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ABSTRACT

We perform linear and nonlinear stability analyses for thermal convection in a fluid overlying

a saturated porous medium, in addition to conducting novel numerical simulations. We use a

coupled system, with the Navier-Stokes equations and Darcy’s equation governing the free-flow

and the porous regions, respectively. Incorporating a dynamic pressure term in the Lions interface

condition (which specifies the normal force balance across the fluid-medium interface) permits an

energy bound on the typically uncooperative nonlinear advection term, enabling new nonlinear

stability results. Within certain regimes, the nonlinear stability thresholds agree closely with the

linear ones, and we quantify the differences that exist. We then compare stability thresholds

produced by several common variants of the tangential interface conditions, using both numerics

and asymptotics in the small Darcy number limit. Furthermore, we investigate the transition

between full convection and fluid-dominated convection using both numerics and a heuristic theory.

This heuristic theory is based on comparing the ratio of the Rayleigh number in each domain to

its corresponding critical value, and it is shown to agree well with the numerics regarding how

the transition depends on the depth ratio, the Darcy number, and the thermal-diffusivity ratio.

Finally, we detail the numerical methods used to simulate the coupled system. Our analyses and

the heuristic theory are then verified with our numerical results.
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CHAPTER 1

INTRODUCTION

Water is one of the most ubiquitous and important resources on Earth; humans and most organisms

are composed of it, a majority of our planet is covered in it, and humanity’s survival depends on it.

Despite our dependence on water, there are still many unanswered questions surrounding it, many

of which concern fresh water. While fresh water is a renewable resource, this ‘renewable’ status is

contingent upon proper management, and unfortunately, water is one of the most poorly managed

and regulated resources on Earth. To exacerbate this problem, humanity is depleting our water

supplies at unprecedented rates. As we begin to exhaust these resources more and more rapidly,

understanding and studying water resources becomes increasingly crucial.

Roughly 2.5% of the world’s water is freshwater, and about 30% of that freshwater comes in the

form of surface- or groundwater [45]. A large portion of this drinkable water resides in karst aquifers,

which are extremely prevalent throughout the southeastern US, especially Florida. In fact, aquifers

lie underneath a majority of Florida: Miami lies above the Biscayne aquifer, and Jacksonville is

over the Floridian aquifer. To use these aquifers, companies drill down and pump out water which

is almost immediately drinkable. Water made its way through limestone over thousands of years,

naturally removing impurities. Companies then aerate the water to remove iron, and add fluoride

and a phosphate for dental health and preventing pipe corrosion, respectively. This process in

Florida is much less involved than other purification processes and produces some of the cheapest

water rates in the country. The water quality also attracts companies from other industries, like

breweries, which rely on high-quality water to be successful.

While not providing drinkable water or substantial economic benefits to the region, sinkholes

and springs connected to aquifers are extremely common around Florida and Tallahassee. In Figure

1.1, we show one of these sinkholes, Cherokee Sink, outside of Wakulla, FL. For the formation of

this sinkhole, ground- and rainwater eroded away limestone to create an underground cavity. As

the cavity became too large, the roof collapsed and left a large hole in the ground. Rainwater, in

addition to water from the water table, then filtered through the limestone to fill the sinkhole. The
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result is a 77 foot deep sinkhole, mainly used for swimming and cave-diving. However, Cherokee

Sink is not an anomaly for the area; it is part of the Wakulla-Leon Sinks cave system, the longest

underwater cave system in the United States which spans over 31 continuous miles of underground

caves.

(a) The sinkhole. (b) The author doing research on
sinkholes.

Figure 1.1: Cherokee Sink, outside of Wakulla Springs, FL.

Sinkhole formation highlights the interplay of surface- and groundwater and provides the main

theme of this dissertation: fluid flow in coupled fluid-porous media systems. The phenomenon of

fluid flowing over a porous medium has been observed, studied, and scrutinized for more than a

century in a variety of settings. This coupling is dominant in geophysical applications as discussed

above, with the mixing of surface water and groundwater [13, 15, 19, 39, 40], contaminant transport

and bioremediation efforts [25, 88], and flow within oil reservoirs [2, 3]. However, coupled fluid-

porous systems have other applications as well, with alloy solidification and industrial settings with

heat-sinks. But, given the urgent need to understand water resources more fully, investigating the

interaction between surface- and groundwater is particularly timely [98].
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In this dissertation, we focus on the interaction between surface- and groundwater by investi-

gating how fluid flows between a free-flow region and a porous medium. We also consider variable

temperature since temperature profiles in fluids can vary drastically with depth. With a system of

equations governing how fluids behave coupled with an equation detailing how temperature evolves,

the novel work conducted in this dissertation centers on determining the stability criteria needed

for convection cells to arise as well as simulating the system numerically.

1.1 Stability

One of the dominant motifs in this dissertation is stability. Stability describes how a system

reacts to a perturbation. For example, consider a ball at the bottom of a valley and a ball perched

precariously at the top of a hill, shown in Figure 1.2. If we ‘perturb’ the ball at the bottom

of the hill, it will return to its original position; therefore, we say that this system is stable to

perturbations. In contrast, if we perturb the ball atop the hill at all, it will roll away from its

original position. This system would be described as unstable to perturbations since any change

to the ball’s position results in it rolling away. So, in layman’s terms, stability can be described as

perturbing a system and seeing how the system reacts.

Figure 1.2: Illustrating the concept of stability.

Mathematically, stability can be described in a more quantitative sense. To illustrate this

concept, consider the diffusion equation with the solution u(x, t):

∂u

∂t
=
∂2u

∂x2
for x ∈ R, t > 0.
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An obvious steady-state solution to this system is the trivial solution ū(x, t) ≡ 0, denoted with

an overbar. To determine if this steady-state solution is stable or unstable to perturbations, we

perturb the solution and see what happens to it as time goes on. With the perturbation eσteikx

(where k > 0 signifies the wavenumber of the perturbation), we substitute

u(x, t) = ū+ eσteikx

into the diffusion equation. This yields

σ = −k2 < 0.

With σ < 0, the perturbation eσteikx does not grow in time (as t → ∞) since the magnitude of

the perturbation is dictated by the eσt term. Since the perturbed steady-state solution returns

to the trivial solution as time goes on, we say the steady-state solution is stable with respect to

perturbations:

u(x, t) = ū+ eσteikx → ū as t→∞.

Throughout this dissertation, we will be using the concept of stability to describe flow patterns

and fluid behavior while heating fluids. Specifically, we are interested in stability with convection

geophysical fluids, such as with groundwater that has some temperature difference throughout the

fluid. In the following sections, we describe previous work with convection in fluids to help motivate

our problem.

1.2 Introduction to Rayleigh-Bénard convection

In the late-1800s, Henri Bénard, a physics student at the Collège de France, began performing

experiments on thermal convection in a thin layer of fluid heated from below. In his experiments,

the liquid layer was usually less than a millimeter deep with a horizontal, heated metal plate below

and a free surface atop. The free surface at the top of the liquid (in contact with air) was at a lower

temperature than the bottom plate and with the resulting temperature gradient, patterns began to

appear in the form of hexagonal cells. Bénard speculated that this was due to buoyancy-driven flow

brought about by the temperature differences in the fluid layer. Additionally, he noticed that these

cellular instabilities did not arise if the temperature difference between the bottom surface and

the top surface was not above some threshold. Bénard hypothesized that there was some critical
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temperature necessary for these instabilities to occur. These experiments were the first organized

(and published) experiments of their kind.

In 1900, armed with these experimental observations, Bénard published a series of four papers

based on his experimental findings regarding convective cells [6, 7, 8, 10]. A year later, he defended

his thesis titled “Les Tourbillons cellulaires dans une nappe liquide propageant de la chaleur par

convection: en régime permanent” (“Cellular vortices in a liquid layer propagating heat by convec-

tion: in a steady state”) [9]. His four papers and thesis became seminal works in the developing

field of hydrodynamic instabilities, eventually laying the groundwork for Rayleigh-Bénard convec-

tion and Bénard-Marangoni flow (surface-tension-driven flow of a fluid confined between horizontal

conducting surfaces). Bénard’s observations and theories would go undisputed until the mid-1950’s.

1.2.1 Early work

In 1916, Lord Rayleigh aimed to explain Bénard’s results theoretically in his paper, “On Con-

vection Currents in a Horizontal Layer of Fluid, when the Higher Temperature is on the Under

Side” [76]. With the Boussinesq equations, but neglecting viscosity, Lord Rayleigh conducted a

linear stability analysis to determine the wavelength of maximum instability for the case where the

top and bottom surfaces are fixed. Next, viscosity was included in the governing equations and a

similar linear stability analysis was conducted. While Lord Rayleigh’s work was mainly theoreti-

cal, he did find the critical temperature difference for a specific case which was in agreement with

Bénard’s work. This work was pivotal to the research of later mathematicians.

Almost 25 years later, Pellew and Southwell revisited Bénard’s experimental observations and

used Rayleigh’s theoretical results to generalize the stability argument to cases with rigid surfaces

or free surfaces [73]. With the Boussinesq equations as the governing system, Pellew and Southwell

determined appropriate boundary conditions for the following cases where the top and bottom

surfaces of the fluid are: both free, both rigid, and lastly, one surface is free while the other is

rigid. Then, with a linear stability argument, they considered the case of marginal stability (where

the time component of the perturbations, eσt, has σ = 0), derived exact solutions, and determined

critical thresholds for instabilities to occur. Pellew and Southwell did not refer to the Rayleigh

number by name (since the term ‘Rayleigh number’ had not been popularized yet). However, their
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results for the critical threshold revolved around criteria concerning the number:

βγh4

kν
,

where β is the mean temperature gradient, γ = gα is gravity times the coefficient of thermal

expansion, h is the height of the fluid, k is the coefficient of thermal diffusivity, and ν is kinematic

viscosity (all following their notation). They stated if this number was above a critical value,

instabilities would begin to occur in the fluid. Their paper detailed the approximate critical value

for each of the three cases of boundary conditions. To obtain this stability criterion, a sixth-order

differential equation was (non-trivially) solved.

In [77], Reid and Harris presented several methods to approximate the solution to the differential

equation used to determine the critical Rayleigh number as well as the eigenfunctions of the spatial-

and temperature-components of the perturbations. They compared the critical Rayleigh numbers

attained by their approximations to the exact solutions, citing nice agreement for each of their

methods. Like a majority of the work conducted in [73], Reid and Harris only considered the case

of marginal stability.

1.2.2 The mid-1950s

In 1956 and 1958, Block and Pearson showed physically and theoretically that the convection

cells Bénard observed in his experiments were, in fact, not due to a thermal instability associated

with the heated fluid rising to the top of the fluid layer due to density differences [12, 72]. The

convection cells had developed by the variation of surface tension due to the temperature gradient.

With thin layers of fluid (like in Bénard’s experiments), the density variations were much less

dominant than differences in surface tension. In Bénard’s observations, he noticed that the middle

of the hexagonal cells was slightly depressed in comparison to the cellular boundaries. However,

Bénard never spoke of the role of surface tension in the instabilities. As Drazin and Reid so cleverly

stated in [37]: “In spite of this ironic discovery, the convection in a horizontal layer of fluid heated

from below is still called Bénard convection.”

1.2.3 From one layer to two layers

In the mid-1960s, Beavers and Joseph proposed their eponymous slip condition at a permeable

boundary. While their research was mainly experimental, it allowed others to consider a fluid layer
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overlying a porous medium saturated with the same fluid. About a decade later, Nield investigated

a fluid overlying a porous medium with the addition of heat [66]. Using steady Navier-Stokes and

steady Darcy with the steady advection-diffusion equations, Nield presented the first linear stability

analysis of the coupled system. This spurred a multitude of related papers regarding stability in

coupled, two-layer systems.

1.3 Coupled system: stability analysis review

In [54], Straughan and Hill, advisor and advisee, analyzed a similar situation for thermal con-

vection in a fluid over a porous medium. Based on several assumptions they made about their

system, the equations they used are not appropriate for geophysical applications. First, they con-

sidered a highly porous medium, necessitating the use of the Brinkman equation to govern the fluid

flow in the porous medium instead of the Darcy equation. And second, the Stokes equation was

used to model the fluid in the free flow since the nonlinear advection term u · ∇u in Navier-Stokes

creates several issues associated with nonlinear stability arguments. They then performed linear

and nonlinear stability analyses for the Stokes-Brinkman system and asserted that the linear and

nonlinear stability results system agree well. The centerpiece of this work was the conclusion that

“the linear theory accurately encapsulates the physics of the onset of convection.”

Shortly after [54], Hill and Carr (another student of Straughan) considered the same system in

[52]: thermal convection in a fluid over a porous medium. This time though, the nonlinear term

u · ∇u was included, as Navier-Stokes was used for the free flow zone. The Brinkman equation

was used in the porous medium though with the assumption it has a high porosity (χ > .75).

While the ‘high porosity’ assumption is realistic with industrial applications, like foametals which

are widely used in applications like lightweight structures, biomedical implants, heat exchangers,

and chemical reactors [60, 83], assuming a high porosity is not appropriate for general geophysical

settings. For their analysis, Hill and Carr adopted a one-domain approach to the problem. That

is, instead of separate systems of equations for the fluid in the free flow and the fluid in the porous

medium, a single equation is used to model the fluid in the entirety of the domain. This method

avoids having to explicitly formulate interface conditions between the free flow zone and the porous

medium. With the one-domain approach, the authors determined unconditional nonlinear energy

stability thresholds and compared those thresholds to linear counterparts of one- and two-domain
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approaches. The main result of this paper was that the linear and nonlinear stability thresholds

“show good agreement, demonstrating that the [one-domain] approach captures the behavior as

modelled by the more widely used two-domain model” and the onset of convection is well-captured

in both approaches

In [53], Hill and Carr conducted a similar analysis for a fluid over a saturated porous medium

with a high porosity; however, the nonlinear advection term was included in this argument. Instead

of the Navier-Stokes equation for the fluid in the free flow, the authors used a model proposed by

Ladyzhenskaya in the late 1960’s, which is used as an alternative to Navier-Stokes. The model by

Ladyzhenskaya is “a well-known model in viscoelasticity,” used and discussed in detail throughout

many of Straughan’s works [84, 86, 87]. To model the fluid in the free flow, Hill and Carr used:

ρ0

(
∂uf

∂t
+ uf · ∇uf

)
= −∇pf + 2∇ [(µ(Tf ) + µ1|Df |)D(uf )]− gρ0k (1− α (T − T0))

where µ(Tf ) is the temperature-dependent dynamics viscosity, µ1 > 0 is a constant parameter, and

|Df | = (D(uf )D(uf ))
1/2 where D(uf ) = 1

2

(
∇uf +∇uf

T
)

is the rate of strain tensor. We note that

the viscous term of the equation,

µ(Tf ) + µ1|Df |,

includes temperature dependency and also the magnitude of the rate of strain tensor; this allows

two factors to determine the role of viscosity. The temperature effects could dominate, or the

D(uf ) term could be the main influence on the viscosity’s role in the equation. The last term of

Ladyzhenskaya’s model above is the Boussinesq approximation, describing temperature-dependent

density where the density is determined by a linear profile in temperature. Like their works detailed

above, this paper shows that “the linear instability and nonlinear stability results clearly show

excellent agreement,” and Hill and Carr conclude that “the linear theory accurately encapsulates

the physics of the onset of convection.”

With their work in [21], Carr and Straughan analyzed the coupled system of a fluid layer over-

lying a porous medium. This time, however, the Beavers-Joseph-Saffman-Jones (BJSJ) condition

was used for the interface. Using the BJSJ interface condition in this work and not their other

papers on the coupled fluid-porous medium system is a result of the assumption that the porosity

in the porous medium is small enough so that there will be a jump in the tangential velocity across

the interface. With their previous papers [52, 53, 54], the porosity of the porous medium was
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high enough (usually, they assumed χ > .75) so that the governing equation was Brinkman and

there was no jump in the velocity across the interface. As they lost the ‘high-porosity assumption’

though, the continuity of tangential stresses across the interface was lost as well which necessitated

the use of the BJSJ interface condition. Additionally, a quadratic equation of state specific to water

between 0◦ and 4◦C was used for the buoyancy terms in the free flow and porous medium since the

authors applied their analysis of penetrative convection to the geophysical problem of patterned

ground formation.

Before Straughan, Carr, and Hill performed their analyses, a separate group of Chen, Hsu,

and Lu studied the effects of different fluid and medium characteristics on the resulting streamline

and isotherm patterns associated with the onset of thermal convection in the coupled fluid-porous

medium system in [27, 28]. With their work in [28], variable viscosity was considered and ana-

lyzed. For the governing equations, the steady-state Navier-Stokes and Darcy equations were used

with the steady state advection-diffusion equation to govern heat. The work conducted in [27]

investigated the coupled system with the assumption that the porous medium was anisotropic and

inhomogeneous. For both works, results were shown regarding the influence of variable viscosity,

permeability, and thermal diffusivity each have on convection in the system of a fluid layer overlying

a porous medium.

The work of the two groups above (Straughan et al., and Chen et al.) laid the foundations for

the analyses presented in this dissertation, specifically the nonlinear analysis conducted in the next

chapter.

This dissertation is organized into the following chapters: Chapter 2 presents the novel nonlinear

stability arguments and results, Chapter 3 details numerical methods and our algorithms to simulate

convection in single layers- a fluid region, and a porous medium- as well the coupled system,

Chapter 4 outlines our (improved) heuristic theory for predicting parameter regimes necessary

for a transition from full- to fluid-dominated convection, and our conclusions are summarized in

Chapter 5. The two appendices contain our asymptotic results for small Darcy numbers, and a

discussion about the finite element method along with how it is implemented.
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CHAPTER 2

NONLINEAR STABILITY ANALYSIS FOR THE

NAVIER-STOKES-DARCY-BOUSSINESQ SYSTEM

2.1 Introduction

To gain useful insight into the nature of coupled fluid-porous systems, both linear and nonlinear

stability arguments have been conducted and analyzed [52, 53, 54]. However, the presence of

nonlinear advection (u · ∇)u can hinder nonlinear stability analysis since, when coupled to non-

trivial interface conditions, it produces a sign-indefinite term in the energy bound. As a result,

the nonlinear stability of the coupled Navier-Stokes-Darcy system—the most well-accepted model

for fluid-porous systems in geophysical applications—remains unresolved. Building upon previous

work [52, 53, 54, 71], the primary goal of the current study is to analyze nonlinear stability of this

coupled system and to examine the associated convection patterns.

To overcome the indefinite term in the energy analysis, researchers have adopted various ap-

proaches. Several works forgo the nonlinear term altogether by exploring linear stability of the

Navier-Stokes-Darcy-Boussinesq system. Many of these works also include additional physical ef-

fects, such as variable viscosity or permeability, quadratic equations of state for thermal expansion,

and anisotropic or heterogeneous porous media [20, 21, 26, 27, 28, 66, 83]. Other strategies to treat

or avoid the nonlinear term include using Stokes in lieu of Navier-Stokes in the free-flow zone [52],

or considering the Navier-Stokes-Brinkman system so that the convective term of the free-flow has

a corresponding term in the porous medium [54]. The Brinkman equations apply to highly porous

media (e.g. porosity greater than .75), which is a common and physically realistic assumption for

many industrial applications such as lightweight structures, biomedical implants, heat exchangers,

and chemical reactors [60, 83]. However, for many flows of geophysical interest (e.g. karst aquifers,

sinkholes, hyporheic flow, contaminant transport), the porosity is very small and Darcy is the most

appropriate equation to model its fluid flow.

A fundamental assumption made in linear stability analyses is that perturbations to the steady-

state are small and consequently, the effects of quadratic and higher order terms are lost. As a
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result, there is limited information about the behavior of the nonlinear system and a possibility

for subcritical instabilities—those that occur prior to the threshold predicted by the linear theory.

Nonlinear stability analyses take higher order and nonlinear terms into account, thereby providing

a more holistic understanding of the mechanisms that create convection and the interplay between

them.

In this chapter, we investigate thermal convection in a fluid overlying a saturated porous medium

within the Navier-Stokes-Darcy-Boussinesq model via the energy method. To overcome the diffi-

culty associated with the nonlinear term, we employ the Lions interface condition, which incorpo-

rates a dynamic pressure term into the normal-force balance1. When the Lions interface condition is

used in tandem with the Beavers-Joseph-Saffman-Jones (BJSJ) condition, the Navier-Stokes system

satisfies an energy law. That is, the energy associated with the nonlinear term of Navier-Stokes can

be bounded. We outline the linear argument for the coupled system and then conduct the nonlinear

stability analysis, followed by a comparison of marginal stability curves produced by each approach.

In addition, while a considerable amount of effort has been placed on determining the appropriate

models for fluid flow in surface- and groundwater regions, there is less of a consensus on choosing a

condition for the shear-stress balance. Many works specify that the shear stress must balance with

a jump in tangential velocity, or some variant thereof. Popular choices for this interface condition

are the Beavers-Joseph condition (BJ), the Beavers-Joseph-Jones condition (BJJ), and the BJSJ

condition. We show the relative difference between curves produced by the BJSJ condition versus

those produced by either BJ or BJJ scales like the Darcy number, Da, while the absolute differences

scale like Da2. Thus, differences between these choices are small in the physically relevant regime

of small Darcy number.

Convection in a fluid overlying porous media is much more complex than its single layer coun-

terparts, with more physical parameters affecting the heat transport. One physically important

phenomenon is the transition from full convection, where convection cells envelope the entire do-

main, to fluid-dominated convection, where the cells are confined to the free-flow region. Parameters

that influence this transition include the Darcy number, the ratio of free-flow to medium depth,

and the ratio of the thermal diffusivities. We propose a simple theory, based on comparing the

1A formal asymptotic analysis justifying the smallness of this dynamic pressure at the physically important small
Darcy number regime is included in Appendix A.
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critical Rayleigh numbers of the two layers, to predict this transition. Numerical tests confirm that

this theory indeed predicts the transition with reasonable accuracy.

The rest of the chapter is organized as follows. We introduce the mathematical formulation

of the problem, including the governing equations, the boundary and interface conditions, and

the nondimensionalization, in section 2.2. We summarize the linear stability analysis in section

2.3 while section 2.4 is devoted to the nonlinear stability analysis. Main results are outlined and

discussed in section 2.5. We offer our conclusions in section 2.6. Formal small Darcy number

asymptotic expansions are included in Appendix A.

2.2 Formulation of the problem

In this section, we describe the governing equations along with the boundary and interface

conditions. We then find steady-state solutions, which serve as reference states for the stability

analyses, and we nondimensionalize the resulting system.

2.2.1 Governing equations

In the free-flow zone, we use the incompressible Navier-Stokes equations with constant viscosity

and the Boussinesq approximation, coupled with the advection-diffusion equations for heat:



ρ0

(
∂uf

∂t
+ (uf · ∇)uf

)
= ∇ · T (uf , pf )− gρ0 [1− β (Tf − T0)]k ,

∇ · uf = 0 ,

∂Tf
∂t

+ uf · ∇Tf =
κf

(ρ0cp)f
∇2Tf ,

(2.1)

where uf = (uf , vf , wf ), pf , and Tf are the free flow velocity, pressure, and temperature, respec-

tively, with g, ρ0, β, and T0 as acceleration due to gravity, the reference density of the fluid, the

coefficient of thermal expansion, and the temperature of the conductive state at the interface, re-

spectively. The stress tensor and rate of strain tensor are defined as T(uf , pf ) = 2µ0D(uf )−pf I and

D(uf ) = 1
2

(
∇uf +∇uf

T
)
, respectively, with µ0 as dynamic viscosity and k as the upward pointing

unit normal. Additionally, κf , cp, and λf = κf/ (ρ0cp)f are the thermal conductivity of the fluid,

specific heat capacity of the fluid, and thermal diffusivity of the fluid, respectively.
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For fluid flow in porous media, the Darcy or Brinkman equations are the prevailing choice in the

literature. For porous media with relatively large porosity (χ > .75), Brinkman is more appropriate

than Darcy. Darcy is valid under the assumption that the medium has a small porosity [4, 68],

generally applicable to geophysical systems. We therefore employ the Darcy system with the

advection-diffusion equation for heat:

ρ0

χ

∂um

∂t
+
µ0

Π
um = −∇pm − gρ0 [1− β (Tm − TL)]k ,

∇ · um = 0 ,

(ρ0cp)m
(ρ0cp)f

∂Tm
∂t

+ um · ∇Tm =
κm

(ρ0cp)f
∇2Tm ,

(2.2)

where um = (um, vm, wm), pm, and Tm are the velocity, pressure, and temperature in the porous

medium respectively, χ and Π are the porosity and permeability, λm = κm/ (ρ0cp)f is the thermal

diffusivity of the medium, and TL is the temperature at the lower boundary of the domain. In this

work, we assume the medium to be homogeneous and isotropic so that the permeability Π is constant

and scalar-valued. For anisotropic media, the permeability Π would be tensor-valued. The thermal

conductivity κm and specific heat capacity (ρ0 cp)m of the porous medium are defined as averages of

the fluid and solid components. Many references simply use an arithmetic average [52, 53, 54] φm =

χφf+(1− χ)φs, where φ represents either thermal conductivity or heat capacity. However, we point

out that homogenization theory gives the harmonic average, φ−1
m = χφ−1

f +(1− χ)φ−1
s . Though we

advocate the latter approach, the analysis presented here is independent of which average is used.

We also remark that, since we are studying the onset of convection, the thermal conductivity and

specific heat are intrinsic values and not effective values which incorporate dispersive effects.

The time derivative ∂tum in the first equation of (2.2) is often neglected since it is heuristically

small at small Darcy number. Inclusion of this term in Darcy’s equation has been debated in the

literature [95]. In this paper, we include the time derivative primarily for the benefit of the energy

analysis, although a welcome side effect is that this term would allow more accurate description

of temporal transitions. Several works concerning linear stability, [18, 27, 28, 67], exclude time

derivatives of the Navier-Stokes and/or Darcy equations by invoking the principle of exchange of

stabilities. We note that this principle has not been rigorously established for the coupled system,

and therefore we do not assume it. Our numerics, however, suggest that the principle seems to

hold in practice.
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Figure 2.1: Schematic of the domain Ω = {(x, y) ∈ R2 × z ∈ (−dm, df )}, comprised of a free-flow
region Ωf and a porous medium Ωm. The two subdomains meet at an interface Γi. The upper
and lower boundaries are impermeable and held at constant temperatures TU and TL, respectively,
with TL > TU .

2.2.2 Boundary and interface conditions

For the domain, shown in Figure 2.1, we assume flat, horizontal, non-penetrable plates at the top

and bottom with a non-deforming interface between the two regions, Ωf = {(x, y) ∈ R2×z ∈ (0, df )}

for the free flow and Ωm = {(x, y) ∈ R2 × z ∈ (−dm, 0)} for the porous medium. The temperature

is held constant at the top and bottom plates. For the flow, we use a free-slip condition at the top

and an impermeable condition at the bottom,{
Tf = TU , uf · n = ∂uf τ

∂n = 0 , at z= df ,

Tm = TL , um · n = 0 , at z= −dm ,
(2.3)

where uf τ = (vf , wf ) denotes the tangential (horizontal) components of the velocity at the top of

the domain with n as the unit normal vector.

At the interface Γi (z = 0), we require continuity of temperature, heat flux, and the normal

component of velocity:

Tf = Tm , (2.4)

kf ∇Tf · n = km∇Tm · n , (2.5)

uf · n = um · n . (2.6)

The next condition must involve the tangential stress at the interface. The primary condition

considered here is the Beavers-Joseph-Saffman-Jones (BJSJ) condition [79], also known as the
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Navier-slip condition, which relates the shear stress to the tangential velocity:

−τ · T (uf , pf )n =
µ0 α√

Π
τ · uf , (2.7)

where α is an empirically determined coefficient and τ denotes the unit tangent vectors. Our

nonlinear stability analysis will rely on the BJSJ condition. This condition is debated in the

literature, and we will therefore consider a few alternatives in the linear analysis, namely the

Beavers-Joseph (BJ) condition [5] and the Beavers-Joseph-Jones (BJJ) condition [56]. All three

conditions can be represented concisely as

∂uf,γ
∂z

+ ΨJ
∂wf
∂xγ

=
α√
Π

(uf,γ −ΨS um,γ) for γ = 1, 2 ,

where ui,γ is the γ component of the velocity in Ωi, and ΨJ ,ΨS ∈ {0, 1} are switches associated

with the Jones correction and the Saffman approximation terms, respectively. The BJ condition

corresponds to ΨJ = 0 and ΨS = 1, the BJJ condition to ΨJ = 1 and ΨS = 1, and the BJSJ

condition to ΨJ = 1 and ΨS = 0. The BJJ is considered to be the most physically accurate, as it

relates the shear stress to the jump in the tangential velocity across the interface. The BJ condition

omits the term ∂wf/∂xγ in the shear stress [21, 26, 27, 28]. Meanwhile, the Saffman approximation

drops the Darcy velocity in the right-hand-side, which is relatively small in magnitude as long as

the Darcy number is small. Thus, since our nonlinear analysis relies on the BJSJ condition, it will

be limited to the physically relevant regime of small Darcy number.

In [83], Straughan compares the BJ and BJJ conditions, showing that the linear marginal

stability curves produced by each are almost the same. In section 2.5, we expand upon Straughan’s

findings by showing that the three interface conditions each produce similar marginal stability

curves. Specifically, we show the relative difference between curves produced by the BJSJ condition

versus those produced by either BJ or BJJ scales like Da in the small Darcy number regime.

The last interface condition concerns the balance of force in the normal direction, and there are

two options:

−n · T (uf , pf )n + ΨL
ρ0

2
|uf |2 = pm , (2.8)

where ΨL ∈ {0, 1} is a switch for the dynamic pressure term, ρ0
2 |uf |2. The most common choice

in the literature is ΨL = 0 which renders Eq. (2.8) linear. For nonlinear analysis, we will choose
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ΨL = 1, which is known as the Lions interface condition [22, 23, 30, 33, 44]. This choice gives

rise to an energy law which facilitates the analysis significantly. In the appendix, we show that the

dynamic pressure term is order Da for small Darcy number.

2.2.3 Steady-state and perturbed system

First, we introduce the following steady-state solution, known as the conductive state (denoted

with an overhead bar):

ūf = ūm = 0 ,

T̄f = T0 + z
TU − T0

df
,

T̄m = T0 + z
T0 − TL
dm

.

Here, T0 represents the interface temperature of the conductive solution

T0 =
κm df TL + κf dm TU

κm df + κf dm
.

If TU > TL, the conductive state is stable, but if TL > TU , buoyancy can destabilize the system. In

this paper, we consider the latter case. Additionally, we choose p̄f and p̄m to satisfy

∇p̄f = −gρ0

(
1− β

(
T̄f − T0

))
k ,

∇p̄m = −gρ0

(
1− β

(
T̄m − TL

))
k .

We perturb the steady-state as follows:

uf = ūf + vf , um = ūm + vm ,

Tf = T̄f + θf , Tm = T̄m + θm , (2.9)

pf = p̄f + πf , pm = p̄m + πm ,

where vj , θj , and πj are the perturbation variables. In the linear stability analysis, the perturbations

are assumed to be small compared to the background state. However, with the nonlinear analysis,

there is no assumption concerning the magnitude of the perturbations. Substituting (2.9) into the
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original system produces:

In Ωf :



ρ0

(
∂vf

∂tf
+ (vf · ∇)vf

)
= ∇ · T (vf , πf ) + ρ0gβθfk ,

∇ · vf = 0 ,

∂θf
∂tf

+ vf · ∇θf = λf∇2θf − wf
(
TU − T0

df

)
,

for (x, y, z, t) ∈ {R2 × (0, df )× (0,∞)},

In Ωm :



µ0

Π
vm = −∇πm + ρ0gβθmk ,

∇ · vm = 0 ,

%
∂θm
∂tm

+ vm · ∇θm = λm∇2θm − wm
(
T0 − TL
dm

)
,

for (x, y, z, t) ∈ {R2 × (−dm, 0)× (0,∞)}, and

On Γi :



θf = θm ,

κf∇θf · n= κm∇θm · n ,

vf · n= vm · n ,

µ0 α√
Π

(τ · vf ) = −τ · T (vf , πf )n ,

πm = −n · T (vf , πf )n + ΨL
ρ0

2
|vf |2,

for (x, y, 0, t) ∈ {R2 × (z = 0)× (0,∞)} with

% =
(ρ0cp)m
(ρ0cp)f

.

2.2.4 Nondimensionalization

We introduce the same scalings as [26, 83] with nondimensional variables denoted by tildes:

vf = ṽf
ν

df
, xf = x̃f df , tf = t̃f

d2
f

λf
, θf = θ̃f

(TU − T0) ν

λf
, πf = π̃f

ρ0 ν
2

d2
f

,

vm = ṽm
ν

dm
, xm = x̃m dm , tm = t̃m

d2
m

λm
, θm = θ̃m

(T0 − TL) ν

λm
, πm = π̃m

ρ0 ν
2

d2
m

,
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(where ν = µ0/ρ0 is the kinematic viscosity) which yields the systems (sans tildes):

In Ωf :



1

Prf

∂vf

∂tf
+ (vf · ∇)vf = 2∇ · D (vf )−∇πf − Raf θfk ,

∇ · vf = 0 ,

∂θf
∂tf

+ Prf vf · ∇θf = ∇2θf − wf ,

(2.10)

for (x, y, z, t) ∈ {R2 × (0, 1)× (0,∞)},

In Ωf :



1

χ

Da

Prm

∂vm

∂tm
+ vm = −Da∇πm − Ram θmk ,

∇ · vm = 0 ,

%
∂θm
∂tm

+ Prm vm · ∇θm = ∇2θm − wm ,

(2.11)

for (x, y, z, t) ∈ {R2 × (−1, 0)× (0,∞)}, and

On Γi :



d̂θf = ε2T θm ,

∇fθf · n= εT∇mθm · n ,

vf · n= d̂vm · n ,

d̂ α√
Da

(τ · vf ) = −τ · T (vf , πf )n ,

d̂2 πm = −n · T (vf , πf )n + ΨL
1

2
|vf |2,

(2.12)

for (x, y, 0, t) ∈ {R2 × (z = 0)× (0,∞)}. Here, the notation ∇j indicates the gradient with respect

to xj where j ∈ {f,m}.

We have introduced a total of seven dimensionless parameters. The first five are given by

d̂ =
df
dm

, εT =
λf
λm

, Da =
Π

d2
m

, Prf =
ν

λf
, Prm =

ν

λm
.

These parameters are, respectively, the depth ratio, the ratio of thermal diffusivities, the Darcy

number, and the Prandtl numbers of the free-flow and porous regions. The last two are the Rayleigh

numbers of the two regions

Raf =
gβ (T0 − TU ) d3

f

ν λf
, Ram =

gβ (TL − T0) Da d3
m

ν λm
= Raf

Da ε2T
d̂4

. (2.13)
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2.3 Linear stability

In this section, we briefly overview the linear stability analysis of system (2.10)–(2.12). For

additional details, the reader is referred to [83], which differs only in the interface condition chosen

in Eq. (2.7). Here, we set ΨJ = 1, ΨS = 0, corresponding to the BJSJ condition. The value of ΨL

is irrelevant since the dynamic pressure term is nonlinear and hence omitted in linear analysis.

Assuming perturbations to be small eliminates quadratic and higher-order terms from (2.10)–

(2.12). With the resulting linear system, we take the double curl to remove the pressure terms and

then, considering the third component, we substitute normal mode solutions

wj(x, t) = Fj(x, y) w̃j(z)e
σjt and θj(x, t) = Fj(x, y) θ̃j(z)e

σjt , (2.14)

for j ∈ {f,m}. Here, Fj(x, y) corresponds to a unimodal component of the horizontal planform in

each region with corresponding horizontal wavenumber aj . That is,

a2
j Fj(x, y) +∇2

H Fj(x, y) = 0

where ∇2
H = ∂2

∂x2
+ ∂2

∂y2
is the horizontal Laplacian operator. This modal decomposition defines the

structure of the convection cells [21, 37, 85, 87]. With (2.14), the real part of σj determines the

stability of the flow; if Re(σj) < 0 the corresponding normal mode decays in time and if Re(σj) > 0

it grows. From our nondimensional scalings, we note the following relationships:

af = d̂ am , σf =
εT

d̂2
σm , Raf = Ram

d̂4

Da ε2T
. (2.15)

Using the notation Df = d
dzf

and Dm = d
dzm

for spatial derivatives in Ωf and Ωm, respectively,

we acquire the system: Using the notation Df = d
dzf

and Dm = d
dzm

for spatial derivatives in Ωf

and Ωm, respectively, we acquire the system:

In Ωf , z ∈ (0, 1) :


σf
Prf

(
D2
f − a2

f

)
wf =

(
D2
f − a2

f

)2
wf + a2

f Raf θf ,

σfθf =
(
D2
f − a2

f

)
θf − wf ,

(2.16)

In Ωm, z ∈ (−1, 0) :


σm
χ

Da

Prm

(
D2
m − a2

m

)
wm = −

(
D2
m − a2

m

)
wm + a2

m Ram θm ,

σm % θm =
(
D2
m − a2

m

)
θm − wm ,

(2.17)
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On Γi, z = 0 :



d̂θf = ε2T θm ,

Dfθf = εTDmθm ,

wf = d̂ wm ,

d̂ α√
Da

Dfwf = D2
fwf ,

σf
Prf

Dfwf −D3
fwf + 3a2

fDfwf =
d̂4

χPrm
σmDmwm +

d̂4

Da
Dmwm ,

(2.18)

with the boundary conditions at the top and bottom of the domain:

At z = 1 : wf = Dfwf = θf = 0 , (2.19)

At z = −1 : wm = θm = 0 . (2.20)

2.3.1 Solving the linear system

System (2.16)–(2.20) constitutes a generalized eigenvalue problem for either σf or σm, which

we solve with the Chebyshev tau-QZ algorithm [36] implemented with the Chebfun package [38].

This algorithm first performs Chebyshev collocation [57, 64, 93] and then solves the resulting linear

system with the QZ method [47, 63]. Lastly, we make substitution (2.15) to find the marginal

stability curves in the (am,Ram) plane. For each wavenumber am, there is a Rayleigh number Ram

where the flow transitions from stable to unstable (i.e. Re(σj) changes from negative to positive).

The marginal stability curves, Re(σj) = 0, shown in section 2.5 delineate the boundary between

stable and unstable regimes.

To use the Chebyshev-tau method, we first transform both the fluid system (2.16) from zf ∈

(0, 1) and the porous system (2.17) from zm ∈ (−1, 0) to the Chebyshev domain zc ∈ (−1, 1) with

zc = 2 zf − 1 and zc = −2 zm − 1. This allows the outer-boundaries of the physical domain to be

mapped to zc = 1 while both interfaces are mapped to zc = −1. The mapping is detailed in Table

2.1.

With D as the discretized spatial derivative instead of Df and Dm as the derivatives in the fluid

and medium and Af defined as an independent variable for convenience (in the style of Straughan

et al.), we have the linear system to solve (2.16)–(2.18):
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Table 2.1: Transformations from the nondimensional domain to the Chebyshev domain.

Nondimensional
Domain

Transformation
=⇒

Chebyshev
Domain

Top of fluid region: zf = 1 zc = 2 zf − 1
=⇒

zc = 1
Interface (from fluid region): zf = 0 zc = −1

Interface (from porous medium): zm = 0 zc = −2 zm − 1
=⇒

zc = −1
Bottom of porous medium: zm = −1 zc = 1

For zc ∈ (−1, 1) :



(
4D2 − a2

f

)
wf −Af = 0 ,(

4D2 − a2
f

)
Af + a2

f Raf θf =
σf
Prf

(
4D2 − a2

f

)
wf ,(

4D2 − a2
f

)
θf − wf = σfθf ,(

4D2 − a2
m

)
wm − a2

m Ram θm = −σm
χ

Da

Prm

(
4D2 − a2

m

)
wm , ,(

4D2 − a2
m

)
θm − wm = σm % θm .

As stated above, we solve this system for the eigenvalue σm in the (am,Ram)-plane by exploit-

ing the relationship noted in (2.15), and making the appropriate substitutions for af ,Raf , and

σf . We solve the eigenvalue problem A s = σ B s, where s is a vector of the independent variables

(wf , Af , θf , wm, θm) as truncated Chebyshev series, I is the identity matrix, and the spatial deriva-

tive D is now the discretized derivative operator as a matrix. The explicit system A s = σmB s is

written as:

=⇒


4D2 − d̂2a2

m I −I 0 0 0

0 4D2 − d̂2a2
m I Ram

d̂6 a2m
Da ε2T

I 0 0

−I 0 4D2 − d̂2a2
m I 0 0

0 0 0 4D2 − a2
m I −a2

m Ram I
0 0 0 −I 4D2 − a2

m I



wf
Af
θf
wm
θm

 =

σm


0 0 0 0 0

1
Prf

(
4D2 − d̂2a2

m I
)

0 0 0 0

0 0 I 0 0

0 0 0 − Da
χPrm

(
4D2 − a2

m I
)

0

0 0 0 0 ρ I



wf
Af
θf
wm
θm


subject to the boundary conditions at the top and bottom of the Chebyshev domain as:

at zc = 1 : wf = Dwf = θf = wm = θm = 0 ,
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and

at zc = −1 :



0 = d̂θf − ε2T θm ,

0 = Dθf + εTDθm ,

0 = wf − d̂ wm ,

0 = 2D2wf − d̂ α√
Da
Dwf ,

0 = σm
d̂4

χPrm
Dwm + d̂4

DaDwm + σm
εT

Prf d̂2
Dwf − 4D3wf + 3d̂2a2

mDwf .

With use of the Chebfun package, we solve this system for a given wavenumber am and Rayleigh

number Ram to determine the eigenvalue σm. We iterate through the Rayleigh numbers to find the

minimum Rayleigh number which provides σm > 0. These points in the (am,Ram)-plane denote

the marginal stability curves, shown in results section.

In Figure 2.2, we show the eigenvalues found from solving the generalized eigenvalue problem

for different Rayleigh numbers. For each of the cases, we use the parameters d̂ = .2, am = 10.0,
√

Da = 5.0×10−3, εT = .7, α = 1.0, and the BJSJ condition (ΨJ = 1,ΨS = 0). For this wavenumber

am = 10.0, we iterate through increasing Rayleigh numbers until we find that the maximum of the

real components of eigenvalues becomes positive. In the top plots of Figure 2.2, we show the

eigenvalues σm for Ram = 10 and Ram = 11. Neither of these cases have Re(σm) > 0, but they

are approaching 0. In the bottom left plot with Ram = 12, we see the real component of σm > 0.

So, we would repeat this process of iterating through Rayleigh numbers, between Ram = 11 and

Ram = 12 this time to obtain a more precise stability threshold for this wavenumber. These steps

help us get a single point in the (am,Ram)-plane to construct the marginal stability curves. So,

creating marginal stability curves for the coupled case is a time-consuming process.

For the single layer cases of a single layer of fluid or a single layer of a porous medium saturated

with a fluid, a principle of exchange of stabilities has been shown stating that if Ra > 0, then σ

must be real. This allows us to set σ = 0 and solve an eigenvalue problem for the Ra to determine

marginal stability curves. This principle has not been shown for the coupled case. However, we see

the results hold in practice. For Ram > 0, we see that the eigenvalues σm lie along the real line in

Figure 2.2. Additionally, for Ram < 0 (shown in the bottom right plot of Figure 2.2), we see the
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eigenvalues can have imaginary components. These results suggest that the principle of exchange

of stabilities may hold for the coupled case. Rigorously proving that the principle holds has yet to

be shown though.

Figure 2.2: Eigenvalues for linear stability, with parameters d̂ = .2 am = 10.0,
√

Da = 5.0× 10−3,
εT = .7, α = 1.0, and the BJSJ condition is used (ΨJ = 1,ΨS = 0).

2.4 Nonlinear stability

In this section, we address nonlinear stability using the energy method. Our analysis builds off

of important previous works [52, 53, 54, 71] that examined nonlinear stability of related fluid-porous
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systems. Here, we adopt similar techniques, in conjunction with the Lions interface condition, to

obtain an energy law and ultimately resolve nonlinear stability of the Navier-Stokes-Darcy system.

Throughout this section we employ the BJSJ condition (ΨJ = 1,ΨS = 0) and the Lions

condition (ΨL = 1). We use the following notation for vector-valued functions f and g and matrix-

valued functions A and B:

(f,g)j =

∫
Ωj

f · g dΩj , 〈A,B〉j =

∫
Ωj

A : B dΩj , ‖f ‖2j = (f, f )j , |f |2 = f · f ,

for domains j ∈ {f,m}. In this section, Ωf and Ωm represent a single period cell in the respective

domains. We dot the first equation of (2.10) with vf and integrate over Ωf :

1

Prf

(
∂vf

∂tf
,vf

)
f

+ ((vf · ∇)vf ,vf )f = 2 (∇ · D (vf ) ,vf )f − (∇πf ,vf )f − Raf (θfk,vf )f .

After integrating by parts, the boundary integrals reduce to integrals along the interface of the

fluid region, Γf , leaving

1

2 Prf

d

dtf
‖vf‖2f =

1

2

∫
Γf

|vf |2 (vf · n) dΓf − 2〈D(vf ),D(vf )〉f − 2

∫
Γf

n · D(vf )n (vf · n) dΓf

− 2

∫
Γf

2∑
i=1

τ i · D(vf )n (vf · τ i) dΓf +

∫
Γf

πf (vf · n) dΓf − Raf (θf , wf )f ,

where τ i are the unit tangents in x and y at the interface. Applying the BJSJ and Lions interface

conditions from (2.12) gives

1

2 Prf

d

dtf
‖vf‖2f =

1

2

∫
Γf

|vf |2 (vf · n) dΓf − 2〈D(vf ),D(vf )〉f

+

∫
Γf

[
d̂2 πm − πf −

1

2
|vf |2

]
(vf · n) dΓf −

∫
Γf

2∑
i=1

[
d̂ α√
Da

(vf · τ i)

]
(vf · τ i) dΓf

+

∫
Γf

πf (vf · n) dΓf − Raf (θf , wf )f .

We note that the first term on the RHS involving 1
2 |vf |2 (vf · n) arises from the nonlinear

advection. Importantly, the application of the Lions interface condition to the expression n ·

D(vf )n (vf · n) produces a similar term with opposite sign that cancels this first term. Without this

cancellation, the presence of the sign-indefinite term 1
2 |vf |2 (vf · n) would hamper energy analysis.
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However, with the cancellation, we obtain the following energy law

1

2 Prf

d

dtf
‖vf‖2f =− 2〈D(vf ),D(vf )〉f − Raf (θf , wf )f (2.21)

+

∫
Γf

d̂2 πm (vf · n) dΓf −
∫

Γf

2∑
i=1

d̂ α√
Da

(vf · τ i)2 dΓf .

Now, we dot the third equation of (2.10), the first equation of (2.11), and the third equation

of (2.11) with θf , vm, and θm, respectively, and then integrate over the appropriate domains,

producing

1

2

d

dtf
‖θf‖2f = −

Prf
2

∫
Γf

(vf · n) θ2
f dΓf +

∫
Γf

θf (∇θf · n) dΓf − ‖∇θf‖2f − (wf , θf )f ,

(2.22)

1

2

Da

χPrm

d

dtm
‖vm‖2m = −‖vm‖2m −

∫
Γm

Daπm (vm · n) dΓm − Ram (θm, wm)m , (2.23)

%

2

d

dtm
‖θm‖2m =

Prm
2

∫
Γm

(vm · n) θ2
mdΓm −

∫
Γm

θm (∇θm · n) dΓm − ‖∇θm‖2m − (wm, θm)m ,

(2.24)

where Γm denotes the interface of the porous medium. From here, we follow an argument similar to

that of Straughan, Carr, and Hill in [53, 54]. We add equations (2.21)–(2.24) together and multiply

(2.22), (2.23), (2.24) by coupling parameters λ1, λ2, λ3 > 0, respectively. The introduction of

these parameters permits sharper bounds on the critical Rayleigh numbers than could be obtained

otherwise. In addition, we rescale time derivatives in the porous medium by the factor εT /d̂
2, so

that we are using the same scale as in the free-flow zone. These manipulations yield the system

d

dt

[
1

2 Prf
‖vf‖2f +

λ2

2

εT

d̂2

Da

χPrm
‖vm‖2m +

λ1

2
‖θf‖2f +

λ3

2

% εT

d̂2
‖θm‖2m

]
=

− 2〈D(vf ),D(vf )〉f +

∫
Γf

d̂2 πm (vf · n) dΓf −
∫

Γi

2∑
i=1

d̂ α√
Da

(vf · τ i)2 dΓi − Raf (θf , wf )f

+ λ1

(
−

Prf
2

∫
Γf

(vf · n) θ2
f dΓf +

∫
Γf

θf (∇θf · n) dΓf − ‖∇θf‖2f − (wf , θf )f

)

+ λ2

(
−‖vm‖2m −

∫
Γm

Daπm (vm · n) dΓm − Ram (θm, wm)m

)
+ λ3

(
Prm

2

∫
Γm

(vm · n) θ2
m dΓm −

∫
Γm

θm (∇θm · n) dΓm − ‖∇θm‖2m − (wm, θm)m

)
.
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We will next choose the coupling parameters, λ1, λ2, λ3, to make convenient cancellations with

integrals along the interface. First, focusing on λ2, a change of variables allows us to write∫
Γf

d̂2 πm (vf · n) dΓf − λ2

∫
Γm

Daπm (vm · n) dΓm =

(
d̂2 − λ2

Da

d̂

)∫
Γf

πm (vf · n) dΓf .

We therefore choose λ2 = d̂3/Da so that the expression on the right-hand-side vanishes. Next,

consider the terms associated with λ1 and λ3:

−λ1
Prf
2

∫
Γf

(vf · n) θ2
f dΓf + λ3

Prm
2

∫
Γm

(vm · n) θ2
m dΓm =

(
−λ1 + λ3

d̂

ε3T

)∫
Γf

(vf · n) θ2
f dΓf ,

λ1

∫
Γf

θf (∇θf · n) dΓf − λ3

∫
Γm

θm (∇θm · n) dΓm =

(
λ1 − λ3

d̂

ε3T

)∫
Γf

θf (∇θf · n) dΓf .

Choosing λ1 = λ3

(
d̂/ε3T

)
allows both terms on the right-hand-sides to vanish. In summary, we

choose λ2 = d̂3/Da, λ1 = λ, and λ3 =
(
ε3T /d̂

)
λ. Importantly, there is now only a single free

parameter λ.

With our choices for the coupling parameters and the functional energy

2E(t) =
1

Prf
‖vf‖2f +

d̂3

χPrm
‖vm‖2m + λ‖θf‖2f + λ

ε3T
d̂
% ‖θm‖2m ,

we are left with

dE

dt
= −D + I −

∫
Γi

2∑
i=1

d̂ α√
Da

(vf · τ i)2 dΓf ≤ −D + I , (2.25)

where the definite and indefinite terms, D and I, respectively, are defined as

D = ‖∇vf‖2f +
d̂3

Da
‖vm‖2m + λ‖∇θf‖2f + λ

ε3T
d̂
‖∇θm‖2m ,

I = − [Raf,λ + λ] (wf , θf )f −

[
d̂3

Da
Ram,λ + λ

ε3T
d̂

]
(wm, θm)m ,

and 2〈D(vf ),D(vf )〉f = ‖∇vf‖2f . We are now using the notation Raf,λ and Ram,λ to indicate

dependence on the coupling parameter λ. The change in the total energy of the system is bounded

by

dE

dt
≤ −D + I = D

(
I
D
− 1

)
≤ D

(
max
H

I
D
− 1

)
= −D

(
1−max

H

I
D

)
,
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where H is the set of admissible solutions to equations (2.10) and (2.11) subject to (2.12). Defining

RE as the maximum of the ratio of energies

1

RE
= max

H

I
D

(2.26)

yields

dE

dt
≤ −D

(
RE − 1

RE

)
. (2.27)

The Poincaré inequality implies that D ≥ cE for some constant c > 0 [52, 53, 54]. Then, if RE ≥ 1,

Gronwall’s inequality produces at least exponential convergence:

E(t) ≤ E(0)e−ât → 0 as t→∞ (2.28)

where â = c (RE − 1) /RE. Hence, the system is nonlinearly stable as long as RE ≥ 1.

RE = 1 corresponds to the sharpest threshold for nonlinear stability that is made possible by

(2.28), and hence is the most important case to analyze. Setting RE = 1 in (2.26) produces an

optimization problem, maxH(I/D) = 1, that can be solved by the Euler-Lagrange equations:

z ∈ (0, 1) :

 2∇2vf − (Raf,λ + λ) θfk =
∂Lf
∂x

,

2λ∇2θf − (Raf,λ + λ)wf = 0 ,

(2.29)

z ∈ (−1, 0) :


2
d̂3

Da
vm +

(
d̂3

Da
Ram,λ + λ

ε3T
d̂

)
θmk =

∂Lm
∂x

,

2λ
ε3T
d̂
∇2θm −

(
d̂3

Da
Ram,λ + λ

ε3T
d̂

)
wm = 0 ,

(2.30)

where Lf , Lm are Lagrange multipliers for the fluid region and porous medium, respectively. Taking

the double curl of the first equations of (2.29) and (2.30) to remove the Lagrange multipliers and

using the normal mode representations once again, we obtain the systems for the fluid layer and

porous medium, respectively:

z ∈ (0, 1) :

 2
(
D2
f − a2

f

)2
wf + a2

f (Raf,λ + λ) θf = 0 ,

2λ
(
D2
f − a2

f

)
θf − (Raf,λ + λ)wf = 0 ,

(2.31)
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z ∈ (−1, 0) :


2
d̂3

Da

(
D2
m − a2

m

)
wm − a2

m

(
d̂3

Da
Ram,λ + λ

ε3T
d̂

)
θm = 0 ,

2λ
ε3T
d̂

(
D2
m − a2

m

)
θm −

(
d̂3

Da
Ram,λ + λ

ε3T
d̂

)
wm = 0 .

(2.32)

For the interface and boundary conditions, we use the same equations as the linear case (2.18)–

(2.20) with the exception of the Lions condition (replacing its linear counterpart) given by

−n · T (vf , πf )n +
1

2
|vf |2 = d̂2 πm .

Equations (2.31)–(2.32) with the interface/boundary conditions as noted above constitute a gener-

alized eigenvalue problem for Ram,λ (recall that Ram,λ and Raf,λ are related through (2.15)). For

given wavenumber am, we solve for Ram,λ numerically, once again using the Chebyshev tau-QZ

method. We then maximize over λ to obtain the sharpest threshold for nonlinear stability,

Ram = max
λ

Ram,λ .

Once Ram is found for a range of wavenumbers, we can construct the marginal stability curve

(am,Ram), below which we are guaranteed nonlinear stability.

2.5 Results and discussion

In this section, we first present the marginal stability curves produced by the linear and nonlinear

analysis. Next, we show show that the relative difference between linear and nonlinear curves scales

like Da1 for small Darcy numbers, while the absolute difference scales like Da2. We find similar

scalings for the differences between marginal stability curves produced by the BJSJ versus the BJJ

or BJ interface conditions. Lastly, we comment on resulting streamline patterns for convection cells

occupying the entire domain or remaining solely in the fluid region, and remark on the effect of

certain parameters on stability.

2.5.1 Marginal stability results

The marginal stability curves in Figure 2.3 show the Ram values which mark the transition

from stability to instability for each wavenumber am. Below the linear marginal stability curves,

we are guaranteed linear stability, while we are assured unconditional stability below the nonlinear

marginal stability curves. In the area between the two curves, nonlinear effects could potentially
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destabilize the system even though the background state is linearly stable, i.e. a subcritical insta-

bility. However, Figure 2.3 shows that the linear and nonlinear curves follow each other closely,

suggesting that the impact of these nonlinear terms is small, at least during the onset of convection.

We have explored an extensive range of parameters (not shown here) with similar findings. We

therefore conclude that the linear theory accurately describes the onset of convection, and that the

region of potential subcritical instabilities is very small. Furthermore, this result implies that the

linear stability thresholds, which are generally simpler to compute, actually approximate uncondi-

tional or global stability of the system to a high level of accuracy. We remark that the selected

energy function E(t) may not necessarily be the optimal choice. It is conceivable that an improved

choice of E(t) may reduce the gap between the linear and nonlinear curves even further.

In comparing the linear stability system (2.16)–(2.20) and the nonlinear stability system (2.31)–

(2.32), we note the nonlinear stability system loses explicit dependence on the Prandtl number.

This loss of Pr-dependence has been observed in a variety of other convective problems [68]. While

the linear system does contain Pr terms, they are all associated with the σ eigenvalue terms. In

the single layer case, the principle of exchange of stabilities implies that σ is real as long as the

Rayleigh number is positive, meaning again that there is no dependence on Pr. In the coupled case,

however, exchange of stabilities has not been established rigorously. Our numerics indicate that σ

can indeed take complex values. However, we always observe σ to be real whenever the Rayleigh

number is positive. This numerical observation suggests that the principle of exchange of stabilities

holds in practice, and consequently dependence on Pr is lost. These principles are exhibited in

Figure 2.2.

2.5.2 Influence of interface conditions

To quantify how closely the linear and nonlinear marginal stability thresholds agree, we ex-

amine the relative difference between the respective stability curves. The Lions condition is used

to produce the nonlinear thresholds while its linear counterpart is used as the normal interface

condition for the linear stability curves. The results are shown in Figure 2.4a. For a fixed d̂ and

am, the Ram values are computed with the linear and nonlinear arguments for various Da values.

We then examine the relative difference between the two computed Ram values. For small Darcy

numbers, Da ∈ [10−8, 10−4], we see the relative difference scales like Da1, as shown with the com-

parison line. Given that Ram ∼ O (Da) in the small Darcy limit, the absolute difference scales
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(a)
√

Da = 5.0× 10−3, α = 1.0. (b)
√

Da = 5.0× 10−3, α = 0.1.

(c)
√

Da = 1.0× 10−3, α = 1.0. (d)
√

Da = 1.0× 10−3, α = 0.1.

Figure 2.3: Marginal stability curves for different values of Da and α, with εT = .7 in all cases.
Both linear (solid) and nonlinear (dashed) stability results are shown. The two results agree closely
with one another in all cases, indicating that the region of potential subcritical instability is very
small.
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like Da2, as is expected from the theory and reflected in the numerical tests. In the appendix, we

present an asymptotic argument showing that, while the dynamic pressure term is O (Da), it only

begins to affect the solutions at O
(
Da2

)
. Though somewhat heuristic, this asymptotic analysis

provides guidance for the scaling of stability threshold differences found using the Lions and the

linear interface conditions in the small Darcy number regime.

(a) The relative difference between nonlinear and
linear marginal stability curves produced with
the Lions interface condition and its linear coun-
terpart, respectively (with BJSJ used).

(b) The relative differences between linear
marginal stability curves produced with the:
BJSJ and Jones interface conditions (black cir-
cles), and the BJSJ and Beavers-Joseph condi-
tions (red squares).

Figure 2.4: Relative differences between marginal stability curves for various cases. Parameters:
d̂ = .1, am = 25.0, εT = .7, α = 1.0. Both comparison lines have slope of 1.

Now, we briefly discuss small differences in the tangential interface conditions. In particular, we

show in Figure 2.4b, the relative differences in the linear stability curves produced by the BJ, BJJ,

and BJSJ interface conditions. The relative differences between BJSJ and BJJ are marked with

black circles while BJSJ versus BJ are marked with red squares. Both of the relative differences

scale like Da1 and both absolute differences scale like Da2. Thus, using any of the three conditions

results in similar qualitative behavior in the marginal stability curves.

An important parameter that enters these tangential interface conditions is the frictional coef-

ficient α. Looking back at Fig. 2, we vary α from 1.0 to 0.1 in going from the left columns, (a) and

(c), to the right, (b) and (d). We note that although the marginal stability curves are altered, the

location of their minima does not change significantly. This minimum value of Ram is known as
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the critical Raleigh number

Ram,c = min
a2m

Ram , (2.33)

which is the smallest Rayleigh number for which an unstable mode exists. Thus, the critical Raleigh

number exhibits low sensitivity to α, as is consistent with previous studies [29].

2.5.3 Fluid-dominated versus full convection

An important insight that can be obtained from the marginal stability curves is whether the

convection extends throughout the domain or is confined to the fluid region. For this, we examine

the wavenumber associated with Ram,c, which offers information on the lengthscale and aspect

ratio of this most unstable mode; i.e. smaller wavenumbers correspond to larger convection cells

that extend throughout the domain while large wavenumbers correspond to smaller convection

cells which arise only in the free-zone. For example, in Figure 2.3a, for d̂ = [.15, .18], we find

the minima of the marginal stability curves all occur around am = 2.0. At d̂ = .19 though, the

minimum shifts to a higher wavenumber, am = 14.0. At some depth ratio between d̂ = .18 and

d̂ = .19, the convection cells’ aspect ratio suddenly changes from wide cells (am = 2.0) to thin cells

(am = 14.0). This phenomenon is also observed in [83]. When the convection cells occupy both

the porous medium and fluid region, we denote this as full convection while we use fluid-dominated

convection to describe when convection cells lie only in the fluid region. Qualitatively, when the

Ram,c occurs at smaller wavenumber, we have full convection, and when Ram,c occurs at larger

wavenumber, we have fluid-dominated convection.

To understand which region dominates convection in a more quantitative sense, we examine the

resulting streamline and temperature profiles, as well as the Nusselt numbers. Figure 2.5 shows the

streamlines in black and the temperature profiles in color for d̂ = .18 and d̂ = .19 at their critical

Rayleigh numbers with: χ = .3,
√

Da = 5.0×10−3, α = 1.0, εT = .7. The streamlines are computed

via numerical solution of the linear system (2.16)–(2.20). Both figures are plotted over the same x

range to more effectively show how the small change in the d̂ value (from d̂ = .18 to .19) drastically

alters the convection cells, streamlines, and temperature profiles. For full convection, we see that

the temperature and velocity deviations from the steady-state occur throughout the entirety of the

domain. For the fluid-dominated convection though, temperature and velocity fluctuations only
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Figure 2.5: Marginally stable flow configurations and temperature profiles (color) for two values
of d̂. (a) d̂ = .18 produces convection cells that extend throughout the entire domain, while (b)
d̂ = .19 produces cells that are confined to the free-flow region. In both cases,

√
Da = 5.0× 10−3,

εT = .7, α = 1.0, and the BJSJ condition is used (ΨJ = 1,ΨS = 0).

Figure 2.6: Color map of the Nusselt number with streamlines in black for the same two cases
shown in Fig. 2.5. In the first case (a), the greatest variations of Nu occur in the porous medium,
while in the second case (b) the extrema of Nu are confined to the free-flow region.

occur in and immediately around the free zone. To further quantify these observations, we analyze
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the Nusselt number Nu, calculated from the vertical convective and conductive fluxes as

Nu =
Jcnv + Jcnd

Jcnd
with Jcnv = wj Tj and Jcnd = −κj

∂Tj
∂zj

, (2.34)

for j ∈ {f,m}. In Figure 2.6, we show the Nusselt numbers for the same cases d̂ = .18 and d̂ = .19

with the same streamlines pictured in Figure 2.5. In regions where Nu = 1, there is negligible

vertical fluid flow and the heat transfer is purely conductive. Wherever Nu > 1, the convective flux

is upward and it enhances the conductive flux. On the other hand, when Nu < 1 convective flux is

downward which opposes the conductive flux. At the middle of the convection cells and at the top

and bottom of the domain, fluid motion is almost purely horizontal and so the Nusselt number is

nearly 1. At the edges of the convection cells, we see Nu attains its maximum and minimum as the

flow is almost solely in the vertical direction, moving upward and downward for the maximum and

minimum of Nu, respectively. When the Nusselt number achieves its extrema in the fluid region,

the convection is fluid-dominated while we have full convection when the Nusselt number varies

throughout the whole domain.

With the analysis above, determining which region dominates convection is relatively straight-

forward. However, determining parameter values where the convection shifts from full to fluid-

dominated is more complicated. The region that dominates convection depends on a number of

parameters, namely the depth ratio d̂, the Darcy number Da, and the ratio of thermal diffusivities

εT . For example, fixing Da and εT , one could compute the marginal stability curves for a number

of d̂ values to find the depth ratio where the transition in convection occurs. However, this can be

a computationally demanding task, since, even producing a single marginal stability curve requires

a search over the parameters am and Ram. We therefore offer a simplified theory to determine

whether the onset of convection is full or fluid-dominated. Although the Darcy number Da and the

ratio of thermal diffusivities εT could also trigger the transition, we focus on the influence of d̂ in

this paper.

For the purpose of developing a simplified theory, let us briefly consider the free-flow and porous

domains as uncoupled. As before, the Rayleigh number in each domain is denoted Ram and Raf ,

with the same relationship as in (2.13):

Ram = Raf
Da ε2T
d̂4

(2.35)
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Let Ra∗m and Ra∗f denote the corresponding critical values in the uncoupled system. Both of these

values are well known, Ra∗f = 1707 and Ra∗m = 4π2. Heuristically, the strength of convection in each

domain should be proportional to the Rayleigh number scaled by the appropriate critical value.

Thus, the transition from full to fluid-dominated convection is expected to occur approximately

where the ratios are equal,

Ram
Ra∗m

=
Raf
Ra∗f

.

Substituting relationship (2.35) and solving for d̂ gives the predicted transition value

d̂∗ =

[
Ra∗f
Ra∗m

Da ε2T

]1/4

. (2.36)

Therefore, by neglecting any coupling between the two regions, we have obtained a simple, approx-

imate formula for the depth ratio at which convection is predicted to transition from full to fluid

dominated.

We test this theory with the parameters
√

Da = 5.0 × 10−3 and εT = 0.7. Numerically, the

transition occurs around d̂∗ ≈ .181, as shown in Figure 2.3a. The value predicted by the simplified

theory is (
1707

4π2
(5.0× 10−3)2 (.7)2

)1/4

≈ .151 .

which agrees with the numerically computed value to within 16% error. Secondly, we test
√

Da =

1.0 × 10−3 and εT = 0.7, with the result shown in Figure 2.3c. The simple theory predicts the

transition to occur at d̂∗ ≈ .067, while numerics show the transition to occur around d̂∗ ≈ .079,

corresponding to an error of 15%.

Table 2.2: Relative error between predicted and actual d̂∗ values for original simple theory. Fixed
parameters: χ = .3, α = 1.0.

√
Da εT Predicted d̂∗ Actual d̂∗ Relative error Figure reference

5.0× 10−3 0.7 .151 .181 16.5% 2.3a

1.0× 10−3 0.7 .067 .079 15.1 % 2.3c

5.0× 10−3 0.5 .128 .155 17.4 % 2.7a

5.0× 10−3 1.5 .222 .256 13.3 % 2.7b

Table 2.2 compares the predicted and actual values of d̂ for the cases discussed above as well as a

few additional cases. For various Da and εT values, we see our theory, numerics, and intuition are all
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in agreement. For example, with the last two rows of the table, as the ratio of thermal diffusivities

εT = λf/λm decreases, convection occurs more easily through the entire domain. Consequently,

the transition from full to fluid-dominated convection takes place at a lower depth ratio. Figure

2.7 illustrates this trend with marginal stability curves for εT values of 0.5 and 1.5.

In summary, we find the transition depth d̂∗ heuristically predicted by (2.36) agrees with the

true transition value to within about 15% in all cases tested. Thus, while the theory is not extremely

accurate, it is a useful first estimate to narrow the parameter range that must be searched to find

the transition depth. The theory is perhaps even more accurate than could be expected given that it

completely neglects coupling between the two regions. It is a promising first step towards developing

a more refined theory to predict the transition, perhaps by accounting for weak coupling between

the two regions. We also remark that the simplified theory seems to consistently underpredict the

transition depth. Thus, the effect of coupling is to inhibit fluid-dominated convection in favor of

full convection.

(a) εT = 0.5. (b) εT = 1.5.

Figure 2.7: Marginal stability curves for varying εT , with
√

Da = 5.0 × 10−3 and α = 1.0 fixed.
Linear stability results with the BJSJ interface condition used (ΨJ = 1,ΨS = 0).
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2.6 Conclusions

In this chapter, we presented linear and nonlinear stability results of the coupled Navier-Stokes-

Darcy-Boussinesq system that governs convection in a fluid-porous medium system. The main

contribution is the newly obtained nonlinear analysis, which relies crucially on the Lions interface

condition in order to establish an energy law. We found that the marginal stability curves produced

by the nonlinear and linear analysis follow each other closely, suggesting that linear stability is

sufficient to describe the onset of convection. The agreement between the linear and nonlinear curves

also implies that the more easily obtained linear thresholds indicate unconditional or global stability

of the coupled fluid-porous system, at least for relatively small Darcy number. Some additional

results concerning convection are related to choosing interface conditions, namely those specifying

tangential stress. We showed the three different choices (BJ, BJJ, and BJSJ) are essentially the

same, at least in terms of the onset of convection at small Darcy number regime; hence, it makes

sense to adopt BJSJ due to the associated mathematical convenience.

We also postulated a simple theory to predict the transition from full to fluid-dominated con-

vection due to changes in the depth ratio, the Darcy number, and the ratio of thermal diffusivities.

We find estimated transition depths to agree with the numerically computed values with reasonable

accuracy (roughly 15% error). Accurate prediction of this transition could have applications in geo-

physics and in alloy solidification [58, 59], and further refinement of the theory is an exciting future

direction. In addition, while this work considered a flat, stationary interface between the free-zone

and porous medium, future work could consider more complex interfaces [2, 50], or boundaries that

move or evolve due to natural processes [65, 75, 100].
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CHAPTER 3

NUMERICS

In the previous chapter, we conducted stability analyses for convection in the coupled fluid-porous

media system. In this chapter though, we explore the simpler single layer cases– convection in a

single layer of fluid, and in a layer of a porous medium saturated with a fluid. With numerical

methods in place for convection in the single layers of fluid and porous medium, we are then able

to simulate convection for the coupled case by combining the two single layer solvers.

With the both of single layer cases, we conduct stability analyses, followed by detailing our

numerical methods to simulate these systems. While a generous amount of the chapter is dedicated

to the analyses for both the single layer cases, the results from the analyses are extremely important

in validating the numerical results. Finally, we return to the coupled case as we implement a

numerical method to simulate convection in the Navier-Stokes-Darcy-Boussinesq system.

3.1 Single layer of fluid

In this section, we outline the case of convection in a single layer of fluid, conduct a linear

stability analysis, detail the numerical method used to simulate the system, and finally, conclude

with results.

Much of the analysis in this section concerning a single layer of fluid being heated from below

is not new. The linear stability analysis for this phenomenon was by performed by Lord Rayleigh

in 1916 [76]. Many researchers followed suite and established rigorous analytical results; for a

non-exhaustive list of works containing the linear stability analysis, several of which present the

principle of exchange of stabilities, see [24, 37, 73, 77, 87]. These analyses are presented so that we

are able to validate our numerical methods and results.

3.1.1 Equations, and linear stability analysis

For the equations governing convection in a single layer of fluid, we have the momentum equa-

tion with the addition of the Boussinesq approximation, which takes the form of the Navier-Stokes-
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Boussinesq equation. Two other equations needed are the continuity equation, aided by the in-

compressibility of the fluid, and an advection-diffusion equation (ADE) to describe the evolution

of heat in the domain:

ρ0

(
∂uf

∂tf
+ (uf · ∇)uf

)
= ∇ · T (uf , pf )− gρ0 [1− β (Tf − TL)]k ,

∇ · uf = 0 ,

∂Tf
∂tf

+ uf · ∇Tf =
κf

(ρ0cp)f
∇2Tf ,

with same variables from Chapter 2 of this thesis.

Figure 3.1: Schematic of the domain Ω = {(x, y) ∈ R2 × z ∈ (0, df )}. The upper and lower
boundaries are impermeable and held at constant temperatures TU and TL, respectively, with
TL > TU .

For the domain, shown in Figure 3.1, we assume flat, horizontal, nonpenetrable plates at the

top and bottom, Ωf = {(x, y) ∈ R2 × z ∈ (0, df )}. If the bottom plate is at a higher temperature

than the top plate, buoyancy can potentially destabilize the system, resulting in convection; we

consider this case. To begin the linear stability analysis, we start by finding the steady-states.

These correspond to the conductive states, denoted by an over-bar: no-flow for the fluid, a linear

temperature profile, and the pressure gradient needed to satisfy the remainder of the momentum

equation:

ūf = 0 ,

T̄f = TL + z
TU − TL
df

,

∇p̄f = −gρ0

(
1− β

(
T̄f − TL

))
k .
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Next, we perturb the steady-states with uf = ūf +vf , Tf = T̄f + θf , pf = p̄f +πf , and set

up a system in terms of the perturbation variables. This yields

ρ0

(
∂vf

∂tf
+ (vf · ∇)vf

)
= ∇ · T (vf , πf ) + ρ0gβθfk ,

∇ · vf = 0 ,

∂θf
∂tf

+ vf · ∇θf = λf∇2θf − wf
(
TU − TL
df

)
.

Our goal is to determine what happens to these perturbations as time evolves. Given a small enough

heat difference between the top and the bottom plates, the perturbations damp out and the original

system would return to the conductive state. With this case, we say the system is linearly stable

to small perturbations. However, if the heat difference is greater than some threshold, the system

is linearly unstable and we have non-trivial perturbations to the steady-state. This case is referred

to as the convective state.

To nondimensionalize the system, we use the same scalings from Chapter 2 (and [62]):

vf = ṽf
ν

df
, xf = x̃f df , tf = t̃f

d2
f

λf
, θf = θ̃f

(TL − TU ) ν

λf
, πf = π̃f

ρ0 ν
2

d2
f

.

We additionally suppose that the perturbations are small, that vf , θf , πf ∼ O(ε) for some small

ε. With this assumption, we collect all O(ε) terms and drop all higher-order terms– that is, O(ε2)

or higher terms. This allows us to drop the nonlinear terms of the momentum equation and

the advection-diffusion equation. Dropping the tildes yields the nondimensional system for the

perturbation variables, now in Ωf = {(x, y) ∈ R2 × z ∈ (0, 1)}:

1

Prf

∂vf

∂tf
= 2∇ · D (vf )−∇πf + Raf θfk ,

∇ · vf = 0 ,

∂θf
∂tf

= ∇2θf + wf ,

with Prf =
ν

λf
, Raf =

gβ (TL − TU ) d3
f

ν λf
, and wf as the z−component of the velocity.

We will now start to determine the temperature threshold needed for the transition from the

linearly stable to unstable cases. With this in mind, we take the double curl of the momentum

equation and use the identity

∇× (∇×A) = ∇ (∇ ·A)−∇2A
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to obtain:

− 1

Prf
∇2∂vf

∂tf
= −∇4vf + Raf

(
∇
∂θf
∂z
−∇2θfk

)
.

Then, we look at the z−component of the equation above coupled with the advection-diffusion

equation for z ∈ (0, 1): 
(

1

Prf

∂

∂tf
−∇2

)
∇2wf = Raf ∇2

Hθf ,(
∂

∂tf
−∇2

)
θf = wf ,

where ∇2
H = ∂2

∂x2
+ ∂2

∂y2
is the horizontal Laplacian operator.

At the upper and lower boundaries of the domain, we consider several options for conditions

on velocity and temperature. For conditions on the velocity at the top and bottom plates, we

require that the boundary is nonpenetrable. That is, the normal component of velocity is 0, or

wf = 0. For the second condition, we have two options of imposing a no-slip condition or a free-slip

condition, corresponding to a rigid surface and a free surface, respectively. The no-slip condition

gives
∂wf
∂z = 0, and the free-slip condition gives

∂2wf
∂z2

= 0. Both conditions come from manipulating

the continuity equation.

For boundary conditions on θf , we also have two options. We can impose a constant temperature

or a constant heat flux, corresponding to a conductive boundary and an insulating boundary,

respectively. The constant temperature gives θf = 0, and the constant heat flux gives
∂θf
∂z = 0

at the boundary. We will investigate different combinations of the boundary conditions for the

velocity and temperature perturbations.

Similar to the analysis in Chapter 2, we now consider the normal modes of wf and θf :

wf (x, t) = F (x, y)wf (z) eσ t, θf (x, t) = F (x, y) θf (z) eσ t.

Here, F (x, y) corresponds to a unimodal component of the horizontal planform in each region with

corresponding horizontal wavenumber a. That is,

a2 F (x, y) +∇2
H F (x, y) = 0.

The choice of how to define F dictates the shape of the convection cell. In two dimensions, some

variation of sines and/or cosines is traditionally used. For the hexagonal cells observed in three
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dimensions, the horizontal wavenumber is defined with the two horizontal components a2 = a2
x+a2

y,

and more complicated planforms are used. One example noted in [37, 87] is

F (x, y) = cos

(
a(x
√

3 + y)

2

)
+ cos

(
a(x
√

3− y)

2

)
+ cos (ay) .

While this modal decomposition defines the structure of the convection cells, σ dictates growth or

decay of the perturbations in time. For a given Rayleigh number, or heat difference, if Re(σ) < 0,

the perturbations damp out and the system is stable and if Re(σ) > 0, the perturbations grow and

the system is unstable. With D = ∂
∂z for convenience, the coupled system can be written as

(
σ

Prf
− (D2 − a2)

)(
D2 − a2

)
wf = −a2 Raf θf ,(

σ − (D2 − a2)
)
θf = wf .

(3.1)

3.1.2 Principle of exchange of stabilities

The principle of exchange of stabilities detailed here allows us to set σ = 0 in (3.1) to find the

Rayleigh number needed for a given wavenumber of the perturbation to become unstable. To show

this, we will multiply the equations of (3.1) by the complex conjugates of wf and θf , respectively,

and integrate over z from 0 to 1. Manipulating these equations will allow us to draw conclusions

about σ and effectively reduce the system we need to solve to determine marginal stability curves.

With the complex conjugate denoted by a superscript ∗, we multiply the first equation of (3.1)

by w∗f and integrate:∫ 1

0
w∗f

[(
σ

Prf
− (D2 − a2)

)(
D2 − a2

)]
wf dz = −a2 Raf

∫ 1

0
w∗fθf dz.

We can now integrate by parts to obtain

σ

Prf

∫ 1

0

[
|Dwf |2 + a2|wf |

]
dz︸ ︷︷ ︸

:=I1>0

+

∫ 1

0

[
|D2wf |2 + 2a2|Dwf |2 + a4|wf |2

]
dz︸ ︷︷ ︸

:=I2>0

= a2 Raf

∫ 1

0
w∗fθf dz,

⇒ σ

Prf
I1 + I2 = a2 Raf

∫ 1

0
w∗fθf dz. (3.2)

(3.2) holds regardless of the boundary conditions chosen for wf , no-slip or free-slip.
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We follow a similar argument for the second equation of (3.1), multiplying by θ∗f and then

integrating: ∫ 1

0
θ∗f
[
σ − (D2 − a2)

]
θf dz =

∫ 1

0
θ∗fwf dz.

Integrating by parts allows us to find

σ

∫ 1

0
|θf |2 dz︸ ︷︷ ︸

:=I3>0

+

∫ 1

0

[
|Dθf |2 + a2|θf |2

]
dz︸ ︷︷ ︸

:=I4>0

=

∫ 1

0
θ∗fwf dz,

⇒ σ I3 + I4 =

∫ 1

0
θ∗fwf dz, (3.3)

which once again holds regardless of our choice of the boundary condition for θf , constant temper-

ature or constant heat flux.

We now explicitly assume that σ has both real and imaginary parts, σ = σre+i σim. Multiplying

(3.3) by a2 Raf and subtracting off the complex conjugate of (3.2) removes the right-hand sides of

these equations, providing

a2 Raf σ I3 + a2 Raf I4 −
σ∗

Prf
I1 − I2 = 0.

Both the real and the imaginary components of the above equation must equal 0. In looking at the

imaginary component, we have

σim

(
a2 Raf I3 +

1

Prf
I1

)
= 0.

If the Rayleigh number is positive (that is, the bottom plate is hotter than the top plate), then

the expression in parentheses is strictly positive and σim = 0. So, for Raf > 0, the imaginary

component of σ must be equal to 0. This allows us to set σ = 0 to solve for the Rayleigh number

needed to trigger the transition from a stable to an unstable configuration. Additionally, in looking

at the real component of the equation above, we have

σre

(
a2 Raf I4 −

1

Prf
I1

)
+ a2 Raf I4 − I2,= 0.

This implies that if Raf < 0, then σre < 0 also. This reinforces the notion that the case where the

top plate is hotter than the bottom plate is a stable configuration.
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3.1.3 Marginal stability curves

With the principle of exchange of stabilities, we set σ = 0 to obtain the coupled equations:
(
D2 − a2

)2
wf = a2 Raf θf ,(

D2 − a2
)
θf = −wf .

This system can be written as a generalized eigenvalue problem for z ∈ (0, 1), solving for Raf to

determine marginal stability (with I as the identity matrix):(
D4 − 2a2D2 + a4 I 0

I D2 − a2 I

)(
wf
θf

)
= Raf

(
0 a2 I
0 0

)(
wf
θf

)
. (3.4)

We solve this eigenvalue problem with the Chebyshev tau-QZ algorithm [36], in the same manner

as described in Section 2.3.1. With the reduction of the system, we lose dependence on the Prandtl

number, implying that the Prf term does not influence the onset of convection. This term may

impact convection after the cells begin to form though.

In solving (3.4), we explore different combinations of boundary conditions. One condition we

impose for each case is the assumption of an impermeable wall, expressed with wf = 0. However,

the other conditions vary, and are summed up (with their abbreviations used later):

• no-slip (NO-SL): Dwf = 0,

• free-slip (FREE): D2wf = 0,

• conducting (COND): θf = 0,

• insulating (INSUL): Dθf = 0.

For each value of a, we solve (3.4) for Raf , which gives the Rayleigh number needed for that

wave-number of the perturbation to become unstable. These points plotted in the (a,Raf )−plane

form marginal stability curves which divide the plane into linearly stable and unstable regions.

Figure 3.2 shows the marginal stability curves for several combinations of boundary condition

choices. The captions for each plot note the boundary conditions used. The order of the boundary

conditions are for: wf at z = 0, wf at z = 1, θf at z = 0, and θf at z = 1.

An important aspect of the marginal stability curves deals with the minimum of these curves–

the critical Rayleigh number. The critical Rayleigh number signifies the smallest heat difference
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needed for perturbations to grow in time. For Raf less than the critical Rayleigh number, the

system will remain stable while Raf values greater than the critical Rayleigh number have the

potential to produce instabilities. In Table 3.1, we note the various critical Rayleigh numbers and

the wave-number at which they are achieved for different combinations of the boundary conditions.

While we investigated different combinations, we will focus on the most practical case for our

simulations: no-slip conditions at the top and bottom of the domain with conductive boundaries

at the top and bottom.

Table 3.1: Critical Rayleigh numbers for the single fluid layer with different combinations of bound-
ary conditions. The marginal stability curves for 6 of these cases are shown in Figure 3.2.

velocity heat

z = 0 z = 1 z = 0 z = 1 Rac ac
NO-SL NO-SL COND COND 1707.8 3.1

NO-SL NO-SL COND INSUL 1296.0 2.6

NO-SL NO-SL INSUL COND 1296.0 2.6

NO-SL NO-SL INSUL INSUL 720.3 0

NO-SL FREE COND COND 1100.7 2.7

NO-SL FREE COND INSUL 669.0 2.1

NO-SL FREE INSUL COND 816.8 2.2

NO-SL FREE INSUL INSUL 320.3 0

FREE NO-SL COND COND 1100.7 2.7

FREE NO-SL COND INSUL 816.8 2.2

FREE NO-SL INSUL COND 669.0 2.1

FREE NO-SL INSUL INSUL 320.3 0

FREE FREE COND COND 657.6 2.2

FREE FREE COND INSUL 384.9 1.8

FREE FREE INSUL COND 384.9 1.8

FREE FREE INSUL INSUL 120.0 0
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(a) NO-SL, NO-SL, COND, COND. (b) NO-SL, NO-SL, COND, INSUL.

(c) NO-SL, FREE, COND, COND. (d) NO-SL, FREE, COND, INSUL.

(e) FREE, FREE, COND, COND. (f) FREE, FREE, COND, INSUL.

Figure 3.2: Marginal stability curves for a single layer of fluid with various boundary conditions, noted
beneath each plot. The conditions are for the velocity at z = 0 and z = 1, respectively, followed by the
conditions on θf at z = 0 and z = 1.
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3.1.4 Numerics

To simulate the full system, we return to the original nondimensional system for (x, y, z) ∈

(−Lx, Lx)2 × (0, 1): 

1

Pr

∂uf

∂tf
+ (uf · ∇)uf = ∇ · T (uf , pf ) + Raf Tf k,

∇ · uf = 0 ,

∂Tf
∂tf

+ uf · ∇Tf = ∇2Tf ,

which agrees with [97] as a quick sanity check. We consider horizontal, rigid, non-penetrable plates

at the top and bottom of our domain; that is, we have no-slip conditions for the velocity at the

top and bottom of the domain with periodic boundary conditions at the left- and right-sides. For

temperature, we consider conductive boundary conditions at the upper and lower boundaries of

the domain held at constant temperatures, TU and TL, respectively. For convection to be possible,

we will only investigate cases with TU < TL. Also, we require the temperature be periodic at the

left and right of the domain. A schematic of the domain is shown in Figure 3.1, and a schematic

of the mesh is shown in Figure 3.3.

Figure 3.3: Schematic of the discretized domain for a single layer of fluid. For simulations, more
elements are used.

To conduct our simulations, we use the Finite Element Method (FEM). Many of the details of

implementing this are referenced in Appendix B; we include descriptions of how the problems are

formulated in the FEM, how line- and surface-integrals are approximated with numerical quadra-

ture, and how periodic boundary conditions are implemented, along with examples of each. In this

section (and for the other sections with numerical simulations), we will only show the variational
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forms of our problems; we will not write out the linear systems or matrices for the sake of brevity.

For example, with the variational forms shown, all of the integrals over the domain will be decom-

posed into the sum of integrals over the elements comprising the domain, where the integrals will

be approximated with numerical quadrature. So that these details do not need to be repeated in

each section, we recommend reading through the discussions in Appendix B before continuing on

in this section.

With the following finite element (FE) spaces:

• V = {v ∈
[
H1 (Ω)

]2
: v = 0 at top and bottom + periodic on left and right},

• Q = {q ∈ L2 (Ω) :
∫

Ω q dx = 0 + periodic on left and right} = L2
0 (Ω),

• Ψ = {ψ ∈ H1 (Ω) : ψ = 1 on bottom, ψ = 0 on top + periodic on left and right}.

With the conductive state as the initial condition, we perturb the steady-state with a seeded

random perturbation field of magnitude εmag := εmag(x), set at 1.0× 10−8; we start with(
uf

(0), T
(0)
f

)
= (0, 1.0− y) + εmag .

Given
(
uf

(n), T
(n)
f

)
∈ V ×Ψ, we find

(
uf

(n+1), p
(n+1)
f , T

(n+1)
f

)
∈ V ×Q×Ψ such that

1

Prf

∫
Ω

∂uf
(n+1)

∂tf
· v dx +

∫
Ω

(
uf

(n) · ∇
)
uf

(n+1) · v dx + 2

∫
Ω
D
(
uf

(n+1)
)

: D (v) dx

−
∫

Ω

(
∇ · uf

(n+1)
)
· q dx−

∫
Ω

(∇ · v) · p(n+1)
f dx−

∫
Ω

Raf T
(n)
f k · v dx = 0 (3.5)

for all test functions v ∈ V and q ∈ Q, and

∫
Ω

∂T
(n+1)
f

∂tf
ψ dx +

∫
Ω
uf

(n+1) · ∇T (n+1)
f ψ dx +

∫
Ω
∇T (n+1)

f · ∇ψ dx = 0 (3.6)

for all test functions ψ ∈ Ψ. With the way we have the Navier-Stokes problem defined in (3.5),

we see that is it linear due to partially lagging the nonlinear convection term, as done in [99]

among other works. With the linear problem, we are able to use more computationally efficient
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solvers. Additionally, by lagging the temperature term in Navier-Stokes and the velocity term of the

advection-diffusion equation, the Navier-Stokes-Heat system is decoupled. The decoupled nature of

the problem is extremely desirable; it allows us to more easily verify that the independent solvers

are working correctly, and it also allows for parallelization of the code. (We did not parallelize the

code for this thesis though.) For efficiently handling the convective terms in Navier-Stokes and the

ADE, we use a Characteristic Galerkin method (see [46]) implemented with FreeFem [51].

We can also find the stream function φ, solving

∫
Ω

[
∇φ(n+1) · ∇ϕ− ϕ

(
∇× uf

(n+1)
)]
dx = 0 (3.7)

for all test functions ϕ ∈ Φ, with the FE space:

• Φ = {ϕ ∈ H1 (Ω) : ϕ = 0 on top and bottom + periodic on left and right}.

With our simulations, we use the algorithm:

Algorithm 1: Solving Navier-Stokes-Heat system

Result: uf
(N), p

(N)
f , T

(N)
f , φ(N) .

Use initial conditions:
(
uf

(0), T
(0)
f

)
= (0, 1− y) + εmag .

for n = 0; n < N ;n+ +
do

With uf
(n), T

(n)
f , solve (3.5) for uf

(n+1), p
(n+1)
f .

With uf
(n+1), T

(n)
f , solve (3.6) for T

(n+1)
f .

With uf
(n+1), solve (3.7) for φ(n+1).

end

In solving (3.5), we tested the fluid solver with convergence tests and timing with different kinds

of elements and linear solvers to see which combination would be best for our simulations. For

velocity and temperature element choices, we tried P2 elements (with 6 nodes along the boundary

of our triangular elements) and P1 elements (with 3 nodes along the boundary of each element). For

the linear solver, we needed a method that works for potentially non-symmetric, sparse matrices;
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the coupled problem later will take this form. Two methods that work well for this class of problem,

and also easily implemented on FreeFem, are the generalized minimal residual method (GMRES)

and the Unsymmetric MultiFrontal method (UMFPACK).

For brief explanations of the linear solvers, GMRES is an iterative solver that approximates

a solution by the vector in a Krylov subspace with minimal residual. For a better description of

GMRES (as well as other iterative solvers for sparse systems), we recommend [78]. On the other

hand, UMFPACK is categorized as a direct solver, but uses iterative techniques. The main idea

behind this method is to compute an LU factorization (with A = PR−1AQ = LU where P, Q are

permutation matrices and R is a diagonal matrix) and then use forward/backward substitution

to form an approximate solution. This solution is then improved by iterative refinement. For the

technical report on UMFPACK, see [32]. These two linear solvers are designed to efficiently solve

sparse matrices, and are already in a variety of languages’ built-in libraries. We call them both

with FreeFem for our simulations.

To test the 2D solver (in x, z−plane), we begin by looking at the steady Stokes problem, written

in variational form below. Given a fixed Tf , we solve for (uf , pf ) ∈ V ×Q such that

2

∫
Ω
D (uf ) : D (v) dx−

∫
Ω

(∇ · uf ) · q dx−
∫

Ω
(∇ · v) · pf dx−

∫
Ω
Tf k · v dx = 0 (3.8)

for all v ∈ V and q ∈ Q. With this reduced problem, we use the method of manufactured solutions

to verify our code and quantify how accurate the approximations are. We start with the ‘exact’

solutions:

uf
ex =

(
cos(β x), z β sin(β x)

)
, β =

π

2
,

where β is chosen so that solutions are periodic in x. This solution satisfies ∇ · uf
ex = 0. Given

a temperature profile of Tf = z β3 sin(β x), we are able to determine the pressure gradient, and

the pressure up to a constant, that helps satisfy (3.8): pexf = −β sin(β x). Then, we impose uf =

uf
ex, pf = pexf at the boundaries and solve (3.8) for uf and pf . We compare the solutions to the

exact solution with the L2 norm:

error2 =

∫
Ω
|uf − uf

ex|2 dx .
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We solve this problem with different elements, P1 and P2, and different linear solvers, UMFPACK

and GMRES. The velocity and vorticity for this test case are shown in Figure 3.4.

Figure 3.4: Approximate velocity and vorticity from solving the steady Stokes equation (3.8).

In Figure 3.5, we plot the L2 error against the number of elements per unit distance on the

mesh, labelled N . We see that for the P1 elements, both UMFPACK and GMRES are second-

order in space; that is, as we halve the max element edge distance on our uniform mesh, the error

decreases by a factor of 4. This is evident with the slope of 2 with the L2 errors for the P1 cases.

For the P2 cases though, we see the method is third-order in space with the slope of 3 with the L2

errors. This means that halving the max element edge distance on our mesh causes the error to

decrease by a factor of 8. Strictly based on convergence rates of L2 errors, the P2 elements clearly

outperform their P1 counterparts, regardless of the linear solver used.

However, the UMFPACK cases run more quickly than the GMRES ones, as evident in the plot

from Figure 3.6. For example, with P2 elements and 215 elements (the case for the most refined
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mesh shown in Figure 3.6), the UMFPACK solve took 8.6 seconds while the GMRES case took

645 seconds, about 80 times as long. With the comparison lines having slopes of 1 and 3/2 for the

UMFPACK and GMRES linear solvers, respectively, the computational times of these methods are

O(N1) and O(N3/2) with N as the total number of elements in the mesh. Even though UMFPACK

computes an LU factorization, the algorithm exploits the sparse structure of the matrix to reduce

the number of operations needed to solve the system. Additionally, the factorization does not

need to be computed each step, further reducing the computational storage and time for running

simulations. Figure 3.6 also helps illustrate an issue with the GMRES solver: with the most refined

mesh, 215 elements, the GMRES solver does not converge with the P1 elements. As the number

elements increases and ∆x gets smaller, the system becomes more ill-conditioned. As a result, the

GMRES iterations may not converge– this is the case for the case with P1 and 215 elements, evident

in the two ‘missing’ data points in Figures 3.5 and 3.6.

Taking into account the L2 error convergence rates and time per solve, using P2 elements for

velocity in our simulations seems to be the best choice with UMFPACK to solve the linear systems.

While the P1 cases would take less time to run, the better errors and convergence rates associated

with the P2 elements are worth the extra time spent solving the additional degrees of freedom.

The type of element used for the pressure terms has yet to be discussed though. Despite P2

elements having better error convergence rates compared to P1 elements, we will choose to put

pressure on P1 elements with velocity on P2 elements. These mixed element choices are referred to

the Taylor-Hood elements. Numerous convergence studies and analyses have been performed with

this choice of elements (see: [14, 42, 43, 49, 91]) proving the convergence rates using the P2-P1

Taylor-Hood elements are

‖uf
ex − uf‖L2 ∼ O(∆x3), ‖pexf − pf‖L2 ∼ O(∆x2),

where ∆x corresponds to the length of the largest element of the mesh. We see these convergence

rates hold in practice with Figure 3.7.

With all of the above information, we will use the mixed FE Taylor-Hood elements for our

simulations with the UMFPACK linear solver.
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Figure 3.5: Convergence for the steady Stokes problem with P1 and P2 elements with UMFPACK
and GMRES linear solvers. The L2 error of velocity is plotted as the max edge size, ∆x on the
mesh, is varied. The comparison lines in each plot have slopes of 2 for the blue line (P1 elts.) and
3 for the red line (P2 elts.).

Figure 3.6: Time per solve for the steady Stokes problem with P1 and P2 elements with UMFPACK
and GMRES linear solvers. The green comparison line has a slope of 1, the blue line has a slope of
3/2.
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Figure 3.7: Convergence with L2 errors of uf and pf with the steady Stokes problem using the
Taylor-Hood P2-P1 elements with UMFPACK as the linear solver. The red comparison line has a
slope of 2, and the blue has a slope of 3.

3.1.5 Quantifying convection

To quantify the effectiveness of heat transfer and the onset of convection, we use two primary

measurements: the (non-physical) energy of the system, and the Nusselt number. While we defined

the energy of the system ourselves and it does not have an innate physical meaning, our analyses

were conducted with the energy in mind. These analyses were then used to determine the Rayleigh

number needed for the onset of convection with the marginal stability curves. A more traditional

measurement in quantifying convection is the Nusselt number, which describes the ratio of con-

vective to conductive heat transfer at the boundary of a fluid. Both of these measurements are

described in more detail below.

For the energy analysis, we return to the system of perturbations to the steady-state, vf , πf , θf

(perturbations to velocity, pressure, and temperature, respectively):
1

Pr

∂vf

∂tf
+ (vf · ∇)vf = ∇ · T (vf , πf ) + Raf θf k,

∂θf
∂tf

+ vf · ∇θf = ∇2θf + wf ,
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then take the inner product of the two equations above with v and θf , respectively. We integrate

by parts and apply the boundary conditions to arrive at the energies of each equation1:
1

2 Pr

d

dtf
‖vf‖2 = −‖∇vf‖2 + Raf

∫
Ω
θfk · vf dx ,

1

2

d

dtf
‖θf‖2 = −‖∇θf‖2 +

∫
Ω
θf wf dx .

We define the energy of the system as the sum of the two left-hand sides of the equations above

(without the time derivative):

2E(tf ) =
1

Pr
‖vf‖2 + ‖θf‖2 . (3.9)

Then, the change in energy is

dE

dtf
= −D + I (3.10)

where the definite and indefinite terms, D and I, are

D = ‖∇vf‖2 + ‖∇θf‖2 ,

I = (Raf + 1)

∫
Ω
θf wf dx .

With (3.9) and (3.10) governing the energy and change in energy, we could follow an argument

similar to that in Chapter 2 to determine nonlinear stability curves; however, the equations would

reduce to those used in the linear analysis. Here, (3.9) and (3.10) are only being used here to

quantify the energy of the system.

One other quantitative benchmark with many works on convection is the Nusselt number. The

Nusselt number Nu is the ratio of convective to conductive heat transfer at the boundary of a

fluid, as seen in Chapter 2 with (2.34). In Chapter 2 though, the Nusselt number was viewed as

a field; in this chapter, we view the Nusselt number as a scalar quantifying the ratio of convective

to conductive heat transfer. Many seminal works in the fields of convection, turbulence, and

geophysical fluid dynamics make use of the Nusselt number to quantify heat transfer. For a non-

exhaustive list of works concerning the Nusselt number in a variety of settings with convection in

fluids, see [16, 31, 34, 35, 48, 55, 69, 82, 97].

1The resulting equations are the same regardless of the choice of no-slip or free-slip boundary conditions on the
top and bottom plates.
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We have various ways to define the Nusselt number Nu; despite appearances, all the definitions

are equivalent with the divergence theorem and/or integration by parts. To define Nu, we use the

following notation:

f̄ := f̄(z) =
1

2Lx

∫ Lx

−Lx
f dx (horizontal average), 〈f〉 =

1

d

∫ d

0
f̄ dz (vertical average) .

Then, the Nusselt number can be defined by any of these statements

Nu(t) = 1 + 〈wT 〉 (3.11)

= 〈|∇T |2〉 (3.12)

=

∫
ΩwT dx +

∫
Ω−

∂T
∂z dx∫

Ω−
∂T
∂z dx

(3.13)

= 1− ∂θ̄

∂z

∣∣∣∣
z=1

(3.14)

where T is the temperature field, θ is the deviation of the temperature from the conductive state,

and w is the vertical component of the velocity. Doering et al. and Howard showed that (3.11),

(3.12), and (3.13) were all equivalent in [34, 35, 55].

Traditionally, the Nusselt number is defined as the time-average of Nu(t). We plot how the

Nusselt number varies in time though since it is related to the energy of the system. With a scaled

version of the Nusselt number and the energy of the system

Ñu =
Nu− 1

max(Nu− 1)
, Ẽ =

E

maxE
, (3.15)

we will show how closely these two measurements align. Effectively, the non-physical energy of the

system E(t) is closely related to the physically-motivated Nusselt number by Ñu(t) ≈ Ẽ(t), which

we show in the Results section below.

3.1.6 Results

With the simulations, we discretize the domain into the mesh. A schematic of the mesh is

shown in Figure 3.3, which has 10 elements per unit distance. For our simulations in this chapter,

we use a mesh over (x, z) ∈ [−2.5, 2.5]× [0, 1] with 20 elements per unit distance.

While verifying our results, one obvious aspect to investigate is the critical Rayleigh number.

A healthy amount of this chapter is dedicated to determining the critical Rayleigh numbers for
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various boundary conditions, after all. With our simulations, we consider no-slip conditions for

velocity and conductive conditions for temperature at the top/bottom of the domain with periodic

boundary conditions at the left and right. Earlier, we determined that the critical Rayleigh number

corresponding to this case is 1708. So, choosing a Rayleigh number below that threshold should

result in the conductive state, while choosing one above 1708 should produce convection cells.

Additionally, we can relate the choice of the Rayleigh number to the energy of the system from

(3.9). For Raf < 1708, the energy of the system, as well as the change in energy, will stay at 0

for the duration of the simulation. For Raf values above 1708 though, the energy of the system

will grow and then plateau at the saturation energy. While the energy is growing, the convection

cells are beginning to form. Once the cells have completely formed and the system has achieved its

saturation energy, the system is at its new steady-state, evident with dE/dt = 0 at this point in the

simulations. We plot the energy and change in energy for simulations of various Rayleigh numbers,

shown in Figure 3.8. These results are in agreement with the stability analyses conducted earlier

in this chapter.

We also plot the Nusselt number in Figure 3.8. Values of Nu > 1 correspond to convection,

while Nu = 1 corresponds to the conductive state. This directly correlates to E(t) > 0 signifying

that convection cells will arise and E(t) = 0 for the initial ‘no-flow’ steady state. Similar to the

energy of the system, higher Rayleigh numbers are related to higher Nusselt numbers. Determining

the relationship between the Rayleigh number and the Nusselt number is an active research area,

especially in the high Rayleigh number regime. For higher Rayleigh numbers, there are many

relationships (some more complicated than others) describing how Nu and Ra can be related. For

example, in [35], Doering et al. determined the bound

Nu ≤ 0.644× Ra1/3 [ln(Ra)]1/3

in the asymptotic limit of Ra → ∞. Many other papers have been dedicated to determining

relationships and bounds like this for large, but finite, Rayleigh numbers as well.

Without looking at the scales of the vertical axis, we note the similarities in profiles for E(t)

and Nu(t). This prompted us to normalize both profiles, scaling them by their max and shifting

the Nusselt number downward to have a minimum of 0. These scaled profiles are shown in Figure

3.9. These results suggest that the energy of the system has a more prominent role in convection
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than we initially figured; while it is defined as a non-physical measure of the mathematical energy

of the system, it also is closed related to the Nusselt number. So, many of the results we show with

the energy can be directly extrapolated to results with the Nusselt number. We will limit these

relationships to ‘lower’ Rayleigh number regimes though.

With the Figures 3.10 and 3.11, we run simulations with Raf = 2500 and Raf = 10000. As

the Rayleigh number increases, the velocity of the convection cells increases (as noted with the

larger values of the isolines in the streamline graphs) and the temperature profile begins to develop

more “plume-like” shapes. With the increase in Raf , the energy of the system increases as well;

this is shown with Figures 3.10b and 3.11b. In the case with Raf = 2500, the convection cells

develop gradually over t ∈ (5, 7). With Raf = 10000 though, the convection cells develop much

more rapidly. The fluid velocity gains momentum and the system overshoots the saturation energy.

The cells then lose some velocity to settle down at steady convection cells as E(t) and dE/dt level

out.

Figure 3.8: Energy of the systems and the change in energy for various Raf values. The mesh is
on (x, z) ∈ [−2.5, 2.5]× [0, 1] with 20 elements/unit distance on the mesh, and ∆t = .01, Prf = .7.
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Figure 3.9: Scaled energy and scaled Nusselt number of the systems for various Raf values. The
solid lines represent the scaled Nusselt number, the dashed are the scaled energy. The mesh is on
(x, z) ∈ [−2.5, 2.5]× [0, 1] with 20 elements/unit distance on the mesh, and ∆t = .01, Prf = .7.

When the systems achieve their steady-state, we can determine the saturation energy. For

various Rayleigh numbers, we plot the saturation energy versus Raf in Figure 3.12. With these

results, we see once again that the critical Rayleigh number is around 1708; this is evident with

the saturation energy at 0 until Raf ≈ 1708. Additionally, we fit the data with the red line shown

in the figure:

Efit = .084 · Raf − 143.5 .

This suggests a linear relationship between the Rayleigh number and saturation energy. Fur-

thermore, with the predicted saturation energy, inputting Raf = 1708 into the equation yields

Efit = −.028 ≈ 0, verifying the critical Rayleigh number yet again. This method has the potential

to be used with the coupled case to verify the critical Rayleigh numbers found with our linear and

nonlinear stability analyses. We postulate these results are only valid in non-turbulent parameter

regimes.

With the simulations for Figure 3.12, we stay in a parameter regime where steady-states can be

achieved. If the Rayleigh number is increased to Raf ∼ O(106− 107), we enter a turbulent regime.

While turbulence in these scenarios is still a very active research problem, turbulence adds another

facet to the convection problem and is beyond the scope of the work we conduct in this thesis.

As a result, we only consider ‘nice’ parameter regimes which do not result in turbulence. Figure
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(a) Streamlines and temperature profiles at t = 10. Positive isolines circulate in the positive direction with
negative isolines circulating in the negative direction.

(b) Energy and change in energy.

Figure 3.10: Simulation with Raf = 2500. The mesh is on (x, z) ∈ [−2.5, 2.5] × [0, 1] with 20
elements/unit distance on the mesh, and ∆t = .01, Prf = .7.
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(a) Streamlines and temperature profiles at t = 10. Positive isolines circulate in the positive direction with
negative isolines circulating in the negative direction.

(b) Energy and change in energy.

Figure 3.11: Simulation with Raf = 10000. The mesh is on (x, z) ∈ [−2.5, 2.5] × [0, 1] with 20
elements/unit distance on the mesh, and ∆t = .01, Prf = .7.
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Figure 3.12: Raf versus saturation energy for a single layer of fluid.

Figure 3.13: Energy and the change in energy for Raf = 106, in a ‘turbulent’ system. The mesh is
on (x, z) ∈ [−2.5, 2.5]× [0, 1] with 20 elements/unit distance on the mesh, and ∆t = .01, Prf = .7.

3.13 shows the energy and change in energy for a ‘weakly turbulent’ case with Raf = 106; we note

neither the energy nor the change in energy of the system settle down.
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3.2 Single layer of a porous medium saturated with fluid

This section focuses on the phenomenon of convection in a single layer of a porous medium

saturated with fluid. Here, we outline the linear stability analysis, our numerical method to sim-

ulate the system, and related results. Many of the arguments made in this section are similar to

those discussed in the previous section. The linear stability analyses here are not novel; the same

arguments are presented in popular survey texts concerning convection in porous media [68, 86].

3.2.1 Equations, and linear stability analysis

With fluid flow in a porous medium, the Darcy system or the Brinkman equations are the most

appropriate choices. However, for media with small porosities, Darcy is the most well-accepted

model governing fluid behavior. With the temperature component, the Boussinesq approximation

is included with Darcy, and we add an advection-diffusion equation into the system as well. For

Ω = {(x, y, z) ∈ R2 × (−dm, 0)}, we have:

ρ0

χ

∂um

∂tm
+
µ0

Π
um = ∇pm − gρ0 [1− β (Tm − TL)]k ,

∇ · um = 0 ,

∂Tm
∂tm

+ um · ∇Tm = λm∇2Tm ,

with λm = κm/ (ρ0cp)f . A schematic of the domain is shown in Figure 3.14.

To begin the linear stability analysis, we find the steady-states. Like the case of the single layer

of fluid, the steady-states are zero fluid flow and a linear temperature profile with the pressure

gradient selected to satisfy the remainder of the Darcy-Boussinesq equation. The steady-states are

denoted by an overbar:

ūm = 0 ,

T̄m = TU + z
TU − TL
dm

,

∇p̄m = −gρ0

(
1− β

(
T̄m − TL

))
k .

We perturb the steady-states with the perturbation variables

um = ūm + vm , Tm = T̄m + θm , pm = p̄m + πm ,
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Figure 3.14: Schematic of the domain Ω = {(x, y) ∈ R2 × z ∈ (−dm, 0)}. The upper and lower
boundaries are impermeable and held at constant temperatures TU and TL, respectively, with
TL > TU .

which yields the system:

ρ0

χ

∂vm

∂tm
+
µ0

Π
vm = −∇πm + ρ0gβθmk ,

∇ · vm = 0 ,

∂θm
∂tm

+ vm · ∇θm = λm∇2θm − wm
(
TU − TL
dm

)
.

We nondimensionalize the system with the following scalings:

vm = ṽm
ν

dm
, xm = x̃m dm , tm = t̃m

d2
m

λm
, θm = θ̃m

(TL − TU ) ν

λm
, πm = π̃m

ρ0 ν
2

d2
m

,

and assuming that the perturbations are small, we find the linear, nondimensional system for the

perturbation variables: 

1

χ

Da

Prm

∂vm

∂tm
+ vm = −Da∇πm + Ram θmk ,

∇ · vm = 0 ,

∂θm
∂tm

= ∇2θm + wm ,

with Prm =
ν

λm
Da =

Π

d2
m

, and Ram =
gβ (TL − TU ) Da d3

m

ν λm
.
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After taking the double curl of the Darcy-Boussinesq equation and looking the z−component

of the resulting equation, we find the coupled system for z ∈ (−1, 0) :
(

1

χ

Da

Prm

∂

∂tm
+ 1

)
∇2wm = Ram∇2

Hθm ,(
∂

∂tm
−∇2

)
θm = wm ,

(3.16)

For boundary conditions, we have various options to enforce at the top and bottom plates of

the domain. For velocity, we can enforce an impermeable boundary or an ‘open boundary.’ An

impermeable boundary would correspond to a rigid plate and wm = 0 on the boundary. Alterna-

tively, an ‘open boundary’ would refer to a free surface or a “boundary at a constant pressure, [as

in] a medium bounded by a fluid” [68]. Tyvand stated this condition is equivalent to requiring that

the surrounding fluid is hydrostatic [94]. Tyvand also noted that just as impermeable boundary

is expressed with u · n = 0, the condition describing an open boundary is u × n = 0. With our

variables, the free surface condition is then written as ∂wm
∂z = 0. This condition follows from an

argument that assumes a fluid at hydrostatic equilibrium is outside the porous medium, and is

derived in detail in [94].

For boundary conditions on the temperature perturbation, we have a two choices yet again.

The first assumes that the boundary is perfectly conductive, and as a result, the perturbation to

the steady-state would be 0 at the boundary– that is, θm = 0. A second option assumes a constant

heat flux, or an insulating boundary, with ∂θm
∂z = 0.

Now, we take normal modes of the perturbations

wm(x, t) = F (x, y)wm(z) eσ t, θm(x, t) = F (x, y) θm(z) eσ t,

and substitute them into (3.16), which gives:
(

1

χ

Da

Prm
σ + 1

)(
D2 − a2

)
wm = −a2 Ramθm ,(

σ − (D2 − a2)
)
θm = wm .

(3.17)

3.2.2 Principle of exchange of stabilities

Like the single layer of fluid case, the principle of exchange of stabilities holds for a single layer of

a porous medium regardless of which combination of boundary conditions we choose to enforce. To
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show that this principle holds, we multiply the two equations of (3.17) by w∗m and θ∗m, respectively,

and integrate over the domain. Then, with integration by parts, we can manipulate the equations

to show that setting σ = 0 suffices for determining marginal stability.

With the first equation of (3.17), we have(
1

χ

Da

Prm
σ + 1

) ∫ 0

−1
w∗m

(
D2 − a2

)
wm dz = −a2 Ram

∫ 0

−1
w∗mθm dz .

Now, we can integrate by parts to find(
1

χ

Da

Prm
σ + 1

) ∫ 0

−1
|Dwm|2 + a2|wm|2 dz︸ ︷︷ ︸

:=I1>0

= a2 Ram

∫ 0

−1
w∗mθm dz ,

⇒
(

1

χ

Da

Prm
σ + 1

)
I1 = a2 Ram

∫ 0

−1
w∗mθm dz . (3.18)

We follow a similar procedure with the second equation of (3.17), multiplying by θ∗m∫ 0

−1
θ∗m
(
σ − (D2 − a2)

)
θm dz =

∫ 0

−1
θ∗mwm dz ,

and then integrating by parts

σ

∫ 0

−1
|θm|2 dz︸ ︷︷ ︸

:=I2>0

+

∫ 0

−1
|Dθm|2 + a2|θm|2 dz︸ ︷︷ ︸

:=I3>0

=

∫ 0

−1
θ∗mwm dz ,

⇒ σ I2 + I3 =

∫ 0

−1
θ∗mwm dz . (3.19)

We take a2Ram times (3.19) and subtract off (3.18) to eliminate the right-hand sides of the

equations, yielding

a2Ramσ I2 + a2Ram I3 −
(

1

χ

Da

Prm
σ∗ + 1

)
I1 = 0 .

We assume σ = σre + i σim and collect the real and imaginary components of the above equation,

each of which should be equal to zero. With the imaginary component, we have

σim

(
a2Ram I2 +

1

χ

Da

Prm
I1

)
= 0,
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implying that for Ram > 0, we must have σim = 0. So, when the bottom plate of the domain

is hotter than the top plate (i.e., Ram > 0), the σ values of the perturbation have no imaginary

component. This allows us to set σ = 0 in (3.17) to solve for the marginal stability curves.

With the real part of the equation, we have

σre

(
a2Ram I2 −

1

χ

Da

Prm
I1

)
+ a2Ram I3 − I1 = 0.

For Ram < 0, we must also have σre < 0. The assumption of Ram < 0 corresponds to the top plate

having a higher temperature than the bottom plate and the conclusion of σre < 0 indicates the

perturbations damps out and the configuration is stable.

3.2.3 Marginal stability curves

Evoking the principle of exchange of stabilities allows us to set σ = 0 and solve a generalized

eigenvalue problem for Ra to determine marginal stability:
(
D2 − a2

)
wm = −a2 Ramθm ,(

D2 − a2
)
θm = −wm .

Once again, we lose dependence on the Prandtl number. We also notice that the porosity χ is also

not explicitly represented in the equations above; however, it is interwoven into the Ram term with

the permeability. The generalized eigenvalue problem takes the form:(
D2 − a2 I 0

I D2 − a2 I

)(
wm
θm

)
= Ram

(
0 a2 I
0 0

)(
wm
θm

)
, (3.20)

which we solve with the Chebyshev tau-QZ algorithm [36] using a mixture of boundary conditions

(with their respective abbreviations used in Figure 3.15):

• impermeable (IMPR): wm = 0,

• “free-slip” (FREE): Dwm = 0,

• conducting (COND): θm = 0,

• insulating (INSUL): Dθm = 0.

Table 3.2 notes the critical Rayleigh numbers we find for different combinations of the boundary

conditions. Each of the values present are in agreement with the work conducted by Nield and

Bejan in [68]. We also plot several marginal stability curves in Figure 3.15.
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The marginal stability curves reveal some interesting behavior. The first four panels of Figure

3.15, (a) through (d), resemble stability curves from the free flow region. However, the last two

curves shown in panels (e) and (f) have their respective minima at a wavenumber of a = 0.0.

This tells us that long-wave perturbations are the most unstable. An unstable perturbation with

a wavenumber of a = 0 would not allow a convection cell to form since a perturbation with

wavenumber a = 0 would correspond to a convection cell with infinite width. In practice, the

length of a domain would help provide a lower-bound on wavenumbers producing instabilities. For

example, in a physical domain of length 5, no perturbations with a width of more than 5 can be

present; there physically is not space for those cells to form.

Additionally, we note a trend observed with the free flow marginal stability results; as we relax

the boundary conditions (from an impenetrable boundary to free-slip, or from a conductive to an

insulating condition), the critical Ra value decreases too. In fact, a system with “free-slip” and

insulating conditions at the top and bottom of the domain (i.e., the most relaxed combination

of boundary conditions possible) has a critical Raleigh number of Ram = 0, which is achieved at

wavenumber a = 0. This implies that any positive Rayleigh number will produce an instability.

Table 3.2: Critical Rayleigh numbers for the single porous layer with different combinations of
boundary conditions.

velocity heat

z = −1 z = 0 z = −1 z = 0 Rac ac
IMPR IMPR COND COND 39.4 3.1

IMPR IMPR COND INSUL 27.1 2.3

IMPR IMPR INSUL COND 27.1 2.3

IMPR IMPR INSUL INSUL 12.0 0

IMPR FREE COND COND 27.1 2.3

IMPR FREE COND INSUL 9.8 1.6

IMPR FREE INSUL COND 17.6 1.8

IMPR FREE INSUL INSUL 3.0 0

FREE IMPR COND COND 27.1 2.3

FREE IMPR COND INSUL 17.6 1.8

FREE IMPR INSUL COND 9.8 1.6

FREE IMPR INSUL INSUL 3.0 0

FREE FREE COND COND 12.0 0

FREE FREE COND INSUL 3.0 0

FREE FREE INSUL COND 3.0 0

FREE FREE INSUL INSUL 0.0 0
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3.2.4 Numerics

For simluations, we return to the original variables in the nondimensional system (x, y, z) ∈

(−Lx, Lx)2 × (−1, 0): 

Da

χPrm

∂um

∂tm
+ um = −Da∇pm + Ram Tm k,

∇ · um = 0 ,

∂Tm
∂tm

+ um · ∇Tm = ∇2Tm .

Here, the Rayleigh number is the still ‘Rayleigh-Darcy’ number:

Ram =
gβ (TL − TU ) Da d3

m

ν λm
=
gβ (TL − TU ) Π dm

ν λm
.

For boundary conditions, we consider conductive, impermeable plates at the top and bottom of

the domain (shown in Figure 3.14) with periodic conditions at the left- and right-sides. These

conditions correspond to um ·n = 0 and Tm = TU at the upper plate with um ·n = 0 and Tm = TL

at the lower boundary. Once again, we consider TU < TL so that convection is possible. One

difference between these conditions and those used in the single layer of fluid case deals with the

conditions on the fluid velocity. With Navier-Stokes, we have a second-order equation in space

for the velocity; this allows us to enforce two conditions on the velocity at each boundary, namely

uf · n = 0 and uf · τ = 0, written succinctly as uf = 0. However, with the porous medium case,

Darcy is a first order equation in space and as a result, we are only able to impose one condition on

the velocity. So, we require um · n = 0, corresponding to no fluid flowing in the normal direction

at the boundary (i.e., no fluid flowing into or through the boundary).

With these conditions, we introduce the FE spaces:

• V = {v ∈
[
H1 (Ω)

]2
: v · n = 0 at top and bottom + periodic on left and right},

• Q = {q ∈ L2 (Ω) :
∫

Ω q dx = 0 + periodic on left and right} = L2
0 (Ω),

• Ψ = {ψ ∈ H1 (Ω) : ψ = 1 on bottom, ψ = 0 on top + periodic on left and right}.

To get the variational form to solve Darcy, we take the divergence of both sides of the equation:

∇ ·
[

Da

χPrm

∂um

∂tm
+ um

]
= −∇ · [ Da∇pm + Ram Tm k ] .
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(a) IMPR, IMPR, COND, COND. (b) IMPR, IMPR, COND, INSUL.

(c) IMPR, FREE, COND, COND. (d) IMPR, FREE, COND, INSUL.

(e) FREE, FREE, COND, COND. (f) FREE, FREE, COND, INSUL.

Figure 3.15: Marginal stability curves for a single layer of a porous medium with various boundary condi-
tions, noted beneath each plot. The conditions are for the velocity at z = −1 and z = 0, followed by the
conditions on θm at z = −1 and z = 0. 70



The LHS goes to zero with the incompressibility condition ∇ · um = 0, and we are left with the

right-hand side only,

0 = −∇ · [ Da∇pm + Ram Tm k ] .

In this form, we multiply by the test function q ∈ Q and integrate over the domain. Integration by

parts allows us to rewrite this as:∫
Ω

Da∇pm · ∇q dx +

∫
∂Ω

(−Da∇pm · n) q dS −
∫

Ω
(Ram Tm k) · ∇q dx +

∫
∂Ω

(Ram Tm k · n) q dS = 0 .

We combine the boundary terms, and make the substitution noted:∫
Ω

Da∇pm · ∇q dx−
∫

Ω
(Ram Tm k) · ∇q dx +

∫
∂Ω

(−Da∇pm + Ram Tm k)︸ ︷︷ ︸
=

Da

χPrm

∂um

∂tm
+ um

·n q dS = 0.

Since um · n = 0 on the top and bottom boundaries and we enforce periodic at the left and right

of the domain, the boundary integral goes to zero. This leaves us with the variational form below,

where we solve for pm ∈ V (given a Tm ∈ Ψ):∫
Ω

Da∇pm · ∇q dx−
∫

Ω
(Ram Tm k) · ∇q dx = 0 ∀q ∈ Q .

Then, we can then find the velocity um
(n+1) using the previous velocity um

(n) and the just-solved-

for pressure p
(n+1)
m :

Da

Prm χ

um
(n+1) − um

(n)

∆t
+ um

(n+1) = −Da∇p(n+1)
m + Ram T

(n)
m k ,

=⇒ um
(n+1) =

[
−Da∇p(n+1)

m + Ram T
(n)
m k +

Da

Prm χ∆t
um

(n)

](
Prm χ∆t

Da + Prm χ∆t

)
. (3.21)

using Backward Euler for the time-derivative. Backward Euler is the simplest choice of time-

integrators; however, we could substitute in a higher-order integrator if needed.

To simulate the system, we begin by perturbing the conductive temperature with seeded white-

noise εmag := εmag(x) (the magnitude of this perturbation is set at 1.0× 10−8):(
um

(0), T (0)
m

)
= (0, −y) + εmag .

We note that perturbing the pressure is not necessary since the variational form to solve for pressure

does not require a previous pressure value.
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So, given T
(n)
m ∈ Ψ, we find

(
p

(n+1)
m , T

(n+1)
m

)
∈ Q×Ψ such that

∫
Ω

Da∇p(n+1)
m · ∇q dx−

∫
Ω

(
Ram T

(n)
m k

)
· ∇q dx = 0 , (3.22)

for all q ∈ Q, and

∫
Ω

∂T
(n+1)
m

∂tm
ψ dx +

∫
Ω
um

(n+1) · ∇T (n+1)
m ψ dx +

∫
Ω
∇T (n+1)

m · ∇ψ dx = 0 (3.23)

for all ψ ∈ Ψ, where the velocity um
(n+1) is found with (3.21) before solving for T

(n+1)
m .

Like the fluid case, we write these problems in a form so that they are uncoupled and may

be solved sequentially. This allows us to use linear methods to solve the systems rather than

using more computationally expensive methods to solve the coupled problem. Additionally, the

uncoupled nature of our problem does not require us to create any ‘new’ code to simulate the

fluid-temperature system; we can use a Darcy solver for the velocity and a temperature solver for

the advection-diffusion equation, both with some minor adjustments.

Similar to the fluid case as well, we are able to find the stream function φ, solving

∫
Ω

[
∇φ(n+1) · ∇ϕ− ϕ

(
∇× um

(n+1)
)]
dx = 0 (3.24)

for all ϕ ∈ Φ, where

• Φ = {ϕ ∈ H1 (Ω) : ϕ = 0 on top and bottom + periodic on left and right}.

72



With our simulations, we have the algorithm:

Algorithm 2: Solving Darcy-Heat system

Result: um
(N), p

(N)
m , T

(N)
m , φ(N) .

Use initial conditions:
(
um

(0), T
(0)
m

)
= (0, −y) + εmag .

for n = 0; n < N ;n+ +
do

With T
(n)
m , solve (3.22) for p

(n+1)
m .

With p
(n+1)
m , T

(n)
m , um

(n), update um
(n+1) with (3.21).

With um
(n+1), solve (3.23) for T

(n+1)
m .

With um
(n+1), solve (3.24) for φ(n+1).

end

Unlike the simulations with the single layer of fluid, we use P2 elements for pressure in the

Darcy-Heat solver since pressure plays a larger role in convection here. With the velocity as a

by-product of the pressure, any errors in the pressure immediately propagate to the velocity. To

remedy this potential issue, using P2 elements is a natural solution by increasing the degrees of

freedom, and hopefully, giving more accurate approximations to pm and um. Also, our choice

of element-type for velocity is almost inconsequential since we never solve a system for um; the

velocity is only used in solving for the temperature field and streamlines.

To validate our Darcy solver, we perform a convergence study. Once again, we use the method

of manufactured solutions with

um
ex =

(
cos(β x), z β sin(β x)

)
, pexm = − 1

β
sin(β x) + cos(π(2z − 1)),

where β = π/2 enforces periodic solutions in x and temperature profile is chosen to be

Tm = z β sin(β x)− 2π sin(π(2z − 1)) .

Instead of the dynamic equations, we consider the steady-state Darcy equation (without the Darcy

number or Rayleigh number since their value should not affect implementing the code) and its

variational form:

um = −∇pm + Tm k =⇒
∫

Ω
[∇pm − Tm k] · ∇q dx = 0 ∀q ∈ Q.
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At the boundaries of Ω, we enforce pm = pexm . Then, solving for pm allows us to determine the

Darcy velocity um = −∇pm + Tm k.

To quantify the errors, we plot the L2 error of each quantity with P2 elements for pressure and

then P1 and P2 elements for velocity. Above, we noted that the choice of element-type for velocity

was inconsequential; our plot in Figure 3.16 confirms this. The error for velocity as P1 and P2

elements has the same slope of 2 in the log-log plot in addition to similar timing for each case.

With these slopes, we have

‖um
ex − um‖L2 ∼ O(∆x2), ‖pexm − pm‖L2 ∼ O(∆x3),

where ∆x corresponds to the length of the largest element of the mesh. This result holds for P2

elements for pressure and both P1 and P2 elements for velocity.

The results in Figure 3.16 are almost the opposite of those we found for the single layer of fluid

case with Figures 3.6 and 3.7 where the L2 error for uf had slope 3 and the error for pf had slope 2.

However, this is expected. In solving Navier-Stokes, we solved for uf and found pf as a by-product

of the velocity. With our Darcy solver, we are solving for the pressure pm while the velocity um is

now the by-product of the pressure. With our FEM simulations and our choice of element types,

the variable we solve for has third-order convergence while the variable we find as a by-product has

second-order convergence.

For our simulations of convection with fluid in a single layer of a porous medium, we will use P2

elements for both velocity and pressure. While the choice between P1 and P2 elements for velocity

in this single layer case does not matter, the choice will matter in the coupled case.

3.2.5 Quantifying convection

To analyze the energy of the system, we look to the system of the perturbed variables, vm, πm, θm

(perturbations to velocity, pressure, and temperature, respectively):

Da

χPrm

∂vm

∂tm
+ vm = −Da∇πm + Ram θm k,

∇ · vm = 0 ,

∂θm
∂tm

+ vm · ∇θm = ∇2θm + wm .
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Figure 3.16: Convergence for the steady Darcy problem with P2 elements for pressure, P1 and P2

for the velocity, and UMFPACK as the linear solver. The L2 errors are plotted as the max edge
size, ∆x on the mesh, is varied. The comparison lines in each plot have slopes of 2 for the red and
black lines (for velocity) and 3 for the blue line (for pressure).

We then take the inner product of the Darcy and advection-diffusion equations with v and θf ,

respectively. We integrate by parts and apply the boundary conditions to arrive at the energies of

each equation: 
1

2χPrm

d

dtm
‖vm‖2 = − 1

Da
‖vm‖2 +

Ram
Da

∫
Ω
θmk · vm dx ,

1

2

d

dtm
‖θm‖2 = −‖∇θm‖2 +

∫
Ω
θmwm dx ,

where Ram is still the ‘Rayleigh-Darcy’ number defined above.

To quantify the energy of the system, we define the energy as:

2Em(tm) =
1

χPrm
‖vm‖2 + ‖θm‖2 ,

with the change in energy as

dEm
dtm

= −D + I
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where the definite and indefinite terms, D and I, are

D =
1

Da
‖vm‖2 + ‖∇θm‖2 ,

I =

(
Ram
Da

+ 1

)∫
Ω
θmwm dx .

Similar to the previous section dedicated to the single layer of fluid, we are also interested in

determining the Nusselt number in these simulations as well. The definitions of Nu from (3.11)–

(3.14) and the scaled versions of the energy and Nusselt number from (3.15) still apply in this

section as well. While the energy was derived as a non-physical quantity, we once again show in

the results section that the energy and Nusselt number approximate each other nicely when scaled

appropriately.

3.2.6 Results

For the discretized domain, we use a mesh similar to the one used in the fluid case shown with

the schematic in Figure 3.3, albeit on z ∈ (−1, 0) instead of z ∈ (0, 1). Additionally, instead of the

10 elements/ unit distance as shown in the schematic, we use 20 elements/ unit distance for our

simulations.

In Figure 3.17, we plot the energy and change in energy of systems with various Darcy numbers.

For the combination of boundary conditions chosen, the critical Rayleigh number is 39.4. With

the Ram = 35 simulation, we see the perturbations damp to 0, as Em(tm) and dEm/dtm are

zero for the entirety of the simulation. For simulations run with Ram > 39.4, we see convection

cells form, evident in the energy of the system growing, and achieve a steady-state, evident with

dEm/dtm returning to 0 after a spike. We also note the close agreement with the Nusselt number

and the energy, observed in Figure 3.17 and then with their scaled counterparts in Figure 3.18. The

scaled Nusselt and energy profiles for the porous medium are much closer than the results obtained

from the single layer of fluid. While we have no definitive conclusion about why this occurs, we

speculate it is related to the nonlinearities present in governing system for the fluid layer or perhaps

a serendipitous choice of parameter regimes.

We also plot the streamlines and temperature profile for a cases run with Ram = 50 and

Ram = 75, shown in Figures 3.19 and 3.20. With these simulations, we note that as the Rayleigh

number is increased, the temperature profiles develop a more ‘plume-like’ shape (also noted in the

fluid case) as well as an increase in the energy of the system.
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Figure 3.17: Energy of the systems and the change in energy for various Ram values. The mesh
is on (x, z) ∈ [−2.5, 2.5] × [−1, 0] with 20 elements/unit distance on the mesh, and Da = 10−5,
∆t = .01, Prm = .7, χ = .3.

Figure 3.18: Scaled energy and scaled Nusselt number of the systems for various Ram values.
The solid lines represent the scaled Nusselt number, the dashed are the scaled energy. The mesh
is on (x, z) ∈ [−2.5, 2.5] × [−1, 0] with 20 elements/unit distance on the mesh, and Da = 10−5,
∆t = .01, Prm = .7, χ = .3.
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(a) Streamlines and temperature profiles at t = 10. Positive isolines circulate in the positive direction with
negative isolines circulating in the negative direction.

(b) Energy and change in energy.

Figure 3.19: Simulation with Ram = 50. The mesh is on (x, z) ∈ [−2.5, 2.5] × [−1, 0] with 20
elements/unit distance on the mesh, and Da = 10−5, ∆t = .01, Prm = .7, χ = .3.
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(a) Streamlines and temperature profiles at t = 10. Positive isolines circulate in the positive direction with
negative isolines circulating in the negative direction.

(b) Energy and change in energy.

Figure 3.20: Simulation with Ram = 75. The mesh is on (x, z) ∈ [−2.5, 2.5] × [−1, 0] with 20
elements/unit distance on the mesh, and Da = 10−5, ∆t = .01, Prm = .7, χ = .3.
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3.3 Coupled numerics

In Chapter 2, we conducted linear and nonlinear stability analyses for convection in a fluid

overlying a saturated porous medium. Although we discussed the onset of convection in detail

there, our streamlines and temperature profiles were found using eigenvalues only– there were no

numerical simulations run. Now, armed with numerical methods to simulate convection in the two

single layer cases (from the past two sections), we create a method to simulate convection in the

coupled case.

As of now, there has yet to be a numerical investigation of the evolutionary Navier-Stokes-

Darcy-Boussinesq system– i.e., Navier-Stokes, Darcy, and the advection-diffusion equations with

the inclusion of their time derivatives, all coupled together. A very recent article [101] by Zhang,

Shan, and Hou used a FEM to study the stationary system and investigated the well-posedness of

their Finite Element approximation. Other works have used numerical methods as well to study

convection in superposed fluid-porous layers [1, 90, 96], albeit with Brinkman instead of Darcy, or

Stokes instead of its nonlinear counterpart. So, to the best of our knowledge, we are the first to

simulate the evolutionary coupled system, and as a result, we present a novel numerical scheme in

this section.

With the full system (i.e., not the perturbations to the steady-state), we have the nondimen-

sional system and interface conditions obtained with nondimensional scalings and numbers taken

from the porous medium scalings from Chapter 2:

1

Prm

∂uf

∂t
+ (uf · ∇)uf = ∇ · T (uf , pf ) +

Ram
Da

(Tf − T0) k,

∇ · uf = 0 ,

∂Tf
∂t

+ Prm uf · ∇Tf = εT ∇2Tf ,

for (x, y, z, t) ∈ {R2 × (0, df/dm)× (0,∞)},

Da

Prm χ

∂um

∂t
+ um = −Da∇pm + Ram (Tm − TL) k,

∇ · um = 0 ,

%
∂Tm
∂t

+ Prm um · ∇Tm = ∇2Tm ,
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for (x, y, z, t) ∈ {R2 × (−1, 0)× (0,∞)}, and

Tf = Tm ,

εT∇Tf · n= ∇Tm · n ,

uf · n= um · n ,

−τ · T (uf , pf )n=
αBJSJ√

Da
(τ · uf ) ,

−n · T (uf , pf )n + ΨL |uf |2 = pm ,

for (x, y, 0, t) ∈ {R2 × (z = 0)× (0,∞)}.

Similar to the single layer cases, we will decouple the equations and create linear systems to

solve by lagging certain terms; these terms will be noted as they are presented. Next, we detail

how the variational forms are obtained. Additionally, with this section, we return to the following

notation for vector-valued functions f and g and matrix-valued functions A and B:

(f,g)j =

∫
Ωj

f · g dΩj , 〈A,B〉j =

∫
Ωj

A : B dΩj , ‖f ‖2j = (f, f )j , |f |2 = f · f ,

for domains j ∈ {f,m} when we take inner-products below.

3.3.1 Heat

First, we deal with the advection-diffusion equations (ADEs). In their respective domains, they

are:

in Ωf :
∂Tf
∂t

+ Prm uf · ∇Tf = εT ∇2Tf ,

in Ωm : %
∂Tm
∂t

+ Prm um · ∇Tm= ∇2Tm .

With how similar they look, we choose to write them as a single equation, governing how the

temperature of the entire domain evolves:

in Ω : δ1
∂T

∂t
+ Prm u · ∇T = δ2∇2T

where T is the temperature for the whole domain, u is the velocity field for the entire domain, and

δi are the domain-based constants:

δ1 =

{
1 in Ωf

% in Ωm

, δ2 =

{
εT in Ωf

1 in Ωm

. (3.25)
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These constants are chosen to recover their respective equations in the sub-domains and enforce the

interface conditions. By writing the two ADEs as a single equation, we do not have to describe the

interface at all; the interface is taken care of with how we have δ1 , δ2 defined. And although there

can be discontinuities in the δi coefficients (discontinuities occur if % 6= 1 or εT 6= 1) at the interface,

there is no discontinuity in the temperature profiles across the interface, as the δi coefficients help

enforce continuity of temperature and heat flux at the interface.

With ψ as a test function in a currently undefined FE space Ψ, the variational form of the ADE

is: (
δ1
∂T

∂t
, ψ

)
Ω

+ Prm (u · ∇T , ψ)Ω + (δ2∇T ,∇ψ)Ω = 0 ∀ψ ∈ Ψ .

Once we have all the variational forms, we will introduce the appropriate FE spaces.

3.3.2 Fluid region

In the fluid layer, we have the weak form of Navier-Stokes with the test function vf ∈ V :(
1

Prm

∂uf

∂t
+ (uf · ∇)uf ,vf

)
f

−
(

2∇ · D (uf )−∇pf +
Ram
Da

(Tf − T0) k,vf

)
f

= 0 ∀vf ∈ V .

Next, we use integration by parts, as well as the decomposition vf = (vf · n)n + (vf · τ ) τ , to

obtain:(
1

Prm

∂uf

∂t
+ (uf · ∇)uf ,vf

)
f

+ 2〈D (uf ) ,D (vf )〉f − (pf ,∇ · vf )f +
Ram
Da

(Tf − T0,vf · k)f

+

∫
Γi

pf vf · n dΓi −
∫

Γi

2n · D (uf )n (vf · n) dΓi −
∫

Γi

2 τ · D (uf )n (vf · τ ) dΓi = 0 .

We then combine the interface conditions with terms involving vf ·n, which allows us to apply the

interface conditions, producing the variational form (now with the incompressibility condition):

(
1

Prm

∂uf

∂t
+ (uf · ∇)uf ,vf

)
f

+ 2 〈D (uf ) ,D (vf )〉f − (pf ,∇ · vf )f + (∇ · uf , qf )f

+
Ram
Da

(Tf − T0,vf · k)f +

∫
Γi

pm (vf · n) dΓi +

∫
Γi

αBJSJ√
Da

(uf · τ ) (vf · τ ) dΓi = 0 .

The interface conditions here allow the porous medium to exert its influence on the fluid region via

the pm term.
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3.3.3 Porous region

For the fluid in the porous medium, we begin in a similar manner to the single layer case, bu

taking the divergence of Darcy, which yields

0 = ∇ · (−Da∇pm + Ram (Tm − TL)k) .

We take the inner-product of the above equation with the test function qm and integrate by

parts:

Da (∇pm,∇qm)m − Ram ((Tm − TL)k,∇qm)m

+

∫
Γi

(−Da∇pm + Ram (Tm − TL)k) · n qm dΓi ∀qm ∈ Q .

From here, we note that the term inside the parentheses of the integral along interface is the RHS of

Darcy. We substitute in the LHS of Darcy for it, and apply the interface condition uf ·n = um ·n.

This gives us the variational form:

Da (∇pm,∇qm)m − Ram ((Tm − TL)k,∇qm)m +

∫
Γi

[
Da

Prm χ

∂uf

∂t
+ uf

]
· n qm dΓi = 0 .

With the above equation, we solve for pm. With pm and Tm, we are able to determine the Darcy

velocity um.

3.3.4 Simulations with the Finite Element Method

We introduce the following FE spaces:

• Vf = {vf ∈
[
H1 (Ωf )

]2
: vf = 0 at top + periodic on left and right} ,

• Qf = {qf ∈ L2 (Ωf ) :
∫

Ωf
qf dx = 0 + periodic on left and right} = L2

0 (Ωf ) ,

• Vm = {vm ∈
[
H1 (Ωm)

]2
: vm · n = 0 at bottom + periodic on left and right} ,

• Qm = {qm ∈ L2 (Ωm) :
∫

Ωm
qm dx = 0 + periodic on left and right} = L2

0 (Ωm) ,

• V = {v ∈
[
H1 (Ω)

]2
: v = 0 at top, v · n = 0 at bottom + periodic on left and right} ,

• Ψ = {ψ ∈ H1 (Ω) : ψ = 1 on bottom, ψ = 0 on top + periodic on left and right} .
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These all resemble their single layer counterparts with the exception of restrictions on the interface

of the domain; we no longer require vf = 0 in Vf or vm · n = 0 in Vm at the interface since those

restrictions have been lifted from uf , um thanks to the interface conditions. Also, we have two

spaces spanning the entire domain, V and Ψ. The V space will be reserved for the velocity field of

the entire domain, and the space Ψ is for the temperature field over Ω since we now have it written

as a problem over the whole domain.

Figure 3.21: Schematic of the domain Ω = {(x, y) ∈ R2 × z ∈ (−1, df/dm)}. The upper and lower
boundaries are impermeable and held at constant temperatures TU = 0 and TL = 1.

With the schematic of the domain shown in Figure 3.21, we have the initial conditions from the

conductive state:

uf
(0) = um

(0) = 0 ,

T (0) =

{
T0 (1− z/d̂ ) for z ≥ 0

T0 (1 + z)− z for z ≤ 0
, (3.26)

with T0 as the intial interface temperature:

T0 =
κm d̂

κm d̂+ κf
=

d̂

d̂+ εT
.
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Then, we begin solving the variational problems. First, given
(
uf

(n), T (n)
)
∈ Vf × Ψ, we find

p
(n+1)
m ∈ Qm with

Da
(
∇p(n+1)

m ,∇qm
)
m
− Ram

((
T (n) − 1

)
k,∇qm

)
m

+

∫
Γi

[
Da

Prm χ

∂uf
(n)

∂t
+ uf

(n)

]
· n qm dΓi = 0 ∀qm ∈ Qm. (3.27)

To decouple the problems, we use the previous uf values in the integral along the interface. With

p
(n+1)
m solved for, we can use the previous Darcy velocity um

(n) to find the updated velocity um
(n+1)

using Backward Euler for the time derivative, we have

Da

Prm χ

um
(n+1) − um

(n)

∆t
+ um

(n+1) = −Da∇p(n+1)
m + Ram

(
T (n) − 1

)
k ,

which we can solve for um
(n+1) with

um
(n+1) =

[
−Da∇pm + Ram

(
T (n) − 1

)
k +

Da

Prm χ∆t
um

(n)

](
Prm χ∆t

Da + Prm χ∆t

)
. (3.28)

Once again, the time-integrator can be swapped for a higher-order integrator.

Next, with
(
uf

(n), p
(n+1)
m , T (n)

)
∈ Vf ×Qm ×Ψ, we are able find

(
uf

(n+1), p
(n+1)
f

)
∈ Vf ×Qf

by solving

(
1

Prm

∂uf
(n+1)

∂t
+
(
uf

(n) · ∇
)
uf

(n+1),vf

)
f

+ 2
〈
D
(
uf

(n+1)
)
,D (vf )

〉
f

−
(
p

(n+1)
f ,∇ · vf

)
f

+
(
∇ · uf

(n+1), qf

)
f

+
Ram
Da

(
T (n) − T0,vf · k

)
f

+

∫
Γi

p(n+1)
m (vf · n) dΓi +

∫
Γi

αBJSJ√
Da

(
uf

(n+1) · τ
)

(vf · τ ) dΓi = 0 ∀vf ∈ Vf , qf ∈ Qf .

(3.29)

We use the previously found p
(n+1)
m for the interface integral as well as the previous temperature

T (n). Also, we partially lag the velocity uf in the nonlinear term to linearize the problem. Now
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that we have the velocity in both sub-domains, we can write them as a single, updated velocity

field, u(n+1) = uf
(n+1) + um

(n+1).

With
(
u(n+1), T (n)

)
∈ V ×Ψ, we solve for T (n+1) ∈ Ψ with

(
δ1
∂T (n+1)

∂t
, ψ

)
Ω

+ Prm

(
u(n+1) · ∇T (n+1) , ψ

)
Ω

+
(
δ2∇T (n+1) ,∇ψ

)
Ω

= 0 ∀ψ ∈ Ψ , (3.30)

where δi are defined in (3.25). The previous temperature T (n) is used with the time-derivative term.

With the updated velocity field over the entire domain, we are also able to solve for the streamlines

φ:

(
∇φ(n+1),∇ϕ

)
Ω
−
(
∇× u(n+1), ϕ

)
Ω

= 0 (3.31)

for all ϕ ∈ Φ, where

• Φ = {ϕ ∈ H1 (Ω) : ϕ = 0 on top and bottom + periodic on left and right}.

For our simulations, we use the algorithm:

Algorithm 3: Solving Navier-Stokes-Darcy-Boussinesq system

Result: uf
(N), p

(N)
f , um

(N), p
(N)
m , T (N) , φ(N) .

Use initial conditions from (3.26):
(
uf

(0), um
(0), T (0)

)
=
(
uf

(0), um
(0), T (0)

)
+ εmag .

for n = 0; n < N ;n+ +
do

With uf
(n), T (n), solve (3.27) for p

(n+1)
m .

With um
(n), p

(n+1)
m , T

(n)
m , update um

(n+1) with (3.28).

With uf
(n), p

(n+1)
m , T (n), solve (3.29) for uf

(n+1).

With uf
(n+1), um

(n+1), update velocity field u(n+1) = uf
(n+1) + um

(n+1) .

With u(n+1), solve (3.30) for T (n+1).

With u(n+1), solve (3.31) for φ(n+1).

end
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Four our simulations, we have three meshes: one for the fluid layer, one for the porous medium,

and one for the entire domain. In the fluid region, we have the velocity uf and pressure pf with the

Taylor-Hood elements: P2 elements for velocity and P1 elements for pressure. With the convergence

properties referenced in Figure 3.7 in Section 3.1, the Taylor-Hood elements are a natural choice.

For the porous medium, we choose P2 elements for both velocity and pressure. Although the velocity

is a by-product of the pressure and using P1 elements would result in the same convergence rates,

we use P2 elements for the velocity of the medium so that the velocity field over the entire domain

will be P2 when we combine the velocities with u = uf + um. This velocity, u, is on the mesh

over the whole domain along with the temperature, T . Additionally, we use P2 elements for the

temperature. These are all summed up with:

• Fluid region, Ωf : uf is P2, pf is P1,

• Porous medium, Ωm: um is P2, pm is P2,

• Entire domain, Ω: u is P2, T is P2.

3.3.5 Verifying numerics

The one component we have yet to validate in our numerical simulations is temperature solver.

In the single layer cases, solving the advection-diffusion equation is relatively straightforward;

however, in the coupled case, care must be taken with this solver due to the interface, especially

since we treat the temperature across the entire domain, not sub-domains like for the pressures and

velocities. We test the solver with the stationary variational form:

(u · ∇T , ψ)Ω + (δ2∇T ,∇ψ)Ω = 0 ∀ψ ∈ Ψ , (3.32)

where Ψ is the FE space defined above and δ2 is piecewise-constant, δ2 =

{
εT in Ωf

1 in Ωm

. For

the interface conditions, we require continuity of the temperature across the interface, as well as

condition for the heat flux: εT∇Tf = ∇Tm. Since we will be considering a single temperature field,

and not separate ones, the temperature across the interface should satisfy the interface condition:

εT∇T |Ωf = ∇T |Ωm .
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Using the method of manufactured solutions over the domain of (x, z) ∈ [−1, 1] × [−1, 1], we

define the exact solution

T ex = δ3 e
−x2 z with uex = δ2 (−2x,−2y) and δ3 =

{
1 in Ωf

εT in Ωm

.

The exact solution in this case mimics the temperature of our case with convection in that they both

have a domain-dependent parameter, δ2, which changes at the interface, and we require continuity

of the temperature and a scaled heat-flux. In both cases, the different values of εT dictate how

easily the heat diffuses in the medium compared to the fluid region. For low values of εT , the heat

more readily advects in the free-flow, shown in Figure 3.22 with the temperature fields from the

convergence study.

The potential issue with convergence of this solver deals with these domain-dependent coeffi-

cients. For εT = 1, there is no discontinuity at the interface; as a result, there are no issues with

convergence since everything is continuous in the problem and with the solution. However, for

εT 6= 1, there is a discontinuity in several coefficients across the interface. While these discontinu-

ities affect how those parameters are defined in the problem, since the solution is continuous (and

differentiable at least once) across the interface, we do get convergence with our FEM approxima-

tions as ∆x→ 0.

Since we are considering the temperature across the entire domain, there is no clear definition

for δ2 at the interface; δ2 cannot be both 1 and εT at the interface. To compromise, we define these

domain-dependent constants with the arithmetic average:

δ2 =


εT in z > 0

(εT + 1)/2 at z = 0

1 in z < 0.

, δ3 =


1 in z > 0

(εT + 1)/2 at z = 0

εT in z < 0.

.

So, at any nodes which are exactly along the interface, these constants are defined; they do not

have to compete between two values.

Additionally, with our ‘single-domain’ approach, we do not have explicitly state, or enforce, the

interface conditions for temperature. These conditions are implicitly enforced with our definitions

of the δi coefficients, since these coefficients have been chosen such that the interface conditions

hold. Even with these (relatively) lax conditions, we still get third-order convergence in space using

UMFPACK to solve the linear system. This is evident with the comparison line of slope 3 shown
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in Figure 3.23, which plots the L2 error of the temperature from the stationary problem defined in

(3.32). To ensure that convergence holds with discontinuities in the domain-dependent parameters,

we test various εT values.

Another way to implement the single-domain approach could be with a level set method. Since

the interface is stationary, the level set method would be relatively easy to implement, as it would

be equivalent to creating a ‘fuzzy interface’ between the two subdomains. This method would

probably be the most appropriate one to use if we considered an interface that evolved in time.

Determining how the interface changes though would add a more difficult element to the problem,

as well as introducing non-trivial numerical issues associated with advancing the level set function.

Figure 3.22: Temperature fields for various values of εT in solving the steady ADE (3.32).

Figure 3.23: L2 error of the temperature field over the entire domain, Ω, for various εT values. The
blue comparison line has a slope of 3.
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3.4 Results

Similar to our energy definition in Chapter 2, we define the functional energy E(t) as:

2 PrmE(t) = ‖u‖2 + δ1‖T − T (0)‖2f ,

where δ1 is defined in (3.25). This differs from Chapter 2 in that we use the velocity and temperature

over the entire domain instead of their single layer counterparts. Additionally, almost all of the

cumbersome constants have vanished with nondimensionalizing by the porous medium scalings.

A few results from simulations are shown in Figures 3.24 and 3.25. With Figure 3.24a, the

streamline and temperature profiles are shown for Ra = 120 at t = 10 of the simulation. Figure

3.24b notes the energy and the change in energy of the system, showing the formation of the

convection cells and the steady-state. The formation is noted with the spike in the energy profile,

and achieving a steady-state is indicated by the derivative of the energy taking on a value of

zero. Due to perturbing the system, the absolute value of the derivative fluctuating around single-

precision zero is ‘zero’ for all intents and purposes. These results will be referred to in the next

section for a comparison as to how boundary conditions can affect convection.

In Figure 3.25, we see the influence of the Darcy number on convection cells, with our results

in agreement with the analyses conducted in Chapter 2. For Da = 10−3, we see full convection,

while decreasing the Darcy number to Da = 10−4 inhibits flow in the porous medium, resulting in

fluid-dominated convection. Since all other parameters are held constant for these simulations, our

results suggest that there is some critical Darcy number in between Da = 10−4 and Da = 10−3 that

marks the transition from fluid-dominated to full convection. An accurate theory for predicting a

critical Darcy number for this transition (or a theory for predicting a critical depth ratio) could be

utilized in a number of industrial applications. Developing a theory like this is the main focus on

the next chapter.

One item of note with these simulations is the time-scale for convection to occur and the time-

step restrictions for (numerical) stability. With Figure 3.25a, the simulation took until t = 2.0 to

fully form the convection cells, while the cells formed by t = .2 in Figure 3.25b. Additionally, with

Da = 10−3, we had a time-step of ∆t = 1.25 × 10−3 for stability and the case with Da = 10−4

needed a time-step of ∆t = 1.25× 10−4 to be stable. Based on these results (and many other test

cases), we obtain a non-rigorous requirement for numerical stability: ∆t ∼ O(Da).
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(a) Streamlines and temperature profiles at t = 10. Positive isolines circulate in the positive direction with
negative isolines circulating in the negative direction.

(b) Energy and change in energy.

Figure 3.24: Simulation with Ram = 120 at t = 10. The mesh is on (x, z) ∈ [−1.55, 1.55]× [−1, .3]
with 25 elements/unit distance on the mesh, and Da = 10−3, ∆t = 1.25 × 10−3, d̂ = .3, Prm =
εT = % = .7, χ = .3.

91



(a) Full convection at t = 2.0 with Da = 10−3, ∆t = 1.25× 10−3.

(b) Fluid-dominated convection at t = 0.2 with Da = 10−4, ∆t = 1.25× 10−4.

Figure 3.25: Full- versus fluid-dominated convection at Da = 10−3 and Da = 10−4 with Ram = 50.
All other parameters held constant: d̂ = .3, Prm = εT = % = .7, χ = .3.
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With the previous figures, the parameter regimes were carefully and painstakingly curated so

that everything worked out nicely– the steady-states were achieved relatively early in the simula-

tions and the convection was clearly full- or fluid-dominated. Alternatively, parameters can also be

chosen to achieve the opposite goal: steady-states are not easily attained and convection cells do

not exist solely in the fluid-region or occupy the entire domain. The case in Figures 3.26 and 3.27

presents results to this effect.

With the parameters chosen in Figures 3.26 and 3.27, the onset of convection is fluid-dominated

between t ≈ .1–.3; this is shown in the top left panel of Figure 3.27. Unlike cases presented so far in

this dissertation, the convection does not stay fluid-dominated for the duration of the simulation.

The convection cells in the fluid-region begin to coalesce as time progresses and expand into the

porous medium, with the ‘bulk’ of the convection cells remaining in the fluid region. Eventually,

two cells remain and the system achieves a steady-state. We do not have qualitative definition for

the kind of convection we see in examining the streamlines at t = 5.0. When we have seen full

convection in the past (see Figures 3.24a and 3.25a), the cells extended throughout the domain and

the extrema of the streamlines occurred across the interface. In this parameter regime, the cells

occupy the whole domain but the extrema of the streamlines exist solely in the fluid region. Future

work could involve an in-depth exploration into quantifying this kind of convection.

Figure 3.26: Energy and change in energy for simulation with Ram = 50, Da = 10−4 and periodic
left/right boundaries. The mesh is on (x, z) ∈ [−1.55, 1.55]×[−1, .3] with 25 elements/unit distance
on the mesh, and ∆t = 2.5× 10−4, d̂ = .3, Prm = εT = % = .7, χ = .3.
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(a) t = .2. (b) t = .35.

(c) t = .5. (d) t = .65.

(e) t = 1.2. (f) t = 1.5.

(g) t = 1.6. (h) t = 5.0.

Figure 3.27: Streamlines for Ram = 50, Da = 10−4 and periodic left/right boundaries. The mesh is
on (x, z) ∈ [−1.55, 1.55]× [−1, .3] with 25 elements/unit distance on the mesh, and ∆t = 2.5×10−4,
d̂ = .3, Prm = εT = % = .7, χ = .3.
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3.4.1 Influence of boundary conditions

In more realistic geophysical settings, one of the basic assumption from our previous numerical

simulations and analyses must to be modified: the periodic boundary conditions at the left and

right of the domain. While the periodicity allows our analyses to be conducted, these conditions

are not appropriate while modelling ‘real-world’ scenarios. As a result, we implement the following

boundary conditions on the left and the right of the domain:

u · n =
∂ T

∂n
= 0 ,

which correspond to a free-slip condition for velocity and a Neumann condition for temperature.

With the periodic assumption, if convection cells form, then they do so at their preferred wave-

length almost immediately. However, choosing to enforce the conditions noted above instead of

periodic conditions can allow– or force– convection cells to alter their wave-length so that they

are evenly distributed across the domain. These conditions also constrain the system in that the

convection cells must begin and end at the left and right boundaries, respectively. While these

conditions are seemingly innocuous, they can produce drastically different profiles than results

obtained with the periodic assumptions.

Figure 3.28 shows the velocity fields and temperature profiles for two coupled cases with the

free-slip and Neumann conditions at the left and right boundaries for the velocity and temperature,

respectively. Three and four convection cells are present for these cases, respectively, evident with

the vector fields showing the velocity and color noting the temperature. For these parameter

choices, the convection cells will stay at these wave-lengths for the duration of the simulation; the

total energy of the system levels out as time progresses. Their energy profiles are shown in 3.29.

The other energy profiles in both plots of Figure 3.29 are produced with various Rayleigh

numbers, and we draw attention to the saturation energy– i.e., the energy of the system at its

convective steady-state. The profiles in Figure 3.29a have a monotonically increasing relationship

between the Rayleigh number and the saturation energy. This makes intuitive sense; the energy

of the system increases with an increase in the Rayleigh number, which signifies the energy being

‘pumped into’ the system via heating the bottom plate. However, in looking at the profiles in

Figure 3.29b, we see that relationship does not always hold.

Using the free-slip/Neumann conditions instead of their periodic counterparts can alter the

monotonically increasing relationship between saturation energy and the Rayleigh number. In
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(a) Simulation with Ram = 80.

(b) Simulation with Ram = 90.

Figure 3.28: Streamlines and temperature profiles at t = 10 with Ram = 80 in (a) and Ram = 90
in (b) with solid left/right boundaries. The mesh is on (x, z) ∈ [−1.55, 1.55] × [−1, .3] with 25
elements/unit distance on the mesh, and Da = 10−3, ∆t = 1.25 × 10−3, d̂ = .3, Prm = εT = % =
.7, χ = .3.
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Figure 3.29b, we see that for ‘higher’ Rayleigh numbers, the relationship is gone. The lowest to

highest saturation energies correspond to Ram = 90, 80, 120, 100, 130, 110, in that order. Initially,

this was extremely puzzling. After viewing the simulations though, the culprit was revealed. For

Ram = 80 at its steady convection state shown in Figure 3.28a, there are three cells present, while

the case with Ram = 90 (shown in Figure 3.28b) has four convection cells. With the additional con-

vection cell for the Ram = 90 case, the velocity and temperature have more flexibility in dissipation,

resulting in a lower saturation energy than the case with Ram = 80.

To help illustrate this, we plot the Rayleigh number against the saturation energy in Figure 3.30

for a selection of Rayleigh numbers, spanning Ram = 55 to Ram = 110 by increments of 5. Between

Ram = 85 and Ram = 90, there is a shift in the number of convection cells at the steady-state,

from three cells to four cells, shown with the drop in the right plot of Figure 3.30. As the Rayleigh

number continues to increase past the cases we tested, there will be another drop in our curve when

the shift from four to five convection cells are present at the steady-state, and so on.

One other interesting aspect about Figure 3.30 deals with the Ram = 110 case (shown with top

energy profile, the green line). We see the curve reaches a local maximum around t = .5, decreases

for short period, and then increases again before leveling off. The dubious behavior this case

(a) Energy with ‘lower’ Rayleigh numbers. (b) Energy with ‘higher’ Rayleigh numbers.

Figure 3.29: Energy of the coupled system with various Rayleigh numbers and solid left/right
boundaries. The mesh is on (x, z) ∈ [−1.55, 1.55]× [−1, .3] with 25 elements/unit distance on the
mesh, and Da = 10−3, ∆t = 1.25× 10−3, d̂ = .3, Prm = εT = % = .7, χ = .3.
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Figure 3.30: (Left) Energy profiles of various Rayleigh numbers (Ram = 55 to Ram = 110, by
increments of 5) and solid left/right boundaries. (Right) The relationship between Ram and sat-
uration energy, where the data points come from the simulated energy profiles. The mesh is on
(x, z) ∈ [−1.55, 1.55] × [−1, .3] with 25 elements/unit distance on the mesh, and Da = 10−3,
d̂ = .3, Prm = εT = % = .7, χ = .3.

exhibits is a result of the system attempting to form six convection cells at the onset of convection.

(Even if we did not have the data from Ram = 110 in the right panel of Figure 3.30, we could

infer that six convection cells at the steady-state is probably not the preferred state; this would

require a very abrupt jump from four to six cells in the relationship we found between the Rayleigh

number and saturation energy.) As time progresses though, the two outer-most cells collapse into

their neighboring cells, producing a total of four fully-developed cells at the system’s steady-state.

The reduction from six to four convection cells gives each cell more room in the domain, allowing

for the cells’ circulation velocity to increase; the more physical space each cell has, the higher

their velocities can be. Since the energy of the system is closely related to the velocity of each

cell, a lower Rayleigh number with fewer cells/higher circulation velocity can produce a greater

saturation energy than a higher Rayleigh number with more cells/slower circulation. With the case

of Ram = 110, the formation, collapse, and subsequent steadying occurs between t ≈ .5 and t ≈ 1.0

with the jump in its energy profile shown in the left panel of Figure 3.30.
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The strange behavior from that case prompted another investigation, presenting a new quandary

for us to explore. This investigation consisted of running cases for longer times and looking at

their energy profiles. One of these results is shown in Figure 3.32 with Ram = 120, presenting

characteristics related to metastability, or potentially hysteresis. With the energy profile, we see

the energy peaks early in the simulation and then quickly levels out until around t ≈ 5, signifying

the convection cells are at ‘steady-state.’ Although the cells are visibly unchanging, the derivative

of the energy is increasing from ∼ 10−4 to ∼ 10−2; this tells us that the system is not at a true

steady-state. Between t ≈ 5 and t ≈ 6, the left-most convection cell collapses and is absorbed into

its neighboring cell, creating a spike in the energy between t = 6 and t = 6.5. The cells stabilize

again, and the energy levels off; this time though, the derivative of the energy profile hovers around

0 with single-precision white noise.

Metastability is characterized by a system shifting from one steady-state to another, like with

the example notes above. This occurs when more than one stable solution exists and the ‘preferred’

steady-state is the one with the lowest energy (not necessarily the same energy we have defined

here though). The schematic in Figure 3.31 helps illustrate this concept. Considering a ball on a

hill with two valleys, the bottom of both valleys are ‘stable solutions’ in that once the ball is there,

small perturbations will not affect its position. However, the ball at position 1 can be perturbed

enough so that it rolls down to position 2. Metastability describes the transition from position

1 to position 2, both stable steady-states. Similar metastable systems have been observed in a

variety of fluid settings with convection: in chemical applications [70], geophysical applications

[17, 89], meteorological and astrophysical applications [11, 17], and in more general fluid settings

[41, 61, 74, 81]. Transitioning from one steady-state to another can also be described by hysteresis.

Hysteresis differs from metastability in that with hysteresis, both forward and backward transitions

are possible while only one-way transitions are possible with metastability. We hypothesize that

these systems are exhibiting metastability, although hysteresis can not be definitively ruled out

without a more thorough analysis.

The velocity fields and temperatures at various times throughout the simulation are shown in

the six panels of Figures 3.33 and 3.34. At the beginning of the simulation (panels one and two of

Figure 3.33), the systems settles into six convection cells and appears to be at a steady-state. At

the left side boundary though, the temperature can be seen slowly creeping up the wall, evident
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Figure 3.31: Schematic for metastability, showing two stable solutions. Position 2 is the ‘preferred’
solution, as it has a lower energy than position 1.

with the temperature’s height difference between panels one and three. In the first panel of Figure

3.34, the left-most convection cell has collapsed into its neighbor. This can be seen with the large

convection cell and the nonuniform temperature distribution. The size of the convection cells then

even out as the system achieves its actual steady-state in panels two and three of Figure 3.34.

Figure 3.32: Energy and change in energy of the coupled system with Ram = 120 and solid left/right
boundaries. The mesh is on (x, z) ∈ [−1.55, 1.55]× [−1, .3] with 25 elements/unit distance on the
mesh, and Da = 10−3, d̂ = .3, Prm = εT = % = .7, χ = .3.

With the jump from the ‘pseudo-steady-state’ achieved between t ≈ 0 to t ≈ 5 to the ‘actual
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steady-state’ from t ≈ 6 onward, something like hysteresis is coming into play. Exploring hysteresis

in convection could be a future direction of this project. We speculate though that this jump from

a pseudo- to an actual steady-state is occurring due to the solid left/right boundaries.

Results obtained with the periodic boundary conditions are shown with Figure 3.24, which

we can compare directly to Figure 3.32; the only difference in these simulations is the boundary

conditions. With periodic conditions at the left/right boundaries, the cells form at their preferred

wave-length and tend to achieve a steady-state almost immediately after the onset of convection,

observable with the energy profile from Figure 3.24b. We also see that the periodic conditions

result in a higher saturation energy than the case run with solid left/right boundaries. Despite the

same amount of energy being pumped into the system (since both cases have the same Rayleigh

number), the periodic boundary condition produce a higher saturation energy, which is seemingly

contrary to intuition. Upon closer inspection, we observe the following: the steady-state for the

periodic boundary conditions has four cells while the solid left/right boundary yields five convection

cells. With fewer cells, each cell occupies more physical space of the domain and the extra room

allows for the cells to circulate faster. This increase in the velocity amplifies the energy profile of

the system. Although the periodic conditions may not always have a higher saturation energy than

their counterparts with solid left/right boundaries, this case shows that is it possible for the two

cases to have different saturation energies.

Finally, one last observation from implementing solid boundaries deals with similarity solutions.

In certain parameter regimes, the energy profiles are incredibly similar looking. This prompted us

to scale the time of the simulations by the time it takes to achieve the maximum energy of the

system, and scaling the energy by its maximum as well. Figure 3.35 shows the energy profiles E as

a function of time t, and the scaled energy profiles Ẽ as a function of the scaled time t̃ for various

Rayleigh numbers, Ram = 120 − 150 increasing by increments of 5. The data collapsing on itself

this nicely suggests that similarity solutions may be able to be found for energy profiles in certain

parameter regimes, which could be a direction for future research.

The solid left/right boundaries produce more unpredictable cell patterns; we do not have a

theory yet for predicting how many cells will be present in a system or how they will be organized.

Refining theories, analyses, and predictions for solid boundaries could be the topic of a future

research project and is definitely of interest for industrial applications.
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Figure 3.33: Simulation with solid left and right boundaries and the parameters: Ram = 120, Da =
10−3, d̂ = .3, Prm = εT = % = .7, χ = .3, ∆t = 1.25× 10−3. Velocity is shown with the vector field,
temperature is with color. From top to bottom, the panels are at t = 1.0, 5.5, 6.0.
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Figure 3.34: Continued results from Figure 3.33. Simulation with solid left and right boundaries
and the parameters: Ram = 120, Da = 10−3, d̂ = .3, Prm = εT = % = .7, χ = .3, ∆t = 1.25× 10−3.
Velocity is shown with the vector field, temperature is with color. From top to bottom, the panels
are at t = 6.5, 7.0, 10.0.
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Figure 3.35: (Left) Energy profiles of various Rayleigh numbers (Ram = 120 to Ram = 150, by
increments of 5) and solid left/right boundaries. (Right) The mesh is on (x, z) ∈ [−1.55, 1.55] ×
[−1, .3] with 25 elements/unit distance on the mesh, and Da = 10−3, d̂ = .3, Prm = εT = % =
.7, χ = .3.

3.5 Conclusions

This chapter began with consideration given to the respective single layers. We conducted linear

stability analyses and showed how the principle of exchange of stabilities held with each case. These

results allowed us to calculate marginal stability curves and critical Rayleigh numbers for various

combinations of boundary conditions. Next, we detailed the numerical methods used to simulate

the single layer systems via the finite element method. Special attention was paid to constructing

the variational forms and noting where the boundary conditions were applied. With our numerics,

we investigated convergence properties and showed our results were in agreement with the analysis.

Once the single layer numerical simulations were validated, we shifted our focus to simulating

the coupled system. This consisted of combining our single layer cases while altering their boundary

conditions to account for the interface between the two subdomains. The variational forms of our

system were similar to work conducted Chapter 2 and earlier in this section with the separate

cases. Implementing periodic boundary conditions with our numerical simulations allowed us to

make direct comparisons to the analytical results we determined with the stability bounds. We

also implemented solid left/right boundaries so that our code can potentially be used for industrial
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simulations. Both sets of boundary conditions were explored via a number of simulations, each of

which presented new and interesting characteristics that had yet to be documented prior to our

work.

The most important result from this chapter deals with the agreement we see between our

stability analyses from Chapter 2 and our numerical simulations. The strong agreement we observe

helps validate the numerical simulations based on the theory we developed and rigorously proved

in the previous chapter. Without this validation, we could only speculate that our simulations

were producing appropriate results. Now, we can be certain in stating our numerical methods are

working and being implemented properly.

3.5.1 Remark

The astute reader would note that the Nusselt number is not referenced in this section’s results,

due to time constraints. With the single layer Nusselt results though, we showed the defined energy

E was a good proxy for the Nusselt number. Consequently, all of the results in this section with

the energy of the system could likely be extrapolated to results with the Nusselt number for non-

turbulent parameter regimes (the Rayleigh numbers we consider in this dissertation). The Nusselt

profiles will be found for these cases though, and are to be published in a forthcoming paper.
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CHAPTER 4

HEURISTIC PHASE TRANSITION THEORY

In Chapter 2, we postulated a simple theory with (2.36) to predict the critical depth ratio d̂∗ needed

for the transition from full- to fluid-dominated convection. With that theory, we noted that the

best case scenario had around 13% relative error. While that theory was still promising, especially

since it neglected any kind of coupling between the domains, we noted that the introduction of

weak coupling could produce a more refined theory. In this chapter, we introduce a more accurate

theory which, for the parameter regimes explored, has a worst case scenario of 13% relative error

in predicting the d̂∗ value that demarcates full- and fluid-dominated convection.

4.1 Simple theory, revisited

For the simple theory from Chapter 2, we began with the Ram–Raf relationship from our

nondimensionalization, and solved for the depth ratio:

Ram = Raf
Da ε2T
d̂4

⇒ d̂ =

[
Raf Da ε2T

Ram

]1/4

.

We then substituted in the critical Rayleigh numbers, Ra∗f and Ra∗m, respectively, to predict the

critical depth ratio, d̂∗:

d̂∗ =

[
Ra∗f
Ra∗m

Da ε2T

]1/4

. (4.1)

Then, with the critical Rayleigh numbers of the uncoupled cases as Ra∗f = 1707 and Ra∗m = 4π2,

we were able to predict (to varying degrees of success) the critical depth ratio as a function of the

Darcy number and ratio of thermal diffusivities:

d̂∗ =

[
1707

4π2
Da ε2T

]1/4

. (4.2)

We used marginal stability curves to determine the ‘true’ values of the critical depth ratios, and

in comparing those to the predictions from (4.2), we had between 13-17% relative error as shown
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in Table 2.2. While this theory did not produce extremely accurate predictions, it was useful in

narrowing the parameter regime for determining where the actual transition occurs.

The key assumption in this theory was that the transition occurs when the Rayleigh numbers of

the two regions are equivalent in some sense, which prompted substituting in the critical Rayleigh

numbers of each region. However, both of the critical Rayleigh numbers used (Ra∗f = 1707 and

Ra∗m = 4π2) are for the respective regions with no-slip boundaries at the top and bottom of the

domain. These conditions completely neglect interaction between the free flow and porous medium;

therefore, a more accurate theory would incorporate some sort of coupling between the regions.

With this in mind, we revisit the boundary conditions imposed to determine the critical Rayleigh

numbers of the two regions in hopes of finding more appropriate choices for Ra∗f , Ra∗m and a more

refined approximation.

4.2 Heuristic theory

In Appendix A, we conduct an asymptotic analysis for the coupled Navier-Stokes-Darcy-Boussinesq

system as the Darcy number goes to zero. One of the main results from the analysis is that at

leading order, fluid does not flow into the porous medium (since the Darcy system is degenerate in

the limit of Da→ 0). This provides rationale that the boundary conditions for the uncoupled free

flow region should have no-slip at both the top and bottom of the domain, allowing us to continue

using Ra∗f = 1707 as the critical Rayleigh number.

To determine an appropriate critical Rayleigh number for the porous medium though, no-

slip at the top and bottom are not physically realistic for mimicking the behavior of the coupled

system. At the bottom of the domain, no-slip is a suitable choice. However, at the interface of

the coupled system (i.e., the top of the porous medium), a free-slip condition is more congruous

with the fluid behavior from the porous medium’s domain. So, using no-slip at the bottom and a

free-slip condition at the top of the uncoupled porous medium gives the critical Rayleigh number

of Ra∗m = 27.1 (as calculated in Table 3.2).

With these critical Rayleigh numbers, we obtain the new theory for predicting the critical depth

ratio:

d̂∗ =

[
1707.8

27.1
Da ε2T

]1/4

. (4.3)
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While the rationale behind these boundary conditions and the corresponding Rayleigh numbers are

seemingly heuristic, the results produced with this theory are increasingly accurate in the small

Darcy limit. Since our intuition in choosing boundary conditions came from the asymptotic limit

as Da→ 0, the theory being accurate for small Darcy numbers makes sense. Our theory is further

reinforced by the fact that the critical Rayleigh numbers obtained from the linear stability analyses

approach the critical Rayleigh numbers used in our heuristic theory from (4.3), Ra∗f = 1707 and

Ra∗m = 27.1 in the limit of the Darcy number approaching zero. Data for these claims are shown

in Figure 4.1 and Tables 4.1–4.3.

Figure 4.1 shows data for three different εT values while varying Da, since our theory is a

function of these two variables. In the left plot of each case, we have the critical depth ratio

predicted from the heuristic theory compared to the actual critical depth ratio obtained from the

linear stability analysis. Additionally, with our coupled numerical simulations, we were able to

obtain a bound in the depth ratio for where the transition from full- to fluid-dominated convection

occurred; these data points are shown for ‘larger’ Darcy numbers in our plots.1

In the right plots of each case, we present the relative and maximum errors between the predicted

and actual d̂∗ values. We see that as the Darcy number goes to zero, the theory gets more accurate–

both in terms of the relative and maximum errors. With the original theory from Chapter 2, the

best prediction had a relative error of 13%. With the heuristic theory, our worst case prediction has

13% relative error with the best prediction (in the parameter regimes explored) having a relative

error of < .1%.

The data from the plots of Figure 4.1 are shown in Tables 4.1–4.3. These tables note the actual

d̂∗ values as well as the critical Rayleigh numbers at these depth ratios. Here, we easily see the

Rayleigh numbers of the free flow and porous medium approaching the uncoupled critical Rayleigh

numbers used in developing our theory.

For future work, this theory could be especially applicable to heat sinks and controlling heat

dissipation via choosing appropriate material properties, like the height or porosity of the medium.

Additionally, we will see if the Nusselt profiles can be of any use in predicting transition parameter

regimes or the type of convection (full- versus fluid-dominated convection).

1For numerical stability with smaller Darcy numbers, Da ∼ O(10−8 − 10−5), the simulations require a time-step
too small to feasibly run on a personal laptop without parallelized, or optimized, code.
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(a) εT = 0.5

(b) εT = 0.7

(c) εT = 1.0

Figure 4.1: Critical depth ratios for various values of εT . The blue line represents the predicted critical
depth ratio d̂∗ from the heuristic theory, and the red squares are the d̂∗ from the marginal stability curves
from the linear stability analysis. The yellow circles and purple diamonds are points from our numerical
simulations. 109



Table 4.1: With εT = 0.5, actual d̂∗ values from the marginal stability curves along with the two minima of

the curve and their associated wavenumbers, Rayleigh numbers. Additionally, predicted d̂∗ values from the

heuristic theory, and the relative error between the heuristic d̂∗ values and those from the linear stability.

√
Da actual d̂∗ a∗m,1 Ra∗m a∗m,2 ⇒ a∗f Ra∗f predicted d̂∗ rel. error

1.0× 10−2 .229 2.1 11.04 11.4 2.6 1214.4 .199 13.1%

5.0× 10−3 .1557 2.1 14.05 17.6 2.6 1321.1 .141 9.4%

2.5× 10−3 .1068 2.1 16.75 26.2 2.8 1394.7 .0996 6.7%

1.0× 10−3 .06555 2.1 19.76 43.5 2.9 1459.3 .06300 3.9%

5.0× 10−4 .04561 2.2 21.55 63.0 2.9 1492.1 .04455 2.3%

2.5× 10−4 .03185 2.2 22.98 90.7 2.9 1513.4 .03150 1.1%

1.0× 10−4 .019911 2.3 24.37 145.7 2.9 1532.1 .019923 .06%

Table 4.2: With εT = 0.7, actual d̂∗ values from the marginal stability curves along with the two minima of

the curve and their associated wavenumbers, Rayleigh numbers. Additionally, predicted d̂∗ values from the

heuristic theory, and the relative error between the heuristic d̂∗ values and those from the linear stability.

√
Da actual d̂∗ a∗m,1 Ra∗m a∗m,2 ⇒ a∗f Ra∗f predicted d̂∗ rel. error

1.0× 10−2 .267 2.1 11.66 9.6 2.6 1209.3 .236 11.6%

5.0× 10−3 .181 2.1 14.85 14.8 2.7 1301.1 .167 7.7%

2.5× 10−3 .1245 2.1 17.60 22.2 2.8 1380.7 .1179 5.3%

1.0× 10−3 .0766 2.2 20.50 36.7 2.8 1440.4 .0745 2.7%

5.0× 10−4 .05335 2.2 22.20 53.1 2.8 1468.1 .05271 1.2%

2.5× 10−4 .03731 2.2 23.49 76.2 2.8 1486.3 .03727 0.1%

1.0× 10−4 .02336 2.3 24.74 122.1 2.9 1503.5 .02357 0.9%

Table 4.3: With εT = 1.0, actual d̂∗ values from the marginal stability curves along with the two minima of

the curve and their associated wavenumbers, Rayleigh numbers. Additionally, predicted d̂∗ values from the

heuristic theory, and the relative error between the heuristic d̂∗ values and those from the linear stability.

√
Da actual d̂∗ a∗m,1 Ra∗m a∗m,2 ⇒ a∗f Ra∗f predicted d̂∗ rel. error

1.0× 10−2 .3143 2.1 12.34 7.9 2.5 1204.2 .2818 10.3%

5.0× 10−3 .2132 2.1 15.72 12.4 2.6 1299.2 .1992 6.5%

2.5× 10−3 .1465 2.1 18.50 18.5 2.7 1363.5 .1409 3.8%

1.0× 10−3 .09029 2.2 21.28 30.6 2.8 1414.3 .08910 1.3%

5.0× 10−4 .063004 2.2 22.83 44.1 2.8 1438.9 .06300 0.1%

2.5× 10−4 .044125 2.2 24.00 63.3 2.8 1455.7 .044549 0.9%

1.0× 10−4 .027666 2.3 25.09 101.3 2.8 1469.9 .028180 1.8%
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4.2.1 Choosing εT values

The three εT values chosen represent physically relevant parameter values in geophysical ap-

plications. The value of εT corresponds to the ratio of thermal conductivity values between the

fluid region and the porous medium. Thermal conductivity, usually denoted κ in the literature and

measured in terms of watts per meter Kelvin, tells us how easily heat will transfer in a material. If

κ = 1, then 1 m3 of material will transfer heat at a rate of 1 W for every degree Kelvin difference

between opposite faces of the material. Materials with higher κ values transfer heat more easily

than materials with lower κ values.

From Table 4.4, we see that extrema of thermal conductivity values are .6 and 4.0. To obtain

a bound for relevant εT values, we can look at our definition of εT =
κ for water

κ for medium
and then

substitute in the extreme values of κ for the relevant media:

.15 =
.6

4.0
≤ εT ≤

.6

.6
= 1 .

So, a range for εT in geophysical applications is [.15, 1.0] .

Table 4.4: Thermal conductivity values of materials found in geophysical applications taken at
25◦C/77◦F, taken from [92].

Material κ in W/(mK)

Water .6

Soil, clay 1.1

Soil, saturated .6− 4.0

Ground, or soil . . .

→ moist 1.0

→ very moist 1.4

Clay, saturated .6− 2.5

Limestone 1.26− 1.33

Granite 1.7− 4.0
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CHAPTER 5

CONCLUSIONS

In this dissertation, we performed linear and nonlinear analyses for convection in superposed fluid-

porous media systems. With the coupled Navier-Stokes-Darcy-Boussinesq system, nonlinear stabil-

ity thresholds had yet to be rigorously proven due to a sign-indefinite term in the energy analysis

arising from the nonlinear term of Navier-Stokes. However, using the Lions interface condition

(with its dynamic pressure term) allowed for a bound on the typically uncooperative term, which

permitted us to obtain nonlinear stability for the system. The good agreement found when com-

paring the linear and nonlinear stability results provided one of the centerpieces of this work: in

the physically-relevant small Darcy limit, the linear theory accurately describes the onset of con-

vection. Further, outside of the small Darcy parameter regime, we quantified the differences that

exist between the two theories via analysis of variants of interface conditions. Our arguments were

supported by numerical evidence and asymptotic results as the Darcy number approaches zero.

One of the other noteworthy results from investigating stability thresholds dealt with which

region of the coupled system dominated the convection. In analyzing the convection patterns

formed with our marginal stability results, we came across cases where a small change in one

parameter, specifically the depth ratio, drastically altered the behavior of the system. This drastic

behavior consisted of a transition from full convection to fluid-dominated convection, or vice versa.

Our observations prompted the development of a theory to accurately predict the critical depth

ratio needed to trigger this transition as a function of the Rayleigh number, Darcy number, and

ratio of thermal diffusivities. The first attempt at creating a theory, presented in Chapter 2, showed

promise as it provided predictions on the correct order of magnitude, allowing us to narrow down a

parameter regime for where the ‘actual’ transition occurred. However, this theory was refined, and

a new theory was detailed in Chapter 4. The improved theory was based on another asymptotic

argument, albeit less rigorously than the asymptotics from Chapter 2. Despite some heuristic

reasoning, the improved theory’s predictions were increasingly accurate in the small Darcy limit.
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To prepare for conducting numerical simulations of the coupled system, we first began by

simulating the single layer cases with a finite element method. This consisted of detailing the

variational forms, outlining the numerical methods, and providing results to show our simulations

were in agreement with the theory. Following the single layer cases, we then performed similar

work with the coupled system, which encapsulates the remaining novel work conducted in this

dissertation. Simulating the evolutionary coupled system had yet to be done prior to this; many

works used the Stokes in lieu of Navier-Stokes, Brinkman instead of Darcy, and/or chose not to

include time derivatives. Armed with our numerical method, we validated the analyses and heuristic

theory from earlier in the dissertation. Additionally, we offered commentary on energy profiles for

the coupled systems and how the choice of boundary conditions can affect the system’s behavior.
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APPENDIX A

SMALL DARCY ASYMPTOTICS

The dynamic pressure term of the Lions interface condition specifying the balance of force in the

normal direction is small. As a result, the difference between solutions produced with the Lions

interface condition and its linear counterpart is heuristically small as well. However, this claim

has been speculative until now. With a formal asymptotic argument, we show that the size of the

dynamic pressure term is O (Da) in the limit as the small Darcy number limit. Additionally, we

find that this term begins to affect solutions to the perturbed systems at O
(
Da2

)
With Da = ε2 → 0 (and all other constants held constant), we employ the ansatz that our

solutions take the form:

vεj = v
(0)
j + εv

(1)
j + ε2 v

(2)
j + . . . ,

πεj = π
(0)
j + ε π

(1)
j + ε2 π

(2)
j + . . . ,

θεj = θ
(0)
j + ε θ

(1)
j + ε2 θ

(2)
j + . . . ,

for j ∈ {f,m}. We have the components of vεf = (uεf , v
ε
f , w

ε
f ) where

uεf = u
(0)
f + ε u

(1)
f + ε2 u

(2)
f + . . . ,

with the components of vεm defined in the same fashion. Substituting our ansatz into systems

(2.10), (2.11), (2.12):

In Ωf :

1

Prf

∂

∂t

[
vf

(0) + εvf
(1) + . . .

]
+
[
vf

(0) + εvf
(1) + . . .

]
· ∇
[
vf

(0) + εvf
(1) + . . .

]
= ∇2

[
vf

(0) + εvf
(1) + . . .

]
−∇

[
π

(0)
f + ε π

(1)
f + . . .

]
−Raf

[
θ

(0)
f + ε θ

(1)
f + . . .

]
k,

∇ ·
[
vf

(0) + εvf
(1) + . . .

]
= 0,

∂

∂t

[
θ

(0)
f + ε θ

(1)
f + . . .

]
+ Prf

[
vf

(0) + εvf
(1) + . . .

]
· ∇
[
θ

(0)
f + ε θ

(1)
f + . . .

]
= ∇2

[
θ

(0)
f + ε θ

(1)
f + . . .

]
−
[
w

(0)
f + εw

(1)
f + . . .

]
.
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In Ωm:

1

χ

ε2

Prm

∂

∂t

[
vm

(0) + εvm
(1) + . . .

]
+
[
vm

(0) + εvm
(1) + . . .

]
= −ε

2

d̂2
∇
[
π(0)
m + ε π(1)

m + . . .
]
− ε2 Raf

ε2T
d̂4

[
θ(0)
m + ε θ(1)

m + . . .
]
k,

∇ ·
[
vm

(0) + εvm
(1) + . . .

]
= 0,

%
∂

∂t

[
θ(0)
m + ε θ(1)

m + . . .
]

+ Prm

[
vm

(0) + εvm
(1) + . . .

]
· ∇
[
θ(0)
m + ε θ(1)

m + . . .
]

= ∇2
[
θ(0)
m + ε θ(1)

m + . . .
]
−
[
w(0)
m + εw(1)

m + . . .
]
.

On Γi:

d̂
[
θ

(0)
f + ε θ

(1)
f + . . .

]
= ε2T

[
θ(0)
m + ε θ(1)

m + . . .
]
,

∇
[
θ

(0)
f + ε θ

(1)
f + . . .

]
· n = εT ∇

[
θ(0)
m + ε θ(1)

m + . . .
]
· n,[

vf
(0) + εvf

(1) + . . .
]
· n =

[
vm

(0) + εvm
(1) + . . .

]
· n ,

ε τ · T
(
vf

(0) + εvf
(1) + . . . , π(0)

m + ε π(1)
m + . . .

)
n

= α
(
τ ·
[
vf

(0) + εvf
(1) + . . .

])
for γ = 1, 2,

−n · T
(
vf

(0) + εvf
(1) + . . . , π

(0)
f + ε π

(1)
f + . . .

)
n = d̂2

[
π(0)
m + ε π(1)

m + . . .
]
,

or − n · T
(
vf

(0) + εvf
(1) + . . . , π

(0)
f + ε π

(1)
f + . . .

)
n +

1

2

∣∣∣vf
(0) + εvf

(1) + . . .
∣∣∣2

= d̂2
[
π(0)
m + ε π(1)

m + . . .
]
.

Balancing O(1)

In Ωf :



1

Prf

∂vf
(0)

∂t
+ vf

(0) · ∇vf
(0) = ∇2vf

(0) −∇π(0)
f − Raf θ

(0)
f k,

∇ · vf
(0) = 0,

∂θ
(0)
f

∂t
+ Prf vf

(0) · ∇θ(0)
f = ∇2θ

(0)
f − w

(0)
f ,

In Ωm :


vm

(0) = 0 ,

%
∂θ

(0)
m

∂t
= ∇2θ(0)

m (since vm
(0) = 0),
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O(1) On Γi :



d̂ θ
(0)
f = ε2T θ

(0)
m ,

∇θ(0)
f · n = εT ∇θ(0)

m · n,

vf
(0) · n = d̂vm

(0) · n ,

0 = u
(0)
f,γ for γ = 1, 2,

−n · T
(
vf

(0), π
(0)
f

)
n = d̂2 π(0)

m .

We notice that vm
(0) ≡ 0 and the interface conditions reduce to

On Γi :



vf
(0) = 0,

d̂θ
(0)
f = ε2T θ

(0)
m ,

∇θ(0)
f · n = εT ∇θ(0)

m · n,

−n · T
(
vf

(0), π
(0)
f

)
n = d̂2 π(0)

m .

The O(1) dynamic pressure term 1
2 |vf

(0) · vf
(0)| will be equal to zero at this order since vf

(0) = 0

at the interface, and the nonlinear Lions interface condition matches its linear counterpart.

Balancing O(ε)

In Ωf :



1

Prf

∂vf
(1)

∂t
+
[
vf

(0) · ∇vf
(1) + vf

(1) · ∇vf
(0)
]

= ∇2vf
(1) −∇π(1)

f − Raf θ
(1)
f k,

∇ · vf
(1) = 0,

∂θ
(1)
f

∂t
+ Prf

[
vf

(0) · ∇θ(1)
f + vf

(1) · ∇θ(0)
f

]
= ∇2θ

(1)
f − w

(1)
f ,

In Ωm :


vm

(1) = 0,

%
∂θ

(1)
m

∂t
= ∇2θ(1)

m ,

On Γi :



d̂θ
(1)
f = ε2T θ

(1)
m ,

∇θ(1)
f · n = εT ∇θ(1)

m · n,

vf
(1) · n = 0,

−τ · T
(
vf

(0), π(0)
m

)
n = αu

(1)
f,γ for γ = 1, 2,

−n · T
(
vf

(1), π
(1)
f

)
n = d̂2 π(1)

m .
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The O(ε) dynamic pressure term 1
2 |vf

(0) · vf
(1)| will equal zero at this order also (since vf

(0) = 0

on Γi), and the nonlinear Lions interface condition is still equal to its linear counterpart.

Balancing O(ε2)

In Ωf :



1

Prf

∂vf
(2)

∂t
+
[
vf

(1) · ∇vf
(1) + vf

(2) · ∇vf
(0) + vf

(0) · ∇vf
(2)
]

= ∇2vf
(2) −∇π(2)

f − Raf θ
(2)
f k,

∇ · vf
(2) = 0,

∂θ
(2)
f

∂t
+ Prf

[
vf

(1) · ∇θ(1)
f + vf

(2) · ∇θ(0)
f + vf

(0) · ∇θ(2)
f

]
= ∇2θ

(2)
f − w

(2)
f ,

In Ωm :



1

χ

1

Prm

∂vm
(0)

∂t
+ vm

(2) = − 1

d̂2
∇π(0)

m − Raf
ε2T
d̂4
θ(0)
m k,

∇ · vm
(2) = 0,

%
∂θ

(2)
m

∂t
+ Prm vm

(2) · ∇θ(0)
m = ∇2θ(2)

m − w(2)
m ,

On Γi :



d̂θ
(2)
f = ε2T θ

(2)
m ,

∇θ(2)
f · n = εT ∇θ(2)

m · n,

vf
(2) · n = d̂vm

(2) · n,

−τ · T
(
vf

(1), π(1)
m

)
n = αu

(2)
f,γ for γ = 1, 2,

−n · T
(
vf

(2), π
(2)
f

)
n = d̂2 π(2)

m ,

or − n · T
(
vf

(2), π
(2)
f

)
n +

1

2

∣∣∣vf
(1)
∣∣∣2 = d̂2 π(2)

m .

So, at O(ε2), the dynamic pressure term finally contributes to the Lions interface condition,

which does not match its linear counterpart since vf
(1) 6≡ 0 on Γi. The first time the dynamic

pressure term influences solutions, vf or vm, is at O(ε4) though. The Lions interface condition and

its linear equivalent give a boundary condition for the π
(2)
m term, which first shows up at O(ε4) in

Ωm with Darcy’s equation to solve for vm
(4):

1

χ

1

Prm

∂vm
(2)

∂t
+ vm

(4) = − 1

d̂2
∇π(2)

m − Raf
ε2T
d̂4
θ(2)
m k.

Thus, vm
(4) affects interface conditions for the O(ε4) solution, vf

(4).
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APPENDIX B

IMPLEMENTING THE FINITE ELEMENT

METHOD

In this appendix, we detail how to solve equations with the Finite Element Method (FEM). We

discuss how to formulate the problem, how to use numerical quadrature to approximate the line-

and surface-integrals arising from the problem formulation, and how to implement the periodic

boundary conditions used in the simulations from this thesis. Many of the topics presented here

have examples to help demonstrate the ideas.

Finite Element Formulation

In this section, we work through an example to solve the reaction-diffusion equation with the

FEM to illustrate the process. We have the reaction-diffusion equation as:
−∇2u+ cu = f in Ω ,

u = gD on ΓD ,

∇u · n = gN on ΓN ,

where u = u(x, y) is an unknown scalar function, c > 0 is a constant, and f, gD, gN are given

functions for the forcing and boundary terms. For seemingly unknown reasons (right now), to begin

solving this equation, we multiply by some function v, integrate over the domain, and integrate by

parts, which leaves us the problem in variational form:∫
Ω
∇u · ∇v dx + c

∫
Ω
u v dx =

∫
Ω
f v dx +

∫
ΓN

gN v dS +

∫
ΓD

(∇u · n) v dS.

This is also referred to as the weak form of the equation. Since we have no form for ∇u · n on ΓD,

we will require v = 0 on ΓD so that the last term of the equation above vanishes. This leaves us

with ∫
Ω
∇u · ∇v dx + c

∫
Ω
u v dx =

∫
Ω
f v dx +

∫
ΓN

gN v dS.

To help describe the functions we are using and looking for, we introduce the function spaces
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• L2(Ω) = {f : Ω→ R :
∫

Ω |f | dx <∞},

• L2
0(Ω) = {f ∈ L2(Ω) :

∫
Ω f dx = 0},

• H1(Ω) = {u ∈ L2(Ω) : ∂u∂x ,
∂u
∂y ∈ L

2(Ω)},

• H1
ΓD

(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD}.

So, our problem is to find u ∈ H1(Ω) such that

u = gD on ΓD ,

and

∫
Ω
∇u · ∇v dx + c

∫
Ω
u v dx =

∫
Ω
f v dx +

∫
ΓN

gN v dS ∀v ∈ H1
ΓD

(Ω).

We discretize the mesh into triangular elements, ωk, with N nodes, ni. We also introduce

another function space; we have Vh as the space of functions that are linear on each element (ωk)

and globally continuous over the discretized mesh (Ωk). The dimension of this space is the number

of nodes in the mesh, N . (Later, we will consider functions that are quadratic on the element.)

We introduce the set of basis function φi, where

φi(nj) =

{
1, i = j,

0, i 6= j.

Then, we can approximate u with uh ∈ Vh:

u ≈ uh =
N∑
i=1

u(ni)φi =
N∑
i=1

ui φi .

We introduce yet another space, V ΓD
h = Vh ∩H1

ΓD
= {vh ∈ Vh : vh = 0 on ΓD},. This lets us define

the discrete variational form of the problem; our goal is to find uh ∈ Vh such that uh(ni) = gD(ni)

for nodes on ΓD and

uh(ni) = gD(ni) for nodes on ΓD ,

and

∫
Ω
∇uh · ∇vh dx + c

∫
Ω
uh vh dx =

∫
Ω
f vh dx +

∫
ΓN

gN vh dS ∀vh ∈ V ΓD
h .

Now, we let vh = φi ∈ V ΓD
h , and our problem is written as∫

Ω
∇uh · ∇φi dx + c

∫
Ω
uh φi dx =

∫
Ω
f φi dx +

∫
ΓN

gN φi dS ∀ni ∈ Ωk\ΓD.
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We can decompose uh into the parts of uh inside the domain and on the portion of the boundary

where Dirichlet conditions are imposed:

uh =
∑

ni∈Ωk\ΓD

ui φi +
∑

ni∈ΓD

ui φi

=
∑

ni∈Ωk\ΓD

ui φi +
∑

ni∈ΓD

gD(ni)φi,

which allows us to write the problem as∑
ni∈Ωk\ΓD

[∫
Ω
ui∇φi · ∇φj dx + c

∫
Ω
ui φi φj dx

]

=

∫
Ω
f φj dx +

∫
ΓN

gN φj dS −
∑

ni∈Ωk\ΓD

gD(ni)

[∫
Ω
∇φi · ∇φj dx + c

∫
Ω
φi φj dx

]
.

We can define the stiffness and mass matrices as

Wj,i =

∫
Ω
∇φi · ∇φj dx, Mj,i =

∫
Ω
φi φj dx.

The stiffness matrix is symmetric, and the mass matrix is symmetric positive-definite. So, the

problem can be written in matrix form as∑
i

[Wj,i + cMj,i]ui = bj −
∑

ni∈ΓD

gD(ni) [Wj,i + cMj,i] for ni ∈ Ωk\ΓD,

where

bj =

∫
Ω
f φj dx +

∫
ΓN

gN φj dS.

The entire RHS of the equation is known; all of the terms come from the forcing term f or the

boundary conditions. We are left to solve for the ui coefficients on the left-hand side.

As of now, we have not discussed how to integrate the terms of the equation above. Approximat-

ing line- and surface-integrals with numerical quadrature is discussed in-depth shortly. However,

we will mention here that the integrals can be written as the sum of integrals over the elements ωk.

Choosing Elements

The triangular elements of the mesh are either P1 or P2, meaning the basis functions are either

piecewise-linear basis functions or piecewise-quadratic. The differences in the elements deal with

the number of nodes on each boundary of the element. With P1 elements (schematic shown in
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Figure B.1), we have three vertices labelled v ki , the vertex is the ith vertex on the kth element,

and the basis functions are shown in Figure B.2. For a P2 element shown in Figure B.1, we have 6

nodes along the boundary of the element so that quadratic basis functions can be used, shown in

Figure B.3.

With P1 elements, the FEM method is second-order accurate in space. With P2 elements (and

an increase in the degrees of freedom!), the method becomes third-order. These have been briefly

discussed in Section 3.1.4 and shown with Figures 3.5 and 3.7.

Figure B.1: Schematic of P1 and P2 reference elements, labelled ωk, in the reference (s, t)-domain.

Figure B.2: Basis functions for P1 elements in the reference (s, t)−domain.
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Figure B.3: Quadratic basis functions for P2 elements in the reference (s, t)−domain. The color
corresponds to the value of φi(x).

Numerical Quadrature

In this section, we detail how to solve the integrals presented in the FE formulation of the

problem. The two kinds of integrals seen there are line-integrals, for integrals along the boundary

of our domain, and surface-integrals over the elements of the mesh.

For line integrals on C from x0 to x1, with |C| as the distance between points, we can discretize

the line with x(t) = x0 (1− t)+x1 t and then map that to a ‘reference line’ with t ∈ [0, 1]. With the

change of variables f(x) = g(t), we can approximate the integral with Gauss-Legendre quadrature
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formulas of various orders:

-Second-order: (exact for polynomials of degree 1 or less)∫
C
f(x) dS ≈ |C| · g

(
1

2

)
,

-Fourth-order: (exact for polynomials of degree 3 or less)∫
C
f(x) dS ≈ |C|

2
·

[
g

(
1− 1/

√
3

2

)
+ g

(
1 + 1/

√
3

2

)]
,

-Sixth-order: (exact for polynomials of degree 5 or less)∫
C
f(x) dS ≈ |C|

18
·

[
5 g

(
1−

√
3/5

2

)
+ 8 g

(
1

2

)
+ 5 g

(
1 +

√
3/5

2

)]
.

These quadrature formulas place points along the reference line from t = 0 to t = 1, we convert

those points back to the original domain, and evaluate the function f at those points to approximate

the integral. The number of points we place along the reference line and their position dictate the

order of accuracy obtained with the quadrature approximation. With the formulas listed, we have

second-order quadrature formula which places one point in the reference domain to approximate

the integral. For the fourth-order formula, we have two points in the domain to approximate the

integral, and so on.

This kind of integration– line integrals– is used along boundaries of a domain, stemming from

integration by parts; for example, we use it at the interface of the coupled domain. With the

flexibility FreeFem [51] provides, we are able to use built-in integrators (only needing to specify the

order of the quadrature formula), or we can define our our points along the reference line and their

respective weights. For the simulations conducted in this thesis, we use the sixth-order quadrature

formula.

Everything stated so far has been for a line integral along the boundary of a single element. We

can add more elements along the boundary if needed to further refine the mesh and (hopefully)

improve our approximations. In Figure B.4, we show the different quadrature points needed for one,

two, and three elements on the reference domain with various quadrature formulas. To improve

approximations, we need to balance refining the mesh by adding more elements with increasing

the order of the quadrature formula used. For example, using one element with the sixth-order

quadrature formula requires three total quadrature points; therefore, we need to evaluate a function
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at three points to approximate the integral. However, using three elements with a second-order

quadrature formula on each element also yields three total quadrature points.

In Figure B.5, we show the influence of the order of the quadrature formulas against their errors

for different numbers of elements to approximate the integral∫
C

2 sin2(πx) dS = 5, (B.1)

where C is the line from (1, 0) to (4, 4). To answer the question posed above about increasing

the number of elements or the order of the quadrature formula, we see that using an eigth-order

quadrature formula on 4 elements produces a better approximation (for this case!) than using a

second-order formula on 32 elements– each approximation uses 32 quadrature points. In a perfect

world, we could use a high-order quadrature formula and a as many elements as needed to get

the approximation within some tolerance of the actual integral. Until we develop technology that

allows for that though, we will need to balance mesh refinement and order of quadrature to get the

best approximation for the available computational power.

For surface integrals over our triangular elements, we map the element in (x, y) to a reference

triangle in (s, t), with a visual of the transformation shown in Figure B.6. With the x− and

y−coordinates of the vi vertex as (xi, yi) mapping to the vertices of the reference triangle in (s, t)

at (0, 0), (1, 0), (0, 1) we have the transformation and inverse transformation:(
x
y

)
=

(
x1

y1

)
+

(
x2 − x1 x3 − x1

y2 − y1 y3 − y1

)(
s
t

)
,

(
s
t

)
=

1

det

(
y3 − y1 − (x3 − x1)
− (y2 − y1) x2 − x1

)(
x− x1

y − y1

)
,

where det = (x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1).

With the example shown in Figure B.6, we map the points (0, 1), (3, 0), (1, 3) to (0, 0), (1, 0), (0, 1)

with the transformations: (
x
y

)
=

(
0
1

)
+

(
3 1
−1 2

)(
s
t

)
,

(
s
t

)
=

1

8

(
2 −1
1 3

)(
x

y − 1

)
.

Similar to the case with line integrals, we introduce a change of variables for surface integrals

as well. Using f(x, y) = g(s, t) to approximate the surface integrals over the triangular element ω,
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Figure B.4: Schematic showing effect of mesh refinement with 1D quadrature points for various
orders of quadrature formulas with one, two, and three elements along the reference line. In each
plot, the second-order formula is shown on top in blue, fourth-order in the middle with red, and
sixth-order at the bottom in green. Colored squares denote the edges of the element while black
circles show the quadrature points.

Figure B.5: Log-log plot of the relative error versus ∆x for various orders of quadrature formulas
(with line-integrals) to approximate (B.1).
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Figure B.6: Mapping from an element ω in the original domain to the reference element ω̃ in the
transformed domain.

we have different order quadrature formulas:

-Second-order: (exact for polynomials of degree 1 or less)∫
ω
f(x) dx ≈ A · g

(
1

3
,
1

3

)
,

-Third-order: (exact for polynomials of degree 2 or less)∫
ω
f(x) dx ≈ A

3
·
[
g

(
1

2
, 0

)
+ g

(
0,

1

2

)
+ g

(
1

2
,
1

2

)]
,

-Third-order also: (but! only exact for polynomials of degree 1 or less)∫
ω
f(x) dx ≈ A

3
· [g (1, 0) + g (0, 1) + g (0, 0)] ,

where A is the area of ω which can be represented by the determinant

A =

∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣ .
As we see with the two third-order formulas, the location of the quadrature points on the reference

triangle ultimately dictates the degree of exactness of the approximation. (Since the second third-

order equation above is not as good as the first one, we will not reference it again.) In Figure B.7,

we plot the quadrature points used for second-, third-, and sixth-order quadrature formulas for

integration over the example element ω shown in the first graph of Figure B.6.
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Figure B.7: Second-, third-, and sixth-order quadrature points from the example element shown in
the first graph of Figure B.6.

For a test case with surface integrals, we consider∫ π

0

∫ π

0
sin(x) sin(y) dx dy = 4. (B.2)

We show the influence of the order of the quadrature formulas against their errors for different

numbers of elements to approximate (B.2) in Figure B.8 with examples of mesh refinements in

Figure B.9. As shown with the mesh refinements, each time we increase the number of elements

per side, the total number of elements increases with 2n2, where n is the number of elements per

side. With the nonlinear increase of total elements in the mesh as we increase the number of

elements per side, we see that using a higher-order quadrature formula on less elements does not

(usually) produce as accurate of an approximation as using a lower-order quadrature formula with

more elements.

Meshes

The uniform meshes shown in this thesis (see Figures 3.3, B.9) are easy to build in FreeFem.

However, non-uniform meshes are also relatively easy to implement. We use uniform meshes in this

thesis though because they’re easier to replicate than non-uniform ones.

Time-Integrator

Backward Euler is the time-integrator of choice for all the work done in thesis. All of the code

is robust enough to easily substitute in a different time-integrator if desired though.
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Figure B.8: Log-log plot of the relative error versus ∆x for various orders of quadrature formulas
for surface-integrals in approximating (B.2). Here, D = π

√
2 is the max edge length of the least

refined mesh, with the mesh refinements are shown in Figure B.9.

Figure B.9: Mesh refinements used to approximate (B.2). Figure B.8 shows the convergence rates
for quadrature formulas of different orders with the mesh refinements shown here.

Periodic Boundary Conditions

To implement the periodic boundary conditions, we implement an idea like the one shown

in Figure B.10. In theory, we replace nodes along the right boundary of the mesh with their

counterparts from the left boundary of the domain. With this strategy, care must be taken when

setting up the mesh if a non-uniform mesh is used! In practice, we will not be physically removing

any nodes– we will be replacing the right nodes with the ones from the left in our problem formation
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though. To solve for the value of a function u at the nodes xi with the problem Au = f, we will

first decompose the problem, explicitly writing everything in terms of the left and right sides of

the boundary (with subscripts l and r) as well as the interior of the domain (with subscript i).

The matrix A is split up into Aj,k for j, k ∈ {l, r, i}, which relates how the j and k components

of the domain are related with the operator A. The values of u are split into ul, ur, ui, with f

decomposed in a similar fashion. Then, the problem Au = f can be written as:Ai,i Ai,l Ai,r
Al,i Al,l Al,r
Ar,i Ar,l Ar,r

uiul
ur

 =

fifl
fr

 ,

following the notation and work in [80]. Then, we make the substitution ul ← ur, which assigns ul

to nodes at both the left and the right boundaries, and solve the linear system:Ai,i Ai,l Ai,r
Al,i Al,l Al,r
Ar,i Ar,l Ar,r

uiul
ul

 =

fifl
fr

 ,

⇒
(

Ai,i (Ai,l +Ai,r)
(Al,i +Ar,i) (Al,l +Al,r +Ar,l +Ar,r)

)(
ui
ul

)
=

(
fi

fl + fr

)
.

This allows whatever actions would have been acting on the right of the domain (with the last

column of any of the matrices above, and fr on the RHS) to still be accounted for in the problem.

This implementation scheme can be thought of as the domain wrapping around and attaching back

to itself; there are left or right boundaries at all, just an infinite loop.

All of the problems in this thesis (that we simulate numerically) have been written in a linear

fashion. So, implementing periodic boundary conditions is relatively straightforward once all the

organization is taken care of. FreeFem has the features and flexibility available to allow for periodic

conditions to be implemented easily, as long as the boundary nodes align where periodic conditions

are to be enforced. With the diagrams shown in Figure B.10, we show the theory for how imple-

menting periodic boundary conditions looks. The idea is to join the left and right boundaries of

the domain, leaving the mesh as a cylinder. To do this without leaving an obvious ‘seam’ in the

cylinder, we remove nodes along the the right boundary and replace them with nodes from the left

boundary. This removes degrees of freedom since we ‘lose’ the vertices/edges along the right edge

of the mesh. However, those degrees of freedom are spent helping enforce periodicity.
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Figure B.10: Theory for implementing periodic boundary conditions. The purple nodes at the right
boundary of the top mesh are removed. The left and right boundaries are then connected, using
the green nodes to join the edges. The new mesh resembles the surface of a cylinder.
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[8] H. Bénard, Tourbillons céllularies dans une nappe liquide: Pt. I, Description génèrale des
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A. Wörman, Hyporheic flow and transport processes: Mechanisms, models, and biogeochemi-
cal implications, Reviews of Geophysics, 52 (2014), pp. 603–679, https://doi.org/10.1002/
2012RG000417.

[14] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, vol. 15, Springer
Science & Business Media, 2012, https://doi.org/10.1007/978-1-4612-3172-1.

[15] S. Buss and et al, The hyporheic handbook: a handbook on the groundwater-surfacewater
interface and hyporheic zone for environmental managers, Environment Agency, Bristol, UK,
2009.

[16] F. Busse, Fundamentals of thermal convection, Mantle Convection: Plate Tectonics and
Global Dynamics, 4 (1989), pp. 23–95.

[17] F. H. Busse, Bénard convection and geophysical applications, in Dynamics of Spatio-
Temporal Cellular Structures, Springer, 2006, pp. 103–125, https://doi.org/10.1007/

978-0-387-25111-0_6.

[18] R. Camassa, R. M. McLaughlin, M. N. J. Moore, and K. Yu, Stratified flows with
vertical layering of density: experimental and theoretical study of flow configurations and their
stability, Journal of Fluid Mechanics, 690 (2012), pp. 571–606, https://doi.org/10.1017/
jfm.2011.476.

[19] M. B. Cardenas, Hyporheic zone hydrologic science: A historical account of its emergence
and a prospectus, Water Resources Research, 51 (2015), pp. 3601–3616, https://doi.org/
10.1002/2015WR017028.

[20] M. Carr, Penetrative convection in a superposed porous-medium–fluid layer via internal
heating, Journal of Fluid Mechanics, 509 (2004), pp. 305–329, https://doi.org/10.1017/
S0022112004009413.

[21] M. Carr and B. Straughan, Penetrative convection in a fluid overlying a porous
layer, Advances in Water Resources, 26 (2003), pp. 263–276, https://doi.org/10.1016/
S0309-1708(02)00086-6.
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