Examples: Lotka-Volterra, and the Pendulum

1. LOTKA-VOLTERRA: MODEL OF COMPETITION

The Lotka-Volterra model describes how the population of two species evolve in time
as the compete for some resource (like the same food supply) when a limited amount
of the resource available. This model would work with two species like rabbits and
sheep as they compete for grass to eat. There are two main effects we consider:

(1) Each species would grow to its carrying capacity in the absence of each other.
For example, the rabbits would ‘reproduce like rabbits’ if there were no sheep
present. Additionally, rabbits reproduce at a faster rate that sheep. To take
this into account with our model, we could assign rabbits a higher birth-rate
than sheep.

(2) When sheep and rabbits encounter each other, trouble starts. Sometimes
the rabbit gets to eat, but more usually, the sheep nudges the rabbit aside
and starts nibbling n the grass. We’ll assume these conflicts occur at a rate
proportional to the size of each population. For example, if there are twice
as many sheep, the odds of a rabbit encountering a sheep are twice as great.
Further, we assume that the conflicts reduce the growth rate for each species,
but the effect is more severe for rabbits.

(The classic Lotka-Volterra model does neglect a number of realistic assumptions, like
predators, seasonal effects, and other sources of food. However, this model provides
us with a system simple enough to study!)
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Example 1.1. Find the equilibrium solution(s) of the model above.
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Example 1.2. Classify the equilibrium solutions from the model by determining the
etgenvalues and eigenvectors. Then, sketch the phase portrait using that information.
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Some interesting notes:

e The r- and s-axes both contain straight-line trajectories. Why would this make
intuitive sense?

e Trajectories with initial conditions/initial populations near the origin go to the
sink at (0,2) and some go to the sink at (3,0). In between them, there must be a
special trajectory that cannot decide which way to turn, and so it dives into the
saddle point. This trajectory is part of the stable manifold of the saddle point.

e This stable manifold separates out trajectories from going to either of the sinks
at (0,2) and (3,0). Each side of the manifold is a ‘basin of attraction for the
respective equilibrium solutions. This leads to the additional names of the stable
manifold: ‘basin boundary and separatrix. Trajectories like this split up the
phase portrait into regions with different long-term behavior.

e A biological interpretation of our phase portrait suggests that one species will
drive the other to extinction, and is dependent on the initial populations of the
two species. This, and other models of competition, led biologists to formulate the
principle of competitive exclusion, stating that two species competing for the
same limited resource (typically) cannot coexist.
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2. HAMILTONIAN SYSTEMS AND CONSERVED QUANTITIES

Definition 2.1: Hamiltonian system

A system is a Hamiltonian system if there exists some Hamiltonian function
H(z,y) such that
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This is most often seen in examples with object displacement— mass-spring systems,
pendulums, etc.— where the variables of interest are object’s position ¢ and momentum
p (mass times velocity). In these examples, the Hamiltonian function H (g, p) is the
total energy of the system, the kinetic and potential energies added together.

In the mass-spring systems with harmonic oscillators (without damping), we can hav
q(t) as the displacement from the resting position, and the momentum p(t) = m - ¢ %

We can define kinetic energy T" and the potential energy Uas —
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where k is the spring constant from Hooke’s law. The total energy of a system is the
sum of the kinetic and potential energy, giving us the Hamiltonian function describing

the total energy, as
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Example 2.1. Tuoke the appropriate partial derivatives of the Hamiltonian function
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Example 2.2. How does this relate to the equation we used in Chapter 4 for the
undamped mass-spring system mq” + kq = 0, where q is the displacement of the
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3. THE PENDULUM

If you’ve studied the pendulum before, it’s likely been with a linear approximation of
the nonlinear system for specific parameter regimes. With the tools we’ve developed
in this class so far though, we can study the full nonlinear system!

In the absence of damping/friction and external forcing, the pendulum’s motion is
governed by

0+ % sin(f) = 0,

where 6(t) is the angle from the downward vertical line, g is the gravitational constant,
and L is the length of the pendulum. How can we can write this as the nonlinear
first-order system?
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What are equilibrium solutions to this system? What would they represent physi-
cally?
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Since there’s no physical difference between angles that differ by 27, we’ll focus on
two of the equilibrium solutions (0,0) and (7,0). What’s the Jacobian look like for
both cases? How could information from the Jacobian help us sketch the phase plane?
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If this system is conservative (we intuitively know that it is!), what quantity is being
conserved?
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With the information that this system is ‘conservative, the linearized center is, in
fact, a nonlinear center. This tells us the Hamiltonian function is constant along the
contours/trajectories in the phase portrait. What is the lowest energy/Hamiltonian
function value the system attains? Where are those trajectories located and what do
they physically represent? o .
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With information about the equilibrium solutions and then ‘far-field” behavior, how
can we sketch the phase portrait?
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e The physically-relevant parameter regime is inside the separatrices; these trajec-
tories correspond to a pendulum acting like ‘normal.’

e At the saddle points, the pendulum is completely inverted and completely at rest.
The trajectories along the separatrices represent the ’delicate motions in which the
pendulum slows to a halt precisely as it approaches the inverted position.’

e Lastly, the unbounded trajectories represent an inverted pendulum where the pen-
dulum whirls repeatedly over the top.
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4. PENDULUM WITH DAMPING

Now, consider a pendulum with damping/friction governed by the system
. b,
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where b > 0 is a coefficient related to the damping strength. In comparing the phase
portraits of the undamped and damped cases below, we see the centers have become
spiral sinks and the saddles have remained saddles.
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In the damped situation, the pendulums are continuously losing energy due to friction.
If we think back to the undamped case, the energy of the system was constant for all
time since there were no outside forces acting upon the system. With the energy of
the system as
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how can we show the system is always losing energy?
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SECTION RECAP

What are some take-away concepts from this section?



