’

Theorem 1.1. The Best Approximation Theorem: Let W be a subspace of R™,
let y be any vector in R™, and let y be the orthogonal projection of y onto W. Then,
V is the closest points in W to'y in the sense that

ly =31l <lly = vl
for all v in W which are distinct from §.

In essence, this tells us that the orthogonal projection ¥ in W is the ‘best’ approxi-
mation of y. The statement in the theorem ||y — || < ||y — v|| states:
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We see illustrations of this below in 2D and 3D.
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€1
that minimizes |Ax — b||, where A is an m x n matrix and b is a vector in R™.

With the motivating problem for this section, we are trying to find the vector x = [CO}

We are attempting to find the vector b that is as close as possible to the vector Ax
in the space S = span{columns of A}, or the range of the matrix A. From the Best
Approximation Theorem, we know that the desired vector is the projection of b onto
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Without getting into some of the details we glossed over in Chapter 4... we have
the following property based on orthogonality AT (Ax — b) = 0. Manipulating this
equation gives us the following:

AT (Ax—Db)=0
ATAx - ATb =0
ATAx = A™b

The solution of the least squares problem comes down to solving the n X n system
ATAx = ATb for the vector x. These equations are known as the normal equations
of the least squares problem Ax = b.
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Example 1.1. Find the solution of the least squares problem Ax = b defined below.
Using that solution, find the equation of the line noted below.
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Example 1.2. Find the equation y = co + c1 x of the least-squares line that best fits
the data points (2,1),(5,2),(7,3),(8,3). First, write out the system in matriz form
Ax = b, then determine the normal equations for the least squares problem.
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Example 1.3. The table below show the world population for siz different years.

Year 1985 1990 | 1995 | 2000 | 2005 | 2010

Population
(inpbillions) 49| 58| 571 611 65| 6.9

Let x = 5 represent the year 1985. Find the least squares regression quadratic poly-
nomial y = cy+ ¢ x + cy 22 for the data and use the model to estimate the population
for the year 2020.
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