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Objective

We use the system of partial differential equations (PDEs) composed of the
Navier-Stokes-Boussinesq equation and an advection-diffusion equation for
heat to investigate how an obstruction affects the natural convection of an
incompressible fluid inside a square enclosure heated from below.

Introduction
Rayleigh-Bénard convection describes natural convection where a fluid is
heated from below. When a fluid is heated, it becomes less dense; therefore,
hotter fluid rises due to buoyancy, while cooler fluid sinks. This problem
has been the focus of much published literature due to its many applica-
tions in engineering, physics, and mathematics. However, literature detailing
this kind of convection with an obstruction in the domain is much less frequent.

To describe how the fluid behaves as a result of a temperature difference within
an enclosure, we consider the following PDEs: the Navier-Stokes-Boussinesq
equation, the incompressibility condition, and the advection-diffusion equation,
which are respectively:
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where the velocity vector ~u, pressure p, and temperature θ are variables of
interest, ~k is the upward pointing unit normal vector, while Pr and Ra are
the Prandtl and the Rayleigh numbers, respectively. The Rayleigh number
is a non-dimensional constant describing the heat difference between the top
and bottom surfaces of the enclosure, and the Prandtl number, Pr, is a
dimensionless ratio of momentum diffusivity to thermal diffusivity.

The velocity fields and temperature profiles in Figure 1 are computed for an
enclosure without an obstruction, allowing us to use the work of Ouertatani
et al. (2008) as benchmark for our numerical solutions.

Figure 1: Temperature and velocities fields for cases without an obstruction.

Numerical simulations
Since exact analytical solutions are, in general, impossible to find, we use a finite
element method (FEM) to approximate solutions to the system of PDEs. For
our mesh, the unit square domain is discretized and divided into a finite number
of small triangular elements, shown in the figure below. Then, the weak form
of our system is evaluated and satisfied on each element of the domain.

Figure 2: Examples of our discretized meshes.

One of our main quantitative benchmarks is the local Nusselt number, defined
below, that quantifies the vertical flux due to convection. More vigorous con-
vection correlates to a higher NuL value at the boundary.
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The cases without an obstruction were considered in Ouertatani et al. (2008),
and our results show good agreement with theirs; this comparison helped confirm
that our code was working as it should. We then added in an obstruction to
see if it influenced the local Nusselt numbers– these results are shown in Figure
3. For the middle obstruction results in the left panel, we see the NuL(x)
profiles follow similar paths; this suggests that an obstruction in the middle of
the domain does not notably influence convection. However, for the obstruction
towards the side of the domain (right panel), we obtained qualitatively different
behavior compared to the cases without an obstruction, suggesting that the
location of obstructions can significantly alter convection.

Figure 3: Local Nusselt numbers on the lower boundary of the domain. On the left: no
obstruction (solid) vs. middle obstruction (dashed), and on the right: no obstruction (solid)
vs. side obstruction (dashed).

Results
The cases with the middle obstruction all achieved a steady-state, similar to
the cases without an obstruction. However, the side obstruction cases did not
always settle down. For example, with Ra = 106 and the side obstruction,
we observed periodic behavior– a stark contrast to cases with no obstruction
and the middle obstruction– suggesting that the location of an obstruction can
produce noticeably different behavior with convection.

Figure 4: Temperature profiles for Ra = 106 from four times in one period.

Conclusions, and Future Work

The centered circular obstruction we investigated had no significant effect on
convection. However, obstruction towards the side can affect significantly
convection. Future work will investigate how the size and placement of
obstructions affects convection.
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