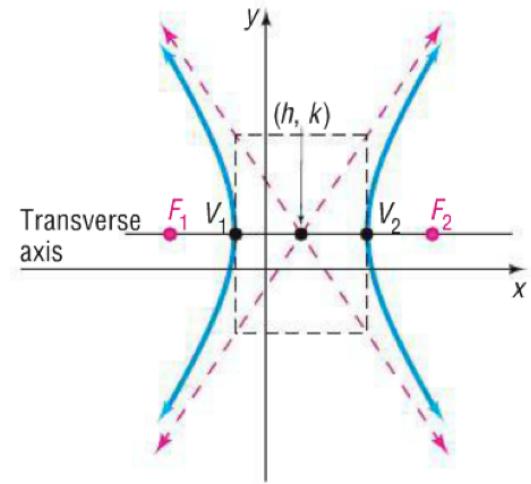
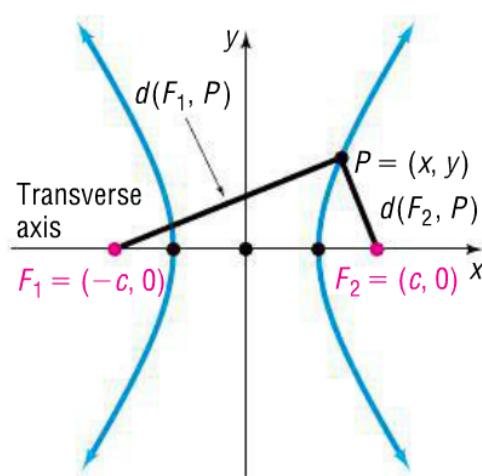


1. SECTION 11.4 THE HYPERBOLA

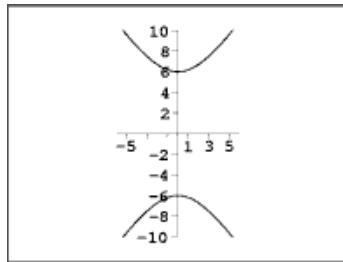
Definition 1.1. A **hyperbola** is the set of all points, $P = (x, y)$, such that the difference of the distances between two points, called the **foci** of the hyperbola, is constant.



The midpoint of the line segment joining the foci is the **center** of the hyperbola.

The **transverse axis** is the line through the foci, center, and vertices.

The **conjugate axis** is the line through the center perpendicular to the transverse axis.

The **vertices** of the hyperbola are the points where the hyperbola intersects the transverse axis.


The **branches** are the two separate curves.

2. EQUATIONS

Equation a^2 first/positive	$\frac{(x - h)^2}{a^2} - \frac{(y - k)^2}{b^2} = 1$	$\frac{(y - k)^2}{a^2} - \frac{(x - h)^2}{b^2} = 1$
relation between a , b , and c		
Transverse Axis		
Center		
Foci		
Vertices		
Asymptotes		
Sketch		

Example 2.1. Select the equation of the conic graphed below.

(A) $\frac{x^2}{36} - \frac{y^2}{28} = 1$

(B) $\frac{x^2}{28} - \frac{y^2}{36} = 1$

(C) $\frac{y^2}{36} - \frac{x^2}{28} = 1$

(D) $\frac{y^2}{28} - \frac{x^2}{36} = 1$

Example 2.2. Write (using lower case x and y) the formula for the hyperbola with center $(0, 0)$, vertex at $(0, -6)$, and an asymptote $y = 2x$.

Example 2.3. Find the equation of the hyperbola with foci at $(-2, 2)$ and $(4, 2)$ and vertex at $(3, 2)$.

Example 2.4. Find the center, foci, vertices, transverse axis, conjugate axis, and the asymptotes for the conic

$$\frac{x^2}{8} - \frac{y^2}{16} = 1.$$

Example 2.5. Find the center, foci, vertices, transverse axis, conjugate axis, and the asymptotes for the conic

$$2(x + 1)^2 - (y - 2)^2 = 16.$$

Example 2.6. Analyze the equation. (In other words, find the type of conic and where applicable vertices, foci, directrix, asymptotes, etc.)

$$4x^2 + 9y^2 - 16x - 18y = 11$$

Example 2.7. Analyze the equation.

$$4x^2 - y^2 + 8x + 4y = 4$$

Example 2.8. Analyze the equation.

$$0 = y^2 - 8x - y + 3$$