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A nonlocal nonlinear Schrödinger (NLS) equation was recently found by
the authors and shown to be an integrable infinite dimensional Hamiltonian
equation. Unlike the classical (local) case, here the nonlinearly induced
“potential” is PT symmetric thus the nonlocal NLS equation is also PT
symmetric. In this paper, new reverse space-time and reverse time nonlocal
nonlinear integrable equations are introduced. They arise from remarkably
simple symmetry reductions of general AKNS scattering problems where
the nonlocality appears in both space and time or time alone. They
are integrable infinite dimensional Hamiltonian dynamical systems. These
include the reverse space-time, and in some cases reverse time, nonlocal
NLS, modified Korteweg-deVries (mKdV), sine-Gordon, (1 + 1) and (2 + 1)
dimensional three-wave interaction, derivative NLS, “loop soliton,” Davey–
Stewartson (DS), partially PT symmetric DS and partially reverse space-
time DS equations. Linear Lax pairs, an infinite number of conservation
laws, inverse scattering transforms are discussed and one soliton solutions
are found. Integrable reverse space-time and reverse time nonlocal discrete
nonlinear Schrödinger type equations are also introduced along with few
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conserved quantities. Finally, nonlocal Painlevé type equations are derived
from the reverse space-time and reverse time nonlocal NLS equations.

1. Introduction

Since their fundamental discovery in 1965 by Zabusky and Kruskal,
solitons have emerged as one of the most basic concepts in nonlinear
sciences. Physically speaking, solitons (or previously termed solitary waves)
represent robust nonlinear coherent structures that often form as a result
of a delicate balance between effects of dispersion and/or diffraction and
wave steepening. They have been theoretically predicted and observed in
laboratory experiments in many branches of the physical, biological and
chemical sciences. Examples include water waves, temporal and spatial
optics, Bose–Einstein condensation, magnetics, plasma physics to name
a few—see [1–5] and references therein for reviews discussing soliton
applications.

From a mathematical point of view, solitons naturally arise as a special
class of solutions to so-called integrable evolution equations. Such integrable
systems exhibit unique mathematical structure by admitting an infinite
number of constants of motion corresponding to an infinite number of
conservation laws. Furthermore, by applying the inverse scattering transform
(IST; cf. [6–8]), for decaying data, one can linearize the system and
obtain significant information about the structure of their solutions. In many
situations, one can even express these solutions in closed form.

Historically speaking, the first integrable nonlinear evolution equation
solved by the method of IST was the Korteweg-deVries (KdV) equation [9].
Remarkably, it was shown that solitons corresponded to eigenvalues of the
time independent linear Schrödinger equation. Soon thereafter, the concept
of Lax pair [10] was introduced and the KdV equation, and others, were
expressed as a compatibility condition of two linear equations. A few years
later, Zakharov and Shabat [11] used the idea of Lax pair to integrate the
nonlinear Schrödinger equation

iqt (x, t) = qxx (x, t) − 2σq2(x, t)q∗(x, t), σ = ∓1, (1)

for decaying data, where ∗ is the complex conjugate, and obtain soliton
solutions. Subsequently, a method to generate a class of integrable nonlinear
integrable evolution equations solvable by IST was developed [12]. Soon
thereafter, interest in the theory of integrability has grown significantly and
many integrable nonlinear partial differential equations (PDEs) have been
identified in both one and two space dimensions as well as in discrete



Integrable Nonlocal Nonlinear Equations 9

settings. Some notable equations include the modified KdV, sine-Gordon,
sinh-Gordon, coupled NLS, Boussinesq, Kadomtsev–Petviashvili, Davey-
Stewartson (DS), Benjamin-Ono (BO), Intermediate Long Wave (ILW),
integrable discrete NLS equations, the Toda and discrete KdV lattices, to
name a few cf. [13]. In 2013, a new nonlocal reduction of the AKNS
scattering problem was found [14], which gave rise to an integrable nonlocal
NLS equation

iqt (x, t) = qxx (x, t) − 2σq2(x, t)q∗(−x, t), σ = ∓1 . (2)

Remarkably, Eq. (2) has a self-induced nonlinear “potential,” thus, it is a
PT symmetric equation [15]. In other words, one can view (2) as a linear
Schrödinger equation

iqt (x, t) = qxx (x, t) + V [q, x, t]q(x, t), (3)

with a self-induced potential V [q, x, t] ≡ −2σq(x, t)q∗(−x, t) satisfying the
PT symmetry condition V [q, x, t] = V ∗[q, −x, t]. We point out that PT
symmetric systems, which allow for lossless-like propagation due to their
balance of gain and loss [16, 17], have attracted considerable attention in
recent years—see [18] and references therein for an extensive review on
linear and nonlinear waves in PT symmetric systems. Equation (2) was
derived in [14] with physical intuition. Recently, the nonlocal nonlinear
Schrödinger (NLS) equation (2) was derived in a physical application of
magnetics [19]. In [20] an integrable discrete PT symmetric “discretization”
of Eq. (2) was obtained from a new nonlocal PT symmetric reduction
of the Ablowitz–Ladik scattering problem [21]. In [22] the detailed IST
associated with the nonlocal NLS system (2) was carried out and integrable
nonlocal versions of the modified KdV and sine-Gordon equations were
introduced. An extension to a (2 + 1)-dimensional integrable nonlocal NLS
type equations was subsequently analyzed in [24].

These findings have triggered renewed interest in integrable systems.
New types of soliton solutions have been also recently reported [25, 26].
Moreover, recently, it was proposed that the integrable nonlocal (in space)
NLS equation is gauge equivalent to an unconventional system of coupled
Landau–Lifshitz equations [19]. Possible application of the NLS and mKdV
equations have been discussed in [27, 28] in the context of “Alice-Bob
systems.” In this paper, we identify new nonlocal symmetry reductions
for the general AKNS scattering problem of the reverse space-time and
reverse time type. Unlike the integrable PT symmetric equation (2)
[14], here the symmetry reductions are nonlocal both in space and time
or time alone and lead to new integrable reverse space-time nonlocal
evolution equations of the nonlinear Schrödinger, modified KdV, sine-
Gordon, (1+1) and (2+1) dimensional multiwave interaction (including the
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three-wave), derivative NLS, “loop soliton,” DS, partially PT symmetric
DS, and partially reverse space-time DS equations. Furthermore, discrete-
time nonlocal NLS type equations are also derived. Finally, nonlocal
Painlevé type equations are derived from the reverse space-time and reverse
time nonlocal NLS equations.

Next, we list some of these equations (here σ = ∓1; γ 2 =
±1,α,β, c j , C j are constant).
Reverse space-time nonlocal NLS:

iqt (x, t) = qxx (x, t) − 2σq2(x, t)q(−x,−t), (4)

Reverse space-time vector nonlocal NLS:

iqt (x, t) = qxx (x, t) − 2σ [q(x, t) · q(−x,−t)]q(x, t), (5)

Reverse time nonlocal NLS:

iqt (x, t) = qxx (x, t) − 2σq2(x, t)q(x,−t), (6)

Reverse space-time coupled nonlocal NLS – derivative NLS (α,β ∈ R):

qt (x, t) = iqxx (x, t) + ασ (q2(x, t)q(−x,−t))x + iβσq2(x, t)q(−x,−t), (7)

Real reverse space-time nonlocal nonlinear “loop soliton”:

∂q(x, t)
∂t

+ ∂2

∂x2

(
qx (x, t)

[1 − σq(x, t)q(−x,−t)]3/2

)
= 0, (8)

Complex reverse space-time nonlocal mKdV:

qt (x, t) + qxxx (x, t) − 6σq(x, t)q∗(−x,−t)qx (x, t) = 0, q ∈ C, (9)

Real reverse space-time nonlocal mKdV:

qt (x, t) + qxxx (x, t) − 6σq(x, t)q(−x,−t)qx (x, t) = 0, q ∈ R, (10)

Real reverse space-time nonlocal sine-Gordon:

qxt (x, t) + 2s(x, t)q(x, t) = 0, q ∈ R,

sx (x, t) = (q(x, t)q(−x,−t))t , (11)

Reverse space-time nonlocal DS:

iqt (x, t) + 1
2

[
γ 2qxx (x, t) + qyy(x, t)

]
+ σq2(x, t)q(−x,−t) = φ(x, t)q(x, t),

φxx (x, t) − γ 2φyy(x, t) = 2σ [q(x, t)q(−x,−t)]xx , (12)

Reverse time nonlocal DS:

iqt (x, t) + 1
2

[
γ 2qxx (x, t) + qyy(x, t)

]
+ σq2(x, t)q(x,−t) = φ(x, t)q(x, t),

φxx (x, t) − γ 2φyy(x, t) = 2σ [q(x, t)q(x,−t)]xx (13)
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Partially PT symmetric nonlocal DS:

iqt (x, t) + 1
2

[
γ 2qxx (x, t)+qyy(x, t)

]
+σq2(x, t)q∗(−x, y, t) = φ(x, t)q(x, t),

φxx (x, t) − γ 2φyy(x, t) = 2σ [q(x, t)q∗(−x, y, t)]xx , (14)

Partial reverse space-time nonlocal DS:

iqt (x, t) + 1
2

[
γ 2qxx (x, t) + qyy(x, t)

]
+σq2(x, t)q(−x, y,−t)=φ(x, t)q(x, t),

φxx (x, t) − γ 2φyy(x, t) = 2σ [q(x, t)q(−x, y,−t)]xx , (15)

Reverse space-time nonlocal three wave interaction with c3 > c2 > c1, σ1σ3/σ2 =
1.:

Q1,t (x, t) + c1 Q1,x (x, t) = σ3 Q2(−x,−t)Q3(−x,−t), σ3 = ±1

Q2,t (x, t) + c2 Q2,x (x, t) = −σ2 Q1(−x,−t)Q3(−x,−t), σ2 = ±1

Q3,t (x, t) + c3 Q3,x (x, t) = σ1 Q1(−x,−t)Q2(−x,−t), σ1 = ±1 (16)

Multidimensional reverse space-time nonlocal three wave interaction with distinct
C j , j = 1, 2, 3, σ1σ3/σ2 = 1:

Q1,t (x, t) + C1 · ∇Q1(x, t) = σ3 Q∗
2(−x,−t)Q∗

3(−x,−t), σ3 = ±1

Q2,t (x, t) + C2 · ∇Q2(x, t) = −σ2 Q∗
1(−x,−t)Q∗

3(−x,−t), σ2 = ±1

Q3,t (x, t) + C3 · ∇Q3(x, t) = σ1 Q∗
1(−x,−t)Q∗

2(−x,−t), σ1 = ±1 (17)

Reverse time nonlocal discrete NLS:

i
d Qn(t)

dt
= Qn+1(t) − 2Qn(t) + Qn−1(t)

−σQn(t)Qn(−t) [Qn+1(t) + Qn−1(t)] , (18)

Reverse discrete-time nonlocal discrete NLS:

i
d Qn(t)

dt
= Qn+1(t) − 2Qn(t) + Qn−1(t)

−σQn(t)Q−n(−t) [Qn+1(t) + Qn−1(t)] , (19)

In the above, x represents (x, y) and ∗ denotes complex conjugation.
Unless otherwise specified q(x, t) or q(x, t) is a complex valued function
of the real variables x and t . There are also nonlocal matrix and vector
extensions of many of the above equations. In this paper, we will show how
Eqs. (3)–(13) arise from a rather simple but extremely important symmetry
reductions of various AKNS scattering problems in one and multidimensions
and show that they form a Hamiltonian integrable systems. For these
equations, we provide few integrals of motions (conserved quantities) or
indicate how an infinite number of them can be obtained and outline the
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solution strategy through the theory of IST. We then give a one soliton
solution for a number of equations and discuss their properties.

In this paper, we do not discuss in detail vector or matrix extensions of
the integrable nonlocal NLS equations, i.e., their PT -symmetric nonlocal
versions, such as the equation obtained by replacing [q(x, t) · q(−x, −t)] in
Eq. (3) by [q(x, t) · q∗(−x, t)] in which case the resulting PT symmetric
multicomponent nonlocal NLS equation reads

iqt (x, t) = qxx (x, t) − 2σ [q(x, t) · q∗(−x, t)]q(x, t) . (20)

As is the case in (3), here dot stands for the usual vector scalar product.
We consider these equations to be direct extensions, though the IST is
likely to contain novel aspects. In this regard, we note that direct and
inverse scattering of the AKNS 2 × 2 and n × n systems have important
applications in their own right.

The paper is organized as follows. In Section 2 we use the AKNS
theory to derive various nonlocal reverse space-time and reverse time only
NLS type equations in terms of two (complex or real) potentials: q(x, t)
and r (x, t). In Section 3 we show how one can derive the nonlocal
analogue of the derivative NLS equation and show that it is an integrable
nonlocal system. We also give few conserved quantities. The derivation of
nonlocal mKdV and sine-Gordon is given in Section 4. The extension
of the reverse space-time and the reverse time nonlocal NLS equation to
the multidimensional case, i.e., DS system is presented in Section 5. The
partially PT symmetric and partially reverse space-time DS equations are
obtained in Section 6. The derivation of the (1+1) and (2+1)-dimensional
nonlocal in space and time analogue of the multiwave equations is presented
in Sections 7 and 8, respectively. The discrete analogues for the above-
mentioned nonlocal NLS equations are also derived in Section 9. For AKNS
problems, the basic inverse scattering problem and reconstruction formula
of the potential is developed in Section 10. The important symmetries
of the associated eigenfunctions and scattering data together with soliton
solutions is presented in Section 11. Finally, we conclude in Section 12
with an outlook for a future directions in the newly emerging field of
integrable nonlocal equations including reverse space-time, reverse time, and
PT symmetric nonlocal integrable systems.

2. Linear pair and compatibility conditions: Nonlocal NLS hierarchy

Our starting point is the AKNS scattering problem [6, 29]

vx = Xv, (21)
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where v = v(x, t) is a two-component vector, i.e., v(x, t) =
(v1(x, t), v2(x, t))T and q(x, t), r (x, t) are (in general) complex valued
functions of the real variables x and t that vanish rapidly as |x | → ∞ and
k is a complex spectral parameter. The matrix X depends on the functions
q(x, t) and r (x, t) as well as on the spectral parameter k

X =
(

−ik q(x, t)
r (x, t) ik

)
. (22)

Associated with the scattering problem (21) is the time evolution equation of
the eigenfunctions v j , j = 1, 2 which is given by

vt = Tv, (23)

where

T =
(

A B
C −A

)
, (24)

and the quantities A, B, and C are scalar functions of q(x, t), r (x, t), and the
spectral parameter k. Depending on the choice of these functions one finds
an evolution equation for the potential functions q(x, t) and r (x, t) which,
under a certain symmetry restriction, leads to a single evolution equation
for either q(x, t) or r (x, t). In the case where the quantities A, B, and C
are second-order polynomials in the isospectral parameter k with coefficients
depending on q(x, t), r (x, t), i.e.,

A = 2ik2 + iq(x, t)r (x, t), (25)

B = −2kq(x, t) − iqx (x, t), (26)

C = −2kr (x, t) + irx (x, t), (27)

the compatibility condition of system (21) and (23) leads to

iqt (x, t) = qxx (x, t) − 2r (x, t)q2(x, t), (28)

−irt (x, t) = rxx (x, t) − 2q(x, t)r2(x, t). (29)

Under the symmetry reduction

r (x, t) = σq(−x, −t), σ = ∓1, (30)

the system (28) and (29) are compatible and leads to the reverse space-time
NLS equation (3), which for convenience we rewrite again:

iqt (x, t) = qxx (x, t) − 2σq2(x, t)q(−x, −t). (31)



14 M. J. Ablowitz and Z. H. Musslimani

We remark that the symmetry reduction (30) is new and, because q is
complex valued, is different from the symmetry

r (x, t) = σq∗(−x, t). (32)

The latter was found in [14] and leads to the PT symmetric nonlocal
NLS Eq. (2). However, the new symmetry condition (30) gives rise to
a new class of nonlocal (in both space and time) integrable evolution
equations including a nonlocal NLS hierarchy. Equation (31) is another
special and remarkably simple reduction of the more general q, r system
mentioned above. For completeness, we give the compatible pair associated
with Eq. (31):

X =
(

−ik q(x, t)
σq(−x, −t) ik

)
, (33)

T =
(

2ik2 + iσq(x, t)q(−x, −t) −2kq(x, t) − iqx (x, t)
−2σkq(−x, −t) − σ iqx (−x, −t) −2ik2 − iσq(x, t)q(−x, −t)

)
. (34)

It is well known that the compatible pair (22)–(23) with (25)–(27) lead to an
infinite number of conservation laws and conserved quantities cf. [6]. The
first few conserved quantities associated with Eq. (31) are given by

∫

R
q(x, t)q(−x, −t)dx = constant, (35)

∫

R
qx (x, t)q(−x, −t)dx = constant, (36)

∫

R

(
σqx (x, t)qx (−x, −t) + q2(x, t)q2(−x, −t)

)
dx = constant. (37)

In the context of PT symmetric linear/nonlinear optics, the analogous
quantity in Eq. (35) is referred to as the “quasipower.” We also note that
Eq. (31) is an integrable Hamiltonian system with Hamiltonian given by Eq.
(37).

We also note that equations such as (31) are nonlocal in both space
and time. Alone, it is not immediately clear how (31) is an evolution
equation. However, with the symmetry reduction (30) we can consider
(31) as arising as the unique solution associated with the evolution system
(28)–(29) with initial conditions r (x, t = 0) = σq∗(−x, t = 0). All nonlocal
in time equations in this paper can be considered in a similar way. Another
interesting nonlocal symmetry reduction that system (28) and (29) admits is
given by

r (x, t) = σq(x, −t), (38)
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which, in turn, leads to the following new reverse-time NLS

iqt (x, t) = qxx (x, t) − 2σq2(x, t)q(x, −t). (39)

Again, the condition (38) is new, remarkably simple, and has not been
noticed in the literature and leads to a nonlocal in time NLS hierarchy.
Furthermore, because this equation arises from the above AKNS scattering
problem, it is an integrable Hamiltonian evolution equation that admits an
infinite number of conservation laws/conserved quantities. The first few are
listed below:

∫

R
q(x, t)q(x, −t)dx = constant, (40)

∫

R
q(x, t)qx (x, −t)dx = constant, (41)

∫

R

(
σqx (x, t)qx (x, −t) + q2(x, t)q2(x, −t)

)
dx = constant. (42)

The Lax pairs associated with Eq. (39) are thus given by

X =
(

−ik q(x, t)
σq(x, −t) ik

)
, (43)

T =
(

2ik2 + iσq(x, t)q(x, −t) −2kq(x, t) − iqx (x, t)
−2σkq(x, −t) ± iqx (x, −t) −2ik2 − iσq(x, t)q(x, −t)

)
. (44)

The extension to the matrix or vector (multicomponent) reverse space-time
or reverse time only nonlocal NLS system can be carried out in a similar
fashion. Indeed, if we start from the matrix generalization of the AKNS
scattering problem then the compatibility condition generalizing the one
given in system (28) and (29) would now read

iQt (x, t) = Qxx (x, t) − 2Q(x, t)R(x, t)Q(x, t), (45)

−iRt (x, t) = Rxx (x, t) − 2R(x, t)Q(x, t)R(x, t), (46)

where Q(x, t) is an N × M matrix; R(x, t) is an M × N matrix of the
real variables x and t and super script T denotes matrix transpose (without
complex conjugation). Under the symmetry reduction

R(x, t) = σQT (−x, −t), σ = ∓1, (47)
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system (45) and (46) are compatible and this leads to the reverse space-time
nonlocal matrix nonlinear Schrödinger equation

iQt (x, t) = Qxx (x, t) − 2σQ(x, t)QT (−x, −t)Q(x, t). (48)

In the special case where Q is either a column vector (M = 1) then Eq. (48)
reduces to (3), i.e.,

iqt (x, t) = qxx (x, t) − 2σ [q(x, t) · q(−x, −t)]q(x, t), (49)

where dot stands for the vector scalar product. As in the scalar case, we can
generalize Eq. (39) to the matrix or vector multi component case. Indeed,
we note that system (45) and (46) are compatible under the symmetry
reduction

R(x, t) = σQT (x, −t), σ = ∓1, (50)

which in turn gives rise to the following nonlocal in time only matrix
nonlinear Schrödinger equation

iQt (x, t) = Qxx (x, t) − 2σQ(x, t)QT (x, −t)Q(x, t). (51)

To obtain the multicomponent analogue of Eq. (51) we restrict the matrix Q
to a column vector (N = 1) giving rise to the following nonlocal evolution
equation:

iqt (x, t) = qxx (x, t) − 2σ [q(x, t) · q(x, −t)]q(x, t). (52)

3. Reverse space-time nonlocal coupled NLS-derivative NLS equation

In this section, we derive the space-time nonlocal coupled NLS-derivative
NLS equation that includes the reverse space-time nonlocal NLS (as well as
the reverse space-time nonlocal derivative NLS) equations as special cases.
To do so we consider a generalization to the AKNS scattering problem (21)
with

X =
(

− f (k) g(k)q(x, t)
g(k)r (x, t) f (k)

)
, (53)

where f (k) = iαk2 −
√

2βk and g(k) = αk + i
√
β/2 are functions of the

complex spectral parameter k and α,β are real constants. The time evolution
of the eigenfunctions v(x, t) is governed by Eqs. (23) and (24) where
functions A, B, and C are now fourth-order polynomials in the isospectral
parameter k (see [13]). The compatibility condition of system (53) and (23)
gives the coupled q, r system

qt (x, t) = iqxx (x, t) + α
(
r (x, t)q2(x, t)

)
x + iβr (x, t)q2(x, t), (54)
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− rt (x, t) = irxx (x, t) − α
(
r2(x, t)q(x, t)

)
x + iβr2(x, t)q(x, t). (55)

Under the symmetry reduction (30) the system (54) and (55) are compatible
and leads to the reverse space-time nonlocal coupled NLS-derivative NLS
equation:

qt (x, t) = iqxx (x, t) + ασ
(
q(−x, −t)q2(x, t)

)
x + iβσq(−x, −t)q2(x, t). (56)

In the special case where α = 0 and β = 2 we recover Eq. (31). On
the other hand, if we choose α = 1 and β = 0 then we find the reverse
space-time nonlocal version of the “classical” derivative NLS equation:

iqt (x, t) = −qxx (x, t) + iσ
(
q(−x, −t)q2(x, t)

)
x . (57)

The linear Lax pairs associated with Eq. (57) are given by

X =
(

−ik2 kq(x, t)
kσq(−x, −t) ik2

)
, (58)

T =

⎛

⎝
Anonloc

d N L S Bnonloc
d N L S

Cnonloc
d N L S −Anonloc

d N L S

⎞

⎠ , (59)

where

Anonloc
d N L S = −2ik4 − iσq(−x, −t)q(x, t)k2, (60)

Bnonloc
d N L S = 2q(x, t)k3 + (iqx (x, t) + σq(−x, −t)q2(x, t))k, (61)

Cnonloc
d N L S = 2σkq(−x, −t)k3 + (iσqx (−x, −t) + q2(−x, −t)q(x, t))k. (62)

In [30] it was shown that the general q, r system (54) and (55) for
α = 1 and β = 0 is integrable and admits infinitely many conservation laws.
Because the new nonlocal equation (57) comes out of a new symmetry
reduction it is also an infinite dimensional integrable Hamiltonian system.
The first two conserved quantities associated with Eq. (57) are

∫

R
q(x, t)q(−x, −t)dx = constant, (63)

∫

R
q(x, t)

[
i
2

q2(−x, −t)q(x, t) − σqx (−x, −t)
]

dx = constant. (64)

Another interesting nonlocal in both space and time integrable evolution
equation can be obtained from the scattering problem (53) if one chooses
the functional dependence of f and g on k to be linear, i.e., f (k) = g(k) =
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k with suitable functions A, B, and C (see [13, 31]). Following the same
procedure as above, the compatibility condition gives rise to the following
system of q, r equations:

∂q(x, t)
∂t

+ ∂2

∂x2

[
qx (x, t)

(1 − r (x, t)q(x, t))3/2

]
= 0, (65)

∂r (x, t)
∂t

+ ∂2

∂x2

[
rx (x, t)

(1 − r (x, t)q(x, t))3/2

]
= 0. (66)

Now, under the symmetry reduction (30), i.e., r (x, t) = σq(−x, −t), σ =
∓1, Eqs. (65) and (66) are compatible and leads to the reverse space-time
nonlocal “loop soliton” equation

∂q(x, t)
∂t

+ ∂2

∂x2

[
qx (x, t)

(1 − σq(x, t)q(−x, −t))3/2

]
= 0, (67)

with σ = ∓1. The conservation laws for this “loop soliton” system can be
obtained by standard methods; cf. [32, 33]

4. Complex and real reverse space-time nonlocal mKdV
and sine-Gordon Equations

Returning to the 2 × 2 Lax pair given by Eqs. (21)–(24) we can find other
integrable nonlocal equations depending on the functional form of A, B, and
C on the spectral parameter k. In the following few sections, we will derive
the space-time nonlocal versions of the “classical” mKdV and sine-Gordon
equations and provide the IST formulation as well as one soliton solution.
Contrary to the PT symmetric nonlocal NLS case where the one soliton
solution can develop a singularity in fine time [14, 22], here the reverse
space-time nonlocal mKdV soliton can be generically regular and does not
develop a singularity.

4.1. The complex reverse space-time nonlocal mKdV

If we take

A3 = −4ik3 − 2iq(x, t)r (x, t)k + r (x, t)qx (x, t) − q(x, t)rx (x, t),

B3 = 4k2q(x, t) + 2iqx (x, t)k + 2q2(x, t)r (x, t) − qxx (x, t),

C3 = 4k2r (x, t) − 2irx (x, t)k + 2q(x, t)r2(x, t) − rxx (x, t),

the compatibility condition of system (21) and (23) yields

qt (x, t) + qxxx (x, t) − 6q(x, t)r (x, t)qx (x, t) = 0, (68)
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rt (x, t) + rxxx (x, t) − 6q(x, t)r (x, t)rx (x, t) = 0. (69)

Under the symmetry reduction

r (x, t) = σq∗(−x, −t), σ = ∓1, (70)

the system (68) and (69) are compatible and leads to the complex reverse
space-time nonlocal complex mKdV equation

qt (x, t) + qxxx (x, t) − 6σq(x, t)q∗(−x, −t)qx (x, t) = 0, (71)

where again ∗ denotes complex conjugation and q(x, t) is a complex valued
function of the real variables x and t . On the other hand, using the
symmetry (30) yields the real reverse space-time equation

qt (x, t) + qxxx (x, t) − 6σq(x, t)q(−x, −t)qx (x, t) = 0, (72)

which for real initial conditions is the real nonlocal mKdV equation. We
also point out that when q(−x, −t) = q(x, t) the nonlocal mKdV equation
reduces to its classical (local) counterpart. Furthermore, when using the
symmetry reduction r (x, t) = σq(−x, −t) for the NLS or mKdV case, one
need not specify whether q is real or complex valued. However, if one
further restricts q to be real then additional symmetry conditions on the
underlying eigenfunctions and scattering data are required, beyond those that
come out of the symmetry reduction r (x, t) = σq∗(−x, −t). The compatible
pair associated with Eq. (71) now is

vx =
(

−ik q(x, t)
σq∗(−x, −t) ik

)
v, (73)

vt =

⎛

⎝
A3,nonloc B3,nonloc

C3,nonloc −A3,nonloc

⎞

⎠ v, (74)

where
A3,nonloc = −4ik3 − 2iσq(x, t)q∗(−x, −t)k

+σq∗(−x, −t)qx (x, t) + σq(x, t)q∗
x (−x, −t), (75)

B3,nonloc = 4k2q(x, t) + 2iqx (x, t)k

+2σq2(x, t)q∗(−x, −t) − qxx (x, t), (76)

C3,nonloc = 4k2σq∗(−x, −t) + 2iσq∗
x (−x, −t)k

+2q(x, t)q∗2(−x, −t) − σq∗
xx (−x, −t). (77)
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4.2. The reverse space-time nonlocal sine-Gordon equation

If on the other hand, one makes the ansatz A = A1/k, B = B1/k, and
C = C1/k then after some algebra the compatibility condition v j xt =
v j t x , j = 1, 2 with k being the time independent isospectral parameter leads
to

qxt (x, t) + 2s(x, t)q(x, t) = 0, (78)

rxt (x, t) + 2s(x, t)r (x, t) = 0, (79)

sx (x, t) + (q(x, t)r (x, t))t = 0, (80)

where we have defined A1 = −is/2. Also for completeness: B1 =
qt/(2i), C1 = −rt/(2i). Under the symmetry condition

r (x, t) = −q(−x, −t), (81)

with q ∈ R the system of equations (78)–(80) are compatible and give rise
to the real nonlocal sine-Gordon (sG) equation

qxt (x, t) + 2s(x, t)q(x, t) = 0, s(−x, −t) = s(x, t). (82)

We also fix the boundary condition of s as x → ∞ consistent with the
classical sine-Gordon equation to be

s(x, t) = s(−∞) −
∫ x

−∞
(q(x, t)q(−x, −t))t (x ′, t)dx ′, s(−∞) = i/4. (83)

We note that we could have also generated a complex form of the (sG)
equation following the previous discussion. However, for simplicity, here we
only give the real nonlocal (SG) equation.

4.3. Overview

In summary, system (28) and (29) admits six symmetry reductions. The first
four of which give rise to an integrable nonlocal NLS-type equation and the
last two of which yield a nonlocal integrable mKdV-type evolution equation
(below σ = ∓1):

1. Standard AKNS symmetry:

r (x, t) = σq∗(x, t),

which has been known in the literature for more than four decades
[12]; the paradigm is the NLS equation (1);
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2. Reverse time AKNS symmetry

r (x, t) = σq(x, −t),

see the NLS-type equation (3);
3. PT preserving symmetry

r (x, t) = σq∗(−x, t),

which was found in 2013 [14]; see the NLS-type equation (2);
4. Reverse space-time symmetry

r (x, t) = σq(−x, −t), q ∈ C,

see the NLS-type equation (3);
5. PT reverse time symmetry

r (x, t) = σq∗(−x, −t),

see the complex mKdV-type equation (3);
6. Real reverse space-time symmetry

r (x, t) = σq(−x, −t), q ∈ R,

see the real mKdV-type equation (3).

In Section 11, we find soliton solutions of nonlocal NLS, mKdV and
sine-Gordon–type equations with these symmetries.

5. Reverse space-time and reverse time nonlocal DS system

The integrable two spatial dimensional extension of the NLS equation
was obtained from a 2 × 2 compatible linear pair in [34]. The IST was
carried out later—cf. [13]. The spatial part of the linear pair generalizes
the operator X in (21) and (22) where the eigenvalue k is replaced by an
operator in the transverse spatial variable y. This new operator still contains
the potentials q, r which now depend on x, y, and t . The general DS (q, r )
system is given by

iqt (x, t) + 1
2

[
γ 2qxx (x, t) + qyy(x, t)

]
+ q2(x, t)r (x, t) = φ(x, t)q(x, t), (84)

−irt (x, t) + 1
2

[
γ 2rxx (x, t) + ryy(x, t)

]
+ r2(x, t)q(x, t) = φ(x, t)r (x, t), (85)

φxx (x, t) − γ 2φyy(x, t) = 2 [q(x, t)r (x, t)]xx , (86)
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where γ 2 = ±1 and x = (x, y) is the transverse plane. In [34] it was
shown that the system of equations (84) and (85) are consistent under
the symmetry reduction r (x, t) = σq∗(x, t) and leads to the “classical” DS
equation and in [24] a PT symmetric reduction in the form r (x, t) =
σq∗(−x, t) was also reported. In this paper, we identify two new nonlocal
symmetry reductions to the above DS system: r (x, t) = σq(−x, −t) and
r (x, t) = σq(x, −t) each of which leads to a new DS system.

5.1. Reverse space-time nonlocal DS equation

Under the symmetry reduction

r (x, t) = σq(−x, −t), (87)

it can be shown that system (84) and (85) are compatible and lead to the
reverse space-time nonlocal DS equation (12) which, for the convenience of
the reader we rewrite again:

iqt (x, t) + 1
2

[
γ 2qxx (x, t) + qyy(x, t)

]
+ σq2(x, t)q(−x, −t) = φ(x, t)q(x, t),

(88)

φxx (x, t) − γ 2φyy(x, t) = 2σ [q(x, t)q(−x, −t)]xx . (89)

Note that from Eq. (89) it follows that the potential φ has a solution that
satisfies the relation φ(−x, −t) = φ(x, t). The solution φ can, in principle,
have boundary conditions that do not allow φ(−x, −t) = φ(x, t). For the
decaying infinite space problem we are considering here, one can expect the
symmetry relation for φ(x, t) to hold. The elliptic case in the φ equation
is easier than the hyperbolic one. In general, to prove φ(−x, −t) = φ(x, t)
one need to study the Greens function and see if this symmetry reduction
holds. For the two-dimensional elliptic case with γ 2 = −1 this condition
appears to be true. Thus, the existence of the symmetry property for φ(x, t)
is necessary for the (q, r ) DS system to be compatible. Any solution φ(x, t)
that breaks the symmetry φ(−x, −t) = φ(x, t), would force the (q, r ) system
to become inconsistent. As such, the proposed new nonlocal DS equations
are valid so long φ(x, t) satisfy the necessary underlying symmetry induced
from the nonlocal AKNS symmetry reduction.

5.2. Reverse time nonlocal DS equation

Another interesting and new symmetry reduction which was not noticed in
the literature so far is the time only nonlocal reduction given by

r (x, t) = σq(x, −t), σ = ∓1. (90)
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With this symmetry condition, system (84) and (85) are consistent and give
rise to the following reverse time-only nonlocal DS system of equation

iqt (x, t) + 1
2

[
γ 2qxx (x, t) + qyy(x, t)

]
+ σq2(x, t)q(x, −t) = φ(x, t)q(x, t),

(91)

φxx (x, t) − γ 2φyy(x, t) = 2σ [q(x, t)q(x, −t)]xx . (92)

Note that from Eqs. (91) and (92) it follows that the potential φ has a
solution that satisfies φ(x, t) = φ(x, −t). In this paper, we will not go into
further detail regarding the integrability properties of the above systems nor
will we construct soliton solutions or an inverse scattering theory. This will
be left for future work.

6. Fully PT symmetric, partially PT symmetric, and partial reverse
space-time nonlocal DS system

In this section, we show that the (DS) system (84) and (85) admit
yet other types of symmetry reductions. These new symmetry reductions
fall into three distinct categories: (i) full PT symmetry, (ii) partial PT
symmetry, and (iii) partial reverse space-time symmetry. Generally speaking,
a linear or nonlinear PDE is said to be PT symmetric if it is invariant
under the combined action of the (not necessarily linear) PT operator. In
(1 + 1) dimensions, this amounts to invariance under the joint transformation
x → −x, t → −t and complex conjugation. The situation for the (2 + 1)
case is more rich. Here, one can talk about two different types of
PT symmetries: full and partial. If we denote by x ≡ (x, y), then a
linear or nonlinear PDE in (2 + 1) dimensions is said to be fully PT
symmetric if it is invariant under the combined transformation x → −x
(parity operator P), t → −t plus complex conjugation (T operator). Note
that the space reflection is performed in both space coordinates. On the
other hand, a linear or nonlinear PDE in (2 + 1) dimensions is said to be
partially PT symmetric if it is invariant under the combined transformation
(x, y) → (−x, y) or (x, y) → (x, −y), t → −t plus complex conjugation.
Partially PT symmetric optical potentials have been studied in [23] and
shown that such potentials exhibit pure real spectra and can support (in the
presence of cubic type nonlinearity) continuous families of solitons. Below,
we use these new symmetry reductions to derive the corresponding DS–like
equations.
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6.1. Partially PT symmetric nonlocal DS equation

Under the symmetry reduction

r (x, y, t) = σq∗(−x, y, t), (93)

it can be shown that system (84) and (85) are compatible and lead to
the partially PT symmetric nonlocal DS equation (14) which, for the
convenience of the reader we rewrite again:

iqt (x, y, t) + 1
2

[
γ 2qxx (x, y, t) + qyy(x, y, t)

]

+ σq2(x, y, t)q∗(−x, y, t) = φ(x, y, t)q(x, y, t), (94)

φxx (x, y, t) − γ 2φyy(x, y, t) = 2σ [q(x, y, t)q∗(−x, y, t)]xx . (95)

Note that from Eq. (95) it follows that the potential φ has a solution that
satisfies the relation φ(x, y, t) = φ∗(−x, y, t), in other words, the potential
satisfies the partial PT symmetry requirement. Note, here and below we
could have also considered the partial PT reduction:

r (x, y, t) = σq∗(x, −y, t), (96)

which would lead to another DS-type equation.

6.2. Partial reverse space-time nonlocal DS equation

Another new symmetry reduction, which was not noticed in the literature so
far is the partially reverse space-time nonlocal reduction given by

r (x, y, t) = σq(−x, y, −t), σ = ∓1. (97)

With this symmetry condition, system (84) and (85) are consistent and give
rise to the following partially reverse space-time nonlocal DS system of
equation

iqt (x, y, t) + 1
2

[
γ 2qxx (x, y, t) + qyy(x, y, t)

]

+ σq2(x, y, t)q(−x, y, −t) = φ(x, y, t)q(x, y, t), (98)

φxx (x, y, t) − γ 2φyy(x, y, t) = 2σ [q(x, y, t)q(−x, y, −t)]xx . (99)

Note that from Eqs. (98) and (99) it follows that the potential φ has a
solution that satisfies φ(x, y, t) = φ(−x, y, −t). Again, one can consider the
partial reverse space-time reduction:

r (x, y, t) = σq(x, −y, −t), (100)
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and obtain the corresponding DS equation. In this paper, we will not go into
further detail regarding the integrability properties of the above systems nor
will we construct soliton solutions or an inverse scattering theory. This will
be left for future work. We close this section by mentioning that the fully
PT symmetric nonlocal DS equation was obtained by Fokas in [24]. Indeed,
under the symmetry condition r (x, t) = σq∗(−x, t) the system (84) and (85)
are again compatible and lead to the following PT symmetric nonlocal DS
equation [24]:

iqt (x, t) + 1
2

[
γ 2qxx (x, t) + qyy(x, t)

]
+ σq2(x, t)q∗(−x, t) = φ(x, t)q(x, t) = 0,

(101)

φxx (x, t) − γ 2φyy(x, t) = 2σ [q(x, t)q∗(−x, t)]xx , (102)

with the potential φ(x, t) satisfying the PT symmetry condition: φ∗(−x, t) =
φ(x, t). In summary, like the integrable NLS-type equations, the DS system
(84), (85) and (86) admit six different symmetry reductions that we list
below:

1. Classical r (x, t) = σq∗(x, t) observed in [35],
2. Fully PT symmetric: r (x, t) = σq∗(−x, t) reported in [24],
3. Partially PT symmetric: r (x, y, t) = σq∗(−x, y, t) or r (x, y, t) =
σq∗(x, −y, t) found in this paper,

4. Reverse space-time symmetry r (x, t) = σq(−x, −t) found in this pa-
per,

5. Partial reverse space-time symmetry r (x, y, t) = σq(−x, y, −t) or
r (x, y, t) = σq(x, −y, −t) found in this paper,

6. Reverse time symmetry r (x, t) = σq(x, −t) found in this paper.

It would be interesting for future research direction to study the solutions
and possible wave collapse properties (or lack of) for each of the reported
new reductions.

7. (1+1)-dimensional reverse space-time nonlocal multiwave
and three-wave equations

In this section, we derive the reverse space-time and reverse time nonlocal
multiwave equation and its physically important reduction to three wave
equations. The idea is to generalize the 2 × 2 AKNS scattering problem
(21) and its associated time evolution (23) to an n × n matrix form and
obtain, after following similar compatibility procedure, the corresponding
multi interacting nonlinear, nonlocal (in space and time) wave equation.
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A physically relevant reduction of the more general case, i.e., three-wave
equation will be also derived. Our approach follows that given by Ablowitz
and Haberman [35]. An n × n generalization of the scattering problem (21)
and (22) is given by

vx = ikDv + Nv, (103)

where v is a column vector of length n, i.e., v = (v1, v2, · · · , vn)T where as
before, T denotes matrix transpose. Furthermore, D and N are n × n matri-
ces with D being a diagonal constant matrix, i.e., D ≡ diag(d1, d2, · · · , dn),
dn > dn−1 · · · > d1, and N has zero entries on the main diagonal; i.e., in
matrix element form Nℓ,ℓ = 0. The time evolution associated with (103) is
given by

vt = Qv, (104)

with Q being an n × n matrix which depends on the components of the
“potential” matrix N and the assumed time-independent spectral parameter
k. As in the 2 × 2 case, the compatibility condition vxt = vt x yields the
matrix equation

Qx − Nt = ik[D, Q] + [N, Q], (105)

where [A, B] ≡ AB − BA. If one now expands the matrix Q in a first-order
polynomial in the spectral parameter k, Q = Q0 + kQ1 then, after some
algebra, one finds Q1ℓj ≡ qℓδℓj and Q0ℓj = aℓjNℓj and aℓj = − i(qℓ−q j )

(dℓ−d j )
= a jℓ.

We want aℓj ∈ R hence q j , j = 1, · · · n are purely imaginary. The time
evolution of the matrix elements Nℓj , ℓ, j = 1, 2, · · · , n is found at order k0

and given by

Nℓj,t (x, t) − aℓjNℓj,x (x, t) =
n∑

m=1

(aℓm − amj )Nℓm(x, t)Nmj (x, t). (106)

Equation (106) was derived in [35] and governs the time evolution of
generic “potential” matrix elements Nℓj .

7.1. Classical multiwave reduction: Nℓj (x, t) = σℓjN∗
jℓ(x, t)

In [35] it was shown that the system of equations (106) admits the following
symmetry reduction

Nℓj (x, t) = σℓjN
∗
jℓ(x, t), (107)

where σℓj are constants satisfying

σ 2
ℓj = 1, σℓmσmj = −σℓj ,

for all m, ℓ, j = 1, 2, · · · , n and real aℓm . That is to say, Nℓj (x, t) and
N∗

jℓ(x, t) satisfy the same equation (106) (and its complex conjugate) thus



Integrable Nonlocal Nonlinear Equations 27

reducing the number of equation by half; there are n(n − 1)/2 interacting
nonlinear wave equations. These equations have an infinite number of
conservation laws [36]

7.2. Classical three-wave interaction equations

The physically relevant and important local three wave interaction system is
next derived. In this case n = 3 and the “nonlinear” matrix N is assumed to
have the generic form (note that N j j = 0, j = 1, 2, 3)

N(x, t) =

⎛

⎝
0 N12(x, t) N13(x, t)

N21(x, t) 0 N23(x, t)
N31(x, t) N32(x, t) 0

⎞

⎠ . (108)

With the symmetry (107), one can reduce the number of independent
variables in (108) and write

N(x, t) =

⎛

⎝
0 N12(x, t) N13(x, t)

σ1N∗
12(x, t) 0 N23(x, t)

σ2N∗
13(x, t) σ3N∗

23(x, t) 0

⎞

⎠ , (109)

where
σ1σ1

σ2
= 1, σ j = ±1, j = 1, 2, 3.

Thus, the number of nonlinear equations is reduced from 6 to 3. Next, we
consider the following transformation of variables,

N12(x, t) = −i
Q3(x, t)√
β13β23

,

N31(x, t) = −i
Q2(x, t)√
β12β23

,

N23(x, t) = i
Q1(x, t)√
β12β13

,

N13(x, t) = −γ1γ3N
∗
31(x, t),

N32(x, t) = γ3γ2N
∗
23(x, t),

N21(x, t) = γ1γ2N
∗
12(x, t),

where

βl j := dl − d j = −cl + c j , ⇒ d j = −c j ⇒ c3 > c2 > c1

γ j = −i
c1c2c3

c j
.
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This results in the classical (local) three wave interaction equations

Q1,t (x, t) + c1 Q1,x (x, t) = iγ1 Q∗
2(x, t)Q∗

3(x, t),

Q2,t (x, t) + c2 Q2,x (x, t) = iγ2 Q∗
1(x, t)Q∗

3(x, t),

Q3,t (x, t) + c3 Q3,x (x, t) = iγ3 Q∗
1(x, t)Q∗

2(x, t),

(110)

where

c3 > c2 > c1, γ1γ2γ3 = −1, γ j = ±1, j = 1, 2, 3.

From these equations, we can derive the conserved quantities

γ1

∫ ∞

−∞
|Q1(x, t)|2dx − γ2

∫ ∞

−∞
|Q2(x, t)|2dx = constant,

γ2

∫ ∞

−∞
|Q2(x, t)|2dx − γ3

∫ ∞

−∞
|Q3(x, t)|2dx = constant,

γ1

∫ ∞

−∞
|Q1(x, t)|2dx − γ3

∫ ∞

−∞
|Q3(x, t)|2dx = constant.

(111)

Positive definite energy occurs when we take two γ j ’s of different sign.
This results in the “decay instability” case. If all three γ j = −1 then the
above does not lead to a positive definite energy—this is the “explosive
instability” case. Next we show that the system (106) admits new space-time
nonlocal symmetry reductions leading to nonlocal multiwave equations. We
will discuss two reductions.

7.3. The complex reverse space-time multiwave reduction:
Nℓj (x, t) = σℓjN∗

jℓ(−x, −t)

In this section we show that the system of multi-interacting waves admits
a new nonlocal symmetry reduction. Later, we derive a simple model of a
nonlocal three-wave equation. We substitute in Eq. (106) the new symmetry
relation

Nℓj (x, t) = σℓjN
∗
jℓ(−x, −t), (112)

and call x ′ = −x, t ′ = −t and find:

−(N ∗
jℓ,t ′ − al j N ∗

jℓ,x ′)(x ′, t ′) =
n∑

m=1

(aℓm − amj )
σℓmσmj

σℓj
N ∗

mℓ(x
′, t ′)N ∗

jm(x ′, t ′).

(113)
Under the condition

σℓmσmj

σℓj
= +1,
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Eq. (113) agrees with the complex conjugate of Eq. (106) with interchanged
indices.

7.4. Complex reverse space-time three-wave equations

With the symmetry reduction N21 = σ1N∗
12(−x, −t), N31 = σ2N∗

13(−x, −t)
and N32 = σ3N∗

23(−x, −t) and assuming that al j are real, where σ1, σ2 and
σ3 are chosen as real numbers with

σ1σ3

σ2
= 1, σ j = ±1, j = 1, 2, 3, (114)

Eq. (106) may be put into a set of nonlocal three-wave interaction equations
by a suitable scaling of variables. For example, we find the system

Q1,t (x, t) + c1 Q1,x (x, t) = σ3 Q∗
2(−x, −t)Q∗

3(−x, −t),

Q2,t (x, t) + c2 Q2,x (x, t) = −σ2 Q∗
1(−x, −t)Q∗

3(−x, −t),

Q3,t (x, t) + c3 Q3,x (x, t) = σ1 Q∗
1(−x, −t)Q∗

2(−x, −t),

(115)

if we take

N12(x, t) = − Q3(x, t)√
β13β23

,

N31(x, t) = − Q2(x, t)√
β12β23

,

N23(x, t) = − Q1(x, t)√
β12β13

,

N13(x, t) = σ2N
∗
31(−x, −t),

N32(x, t) = σ3N
∗
23(−x, −t),

N21(x, t) = σ1N
∗
12(−x, −t),

where

βl j := dl − d j = −cl + c j , ⇒ d j = −c j ⇒ d1 = −c1,

d2 = −c2, d3 = −c3

q1 = −ic2c3, q2 = −ic1c3, q3 = −ic1c2,

a12 = −c3, a13 = −c2, a23 = −c1, c3 > c2 > c1.
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Directly from the equations, we can derive the conserved quantities

σ2

∫ ∞

−∞
Q1(x, t)Q∗

1(−x,−t)dx + σ3

∫ ∞

−∞
Q2(x, t)Q∗

2(−x,−t)dx = constant,

σ2

∫ ∞

−∞
Q3(x, t)Q∗

3(−x,−t)dx + σ1

∫ ∞

−∞
Q2(x, t)Q∗

2(−x,−t)dx = constant,

σ1

∫ ∞

−∞
Q1(x, t)Q∗

1(−x,−t)dx − σ3

∫ ∞

−∞
Q3(x, t)Q∗

3(−x,−t)dx = constant.

(116)

Thus, there appears to be no positive definite conserved quantities in the
above equations; in the general case there likely will be blowup solutions.

7.5. The reverse space-time multiwave reduction:
Nℓj (x, t) = σℓjN jℓ(−x, −t)

If we substitute in Eq. (106)

Nℓj (x, t) = σℓjN jℓ(−x, −t), (117)

and let x ′ = −x, t ′ = −t then we find

−(N jℓ,t ′ − al j N jℓ,x ′)(x ′, t ′) =
n∑

m=1

(aℓm − amj )
σℓmσmj

σℓj
Nmℓ(x ′, t ′)N jm(x ′, t ′).

(118)
Under the condition

σℓmσmj

σℓj
= 1,

Eq. (118) agrees with Eq. (106) by interchanging the indices and without
taking the complex conjugate.

7.6. Reverse space-time three wave equations

Under the symmetry reduction N21 = σ1N12(−x, −t), N31 = σ2N13(−x, −t)
and N32 = σ3N23(−x, −t), where σ1, σ2, and σ3 are chosen as real numbers,
we have

σ1σ3

σ2
= 1, σ j = ±1, j = 1, 2, 3. (119)

As above, Eq. (106) may be put into a standard set of nonlocal three-wave
interaction equations by a suitable scaling of variables. For example, we find
the system

Q1,t (x, t) + c1 Q1,x (x, t) = σ3 Q2(−x, −t)Q3(−x, −t),

Q2,t (x, t) + c2 Q2,x (x, t) = −σ2 Q1(−x, −t)Q3(−x, −t),

Q3,t (x, t) + c3 Q3,x (x, t) = σ1 Q1(−x, −t)Q2(−x, −t),

(120)
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if we take

N12(x, t) = − Q3(x, t)√
β13β23

,

N31(x, t) = − Q2(x, t)√
β12β23

,

N23(x, t) = − Q1(x, t)√
β12β13

,

N13 = σ2 N31(−x, −t),

N32 = σ3 N23(−x, −t),

N21 = σ1 N12(−x, −t),

where

βl j := dl − d j = −cl + c j ⇒ d1 = −c1, d2 = −c2, d3 = −c3

q1 = −ic2c3, q2 = −ic1c3, q3 = −ic1c2,

a12 = −c3, a13 = −c2, a23 = −c1, c3 > c2 > c1.

Directly from the equations, we can derive the conserved quantities

σ2

∫ ∞

−∞
Q1(x, t)Q1(−x,−t)dx + σ3

∫ ∞

−∞
Q2(x, t)Q2(−x,−t)dx = constant,

σ2

∫ ∞

−∞
Q3(x, t)Q3(−x,−t)dx + σ1

∫ ∞

−∞
Q2(x, t)Q2(−x,−t)dx = constant,

σ1

∫ ∞

−∞
Q1(x, t)Q1(−x,−t)dx − σ3

∫ ∞

−∞
Q3(x, t)Q3(−x,−t)dx = constant.

(121)

From the above there appears to be no positive definite conserved quantities;
it is expected that this set of equations will have blowup solutions. In
future work, we aim to study the integrability properties of this nonlocal
three-wave equation and construct soliton solutions.

8. (2+1)-dimensional space-time nonlocal multiwave and three-wave
equations

In this section, we extend the analysis presented in Section 7 to two space
dimensions and derive the classical (local) multiwave interaction equations
and the space-time (as well as the time only) nonlocal multiwave equations.
The idea is to generalize the matrix scattering problem (103) by replacing
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the eigenvalue term by a derivative in the transverse y coordinate. Thus, we
start from the multidimensional generalized scattering problem

vx = Bvy + Nv, (122)

vt = Cvy + Qv, (123)

where v is a column vector of length n, B, N, C and Q are n × n
matrices with B being a real constant diagonal matrix given by B =
diag(b1, b2, · · · , bn) and N is such that N j j = 0, j = 1, 2, · · · , n. From
the compatibility condition vxt = vt x one finds expressions for the mixed
derivatives vyt and vyx . After setting the coefficients of the independent
terms vyy, vy and v to zero one finds

[C, B] = 0, (124)

[Q, B] + [C, N] + Cx − BCy = 0, (125)

Nt = [Q, N] + Qx − BQy + CNy. (126)

With the choice

Bl j = blδl j , Cl j = clδl j , (127)

where bl and cl are taken to be real constants then Eq. (124)
is satisfied. In this case, (125) yields Ql j = αl j Nl j (l ̸= l), where
αl j = cl−c j

bl−b j
= α jl . Moreover, Qll = ql , ql − q j = ik(dl − d j )αl j and βl j =

cl − αl j bl = (clb j − c j bl)/(b j − bl) = β jl . Hence, we have the compatible
two-dimensional nonlinear wave equation

Nl j,t − αl j Nl j,x − βl j Nl j,y =
n∑

m=1

(αlm − αmj )NlmNmj . (128)

8.1. Classical multiwave reduction: Nl j (x, t) = σl j N∗
jl(x, t)

For the ease of presentation we use the notation x ≡ (x, y). Under the
classical symmetry reduction

Nl j (x, t) = σl j N∗
jl(x, t), (129)

Ablowitz and Haberman showed that the (2 + 1)-dimensional system of
equations (128) are compatible with its complex conjugate (recall that the
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α and β coefficients are all real) so long the “σ” coefficients satisfy the
constraint

σlmσmj

σl j
= −1.

Thus, the symmetry condition (129) reduces the number of independent
equations from n(n − 1) to n(n − 1)/2. Next we show that system (128)
admits novel nonlocal reductions that were not reported so far in the
literature. They are of the reverse space-time nonlocal type. In the next two
sections, we outline their derivations and give some conservation laws.

8.2. (2+1)-dimensional complex reverse space-time multiwave reduction:
Nl j (x, t) = σl j N∗

jl(−x, −t)

If one substitutes the symmetry condition

Nl j (x, t) = σl j N∗
jl(−x, −t), (130)

in Eq. (128) then with the help of change of variables x′ = −x, t ′ = −t one
can show, after interchange of indices, that the system (128) is consistent
with its complex conjugate (because all αl j ,βl j are real) provided

σlmσmj

σl j
= +1.

The new symmetry reduction (130) is new and, as we next see, leads to a
new set of (2 + 1)-dimensional interacting nonlinear waves. For simplicity,
we derive the simple and physically important case of three interacting
waves.

8.3. (2+1)-dimensional complex reverse space-time three-wave equations

Here, we derive the dynamical equations governing the evolution of an
interacting (2 + 1)-dimensional space-time nonlocal nonlinear waves. To do
so, we explicitly write down the symmetry reduction for the case n = 3.
They are given by

N21(x, t) = σ1N∗
12(−x, −t), (131)

N31(x, t) = σ2N∗
13(−x, −t), (132)

N32(x, t) = σ3N∗
23(−x, −t), (133)

where, as before, all the αl j and βl j for l, j = 1, 2, · · · , n are real, and
σ j , j = 1, 2, 3 are chosen as real numbers satisfying the relation

σ1σ3

σ2
= 1, σ 2

j = 1 ( j = 1, 2, 3). (134)



34 M. J. Ablowitz and Z. H. Musslimani

Equation (128) may be put into a standard set of space-time nonlocal
nonlinear interacting three-wave system by a suitable scaling of variables.
With the definition

N12(x, t) = − Q3(x, t)
√

(−D1 + D3)(−D2 + D3)
, (135)

N31(x, t) = − Q2(x, t)
√

(−D1 + D2)(−D2 + D3)
, (136)

N23(x, t) = − Q1(x, t)
√

(−D1 + D2)(−D1 + D3)
, (137)

where

D3 > D2 > D1 > 0, c1 = −D2 D3, c2 = −D1 D3, c3 = −D1 D2,

b1 = −D1, b2 = −D2, b3 = −D3, α12 = −D3, α13 = −D2, α23 = −D1,

β12 = −D3(D1 + D2), β13 = −D2(D1 + D3), β23 = −D1(D2 + D3).

we obtain the following system of three reverse space-time nonlocal
interacting waves:

Q1,t (x, t) + C1 · ∇Q1(x, t) = σ3 Q∗
2(−x, −t)Q∗

3(−x, −t),

Q2,t (x, t) + C2 · ∇Q2(x, t) = −σ2 Q∗
1(−x, −t)Q∗

3(−x, −t),

Q3,t (x, t) + C3 · ∇Q3(x, t) = σ1 Q∗
1(−x, −t)Q∗

2(−x, −t),

(138)

where ∇ is the two dimensional gradient, C j = (C (x)
j , C (y)

j ), j = 1, 2, 3 and

C (x)
1 = D1, C (y)

1 = D1(D2 + D3), C (x)
2 = D2, C (y)

2 = D2(D1 + D3),

C (x)
3 = D3, C (y)

3 = D3(D1 + D2).

From the above set of dynamical equations, one can derive the following
conserved quantities:

σ2

∫ ∫

R2
Q1(x, t)Q∗

1(−x, −t)dxdy

+ σ3

∫ ∫

R2
Q2(x, t)Q∗

2(−x, −t)dxdy = constant, (139)

σ2

∫ ∫

R2
Q3(x, t)Q∗

3(−x, −t)dxdy

+ σ1

∫ ∫

R2
Q2(x, t)Q∗

2(−x, −t)dxdy = constant, (140)
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σ1

∫ ∫

R2
Q1(x, t)Q∗

1(−x, −t)dxdy

− σ3

∫ ∫

R2
Q3(x, t)Q∗

3(−x, −t)dxdy = constant. (141)

Because none of the above conserved quantities is guaranteed to be positive
definite, it is likely that in the general case the solution will blowup in finite
time. This would be an interesting future direction to consider.

8.4. (2+1)-dimensional reverse space-time multiwave reduction:
Nl j (x, t) = σl j N jl(−x, −t)

Another interesting symmetry reduction that Eq. (128) admits is given by

Nl j (x, t) = σl j N jl(−x, −t), (142)

which would result in a reduction of the number of equations from n(n − 1)
to n(n − 1)/2. Indeed, substituting (142) into (128); make the change of
variables x′ = −x, t ′ = −t and upon rearrangement of indices, one obtain
the same Eq. (128) provided

σlmσmj

σl j
= 1. (143)

With the help of the symmetry condition (142) we will next derive the
reverse space-time nonlocal interacting three-wave system following the
same idea we outlined in Section 8.3.

8.5. (2+1)-dimensional reverse space-time three-wave equations

Under the symmetry reduction N21(x, t) = σ1N12(−x, −t), N31(x, t) =
σ2N13(−x, −t) and N32(x, t) = σ3N23(−x, −t), where σ1, σ2, and σ3 are
chosen as real numbers, we have σ1σ3/σ2 = 1 with σ 2

j = 1 ( j = 1, 2, 3).
Equation (128) may be put into a standard set of nonlocal three-wave
interaction equations by a suitable scaling of variables. For example, we find
the system

Q1,t (x, t) + C1 · ∇Q1(x, t) = σ3 Q2(−x, −t)Q3(−x, −t),

Q2,t (x, t) + C2 · ∇Q2(x, t) = −σ2 Q1(−x, −t)Q3(−x, −t),

Q3,t (x, t) + C3 · ∇Q3(x, t) = σ1 Q1(−x, −t)Q2(−x, −t),

(144)

if we define the following new functions

N12(x, t) = − Q3(x, t)
√

(−D1 + D3)(−D2 + D3)
, (145)
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N31(x, t) = − Q2(x, t)
√

(−D1 + D2)(−D2 + D3)
, (146)

N23 = − Q1√
(−D1 + D2)(−D1 + D3)

, (147)

N13(x, t) = σ2 N ∗
31(−x, −t), (148)

N32x, t) = σ3 N ∗
23−x, −t), (149)

N21x, t) = σ1 N ∗
12−x, −t), (150)

where we have defined C j ≡ (C (x)
j , C (y)

j ), j = 1, 2, 3 and

C (x)
1 = D1, C (y)

1 = D1(D2 + D3), C (x)
2 = D2, C (y)

2 = D2(D1 + D3),

C (x)
3 = D3, C (y)

3 = D3(D1 + D2),

D3 > D2 > D1 > 0, c1 = −D2 D3, c2 = −D1 D3, c3 = −D1 D2,

b1 = −D1, b2 = −D2, b3 = −D3, α12 = −D3, α13 = −D2, α23 = −D1,

β12 = −D3(D1 + D2), β13 = −D2(D1 + D3), β23 = −D1(D2 + D3).

As was done before, we can derive the following conserved quantities:

σ2

∫ ∫

R2
Q1(x, t)Q1(−x,−t)dxdy

+ σ3

∫ ∫

R2
Q2(x, t)Q2(−x,−t)dxdy = constant, (151)

σ2

∫ ∫

R2
Q3(x, t)Q3(−x,−t)dxdy

+ σ1

∫ ∫

R2
Q2(x, t)Q2(−x,−t)dxdy = constant, (152)

σ1

∫ ∫

R2
Q1(x, t)Q1(−x,−t)dxdy

− σ3

∫ ∫

R2
Q3(x, t)Q3(−x,−t)dxdy = constant. (153)

As with the complex reverse space-time nonlocal three-wave system, none
of the above conserved quantity appears to be positive definite. It would be
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interesting to see if the above three wave system can develop a finite time
singularity.

9. Integrable nonlocal discrete NLS models: Reverse discrete-time,
reverse time, and PT preserved symmetries

In this section, we derive discrete analogues to the nonlocal NLS equations
(3) and (3). The resulting models are integrable and admit infinite number
of conserved quantities. Our approach is based on the integrable discrete
scattering problem [37]

vn+1 =
(

z Qn

Rn z−1

)
vn, (154)

dvn

dt
=

(
An Bn

Cn Dn

)
vn, (155)

where vn = (v(1)
n , v

(2)
n )T , Qn and Rn vanish rapidly as n → ±∞ and z is a

complex spectral parameter. Here,

An = i Qn Rn−1 − i
2

(
z − z−1)2

, (156)

Bn = −i
(
zQn − z−1 Qn−1

)
, (157)

Cn = i
(
z−1 Rn − z Rn−1

)
(158)

Dn = −i Rn Qn−1 + i
2

(
z − z−1)2

. (159)

The discrete compatibility condition d
dt vn+1 = ( d

dt vm)m=n+1 yields

i
d
dt

Qn(t) = )n Qn(t) − Qn(t)Rn(t) [Qn+1(t) + Qn−1(t)] , (160)

−i
d
dt

Rn(t) = )n Rn(t) − Qn(t)Rn(t) [Rn+1(t) + Rn−1(t)] , (161)

where

)n Fn ≡ Fn+1 − 2Fn + Fn−1. (162)
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In [37], it was shown that the system of equations (160) and (161) are
compatible under the symmetry reduction

Rn(t) = σQ∗
n(t), σ = ∓1, (163)

and gives rise to the Ablowitz–Ladik model [37, 38]

i
d Qn(t)

dt
= )n Qn − σ |Qn(t)|2 [Qn+1(t) + Qn−1(t)] . (164)

9.1. Reverse discrete-time reduction: Rn(t) = σQ−n(−t)

Interestingly, the system of discrete equations (160) and (161) are compati-
ble under the symmetry reduction

Rn(t) = σQ−n(−t), σ = ∓1, (165)

and gives rise to the reverse discrete-time nonlocal discrete NLS equation:

i
d Qn(t)

dt
= )n Qn − σQn(t)Q−n(−t) [Qn+1(t) + Qn−1(t)] . (166)

The discrete symmetry constraint (165) is new and was not noticed
in the literature. Because Eq. (166) comes out of the Ablowitz–Ladik
scattering problem, as such, it constitutes an infinite dimensional integrable
Hamiltonian dynamical system. The first two conserved quantities are given
by

+∞∑

n=−∞
Qn(t)Q1−n(−t) = constant. (167)

+∞∑

n=−∞

[
σQn(t)Q2−n(−t) − 1

2
(Qn(t)Q1−n(−t))2

]
= constant. (168)

+∞∏

n=−∞
[1 − σQn(t)Q−n(−t)] = constant. (169)

Importantly, Eq. (166) is a Hamiltonian dynamical system with Qn(t)
and Q−n(−t) playing the role of coordinates and conjugate momenta,
respectively. The corresponding Hamiltonian and (the noncanonical) brackets
are given by

H = −σ
+∞∑

n=−∞
Q−n(−t) (Qn+1(t) + Qn−1(t)) (170)
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−2
+∞∑

n=−∞
log (1 − σQn(t)Q−n(−t)) .

{Qm(t), Q−n(−t)} = iσ (1 − σQn(t)Q−n(−t)) δn,m . (171)

{Qn(t), Qm(t)} = {Qn(t), Q−m(−t)} = 0. (172)

9.2. Reverse time discrete symmetry: Rn(t) = σQn(−t)

Equations (160) and (161) admit another important symmetry reduction
given by

Rn(t) = σQn(−t), σ = ∓1. (173)

This symmetry reduction is called reverse time Ablowitz–Ladik symmetry
and results in the following discrete reverse time nonlocal discrete NLS
equation:

i
d Qn(t)

dt
= )n Qn − σQn(t)Qn(−t) [Qn+1(t) + Qn−1(t)] . (174)

The discrete symmetry constraint (173) is also new and was not noticed in
the literature so far. As is the case with the complex discrete-time symmetry,
Eq. (174) is also integrable and posses an infinite number of conservation
laws. The first few conserved quantities are listed below

+∞∑

n=−∞
Qn(t)Qn−1(−t) = constant. (175)

+∞∑

n=−∞

[
σQn(t)Qn−2(−t) − 1

2
(Qn(t)Qn−1(−t))2

]
= constant. (176)

+∞∏

n=−∞
[1 − σQn(t)Qn(−t)] = constant. (177)

Importantly, Eq. (174) is a Hamiltonian dynamical system with Qn(t)
and Q−n(−t) playing the role of coordinates and conjugate momenta,
respectively. The corresponding Hamiltonian and (the noncanonical) brackets
are given by

H = −σ
+∞∑

n=−∞
Qn(−t) (Qn+1(t) + Qn−1(t)) (178)
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−2
+∞∑

n=−∞
log (1 − σQn(t)Qn(−t)) .

{Qm(t), Qn(−t)} = iσ (1 − σQn(t)Q−n(−t)) δn,m . (179)

{Qn(t), Qm(t)} = {Qn(t), Qm(−t)} = 0. (180)

In summary, the discrete systems (160) and (160) admit four different
symmetry reduction:

1. Standard Ablowitz–Ladik symmetry

Rn(t) = σQ∗
n(t), σ = ∓1, (181)

giving rise to the so-called Ablowitz–Ladik model (164).
2. Reverse discrete-time symmetry

Rn(t) = σQ−n(−t), σ = ∓1, (182)

giving rise to Eq. (166),
3. Reverse time discrete symmetry

Rn(t) = σQn(−t), σ = ∓1, (183)

giving rise to Eq. (174),
4. Discrete PT preserved symmetry

Rn(t) = σQ∗
−n(t), σ = ∓1, (184)

giving rise to the discrete PT symmetric integrable nonlocal discrete
NLS equation first found in [20]:

i
d Qn(t)

dt
= )n Qn − σQn(t)Q∗

−n(t) [Qn+1(t) + Qn−1(t)] . (185)

10. IST: 2 × 2 AKNS type

Many of the above reverse space-time nonlocal evolution equations intro-
duced in this paper came out of crucial symmetry reductions of general
AKNS scattering problem (21)–(24). As such, they constitute infinite-
dimensional integrable Hamiltonian dynamical systems which are solvable
by the IST. The method of solution involves three major steps: (i) direct
scattering problem which involves finding the associated eigenfunctions,
scattering data and their symmetries, (ii) identifying the time evolution of
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the scattering data, and (iii) solving the inverse problem using the Riemann–
Hilbert approach or other inverse methods. In what follows we highlight
the main results behind each step for the AKNS scattering problem given
in (22) subject to the new reversed space-time symmetry reductions. The
full account of the inverse scattering theory for all evolution equations
introduced in this paper is beyond the scope of this paper and will be
discussed in future work.

10.1. Direct scattering problem

The analysis presented in this paper assumes that the potential functions
q(x, t) and r (x, t) decay to zero sufficiently fast at infinity. Thus, solutions
of the scattering problem (21) are defined and satisfy the boundary
conditions

φ ∼
(
1
0

)
e−ikx , φ ∼

(
0
1

)
eikx , as x → −∞

ψ ∼
(
0
1

)
eikx , ψ ∼

(
1
0

)
e−ikx , as x → +∞.

(186)

Note that bar does not denote complex conjugation; we use ∗ to denote
complex conjugation. It is expedient to define new functions

M(x, t, k) = eikxφ(x, t, k), M(x, t, k) = e−ikxφ(x, t, k), (187)

N (x, t, k) = e−ikxψ(x, t, k), N (x, t, k) = eikxψ(x, t, k), (188)

with

M ∼
(
1
0

)
, M ∼

(
0
1

)
, as x → −∞

N ∼
(
0
1

)
, N ∼

(
1
0

)
, as x → +∞

(189)

that satisfy constant boundary conditions at infinity and reformulate the
direct scattering problem in terms of them. With this at hand, when the
potentials q, r are integrable (i.e., they are in class L1) one can derive
an integral equation for the above functions and use them to show that
M(x, t, k), N (x, t, k) are analytic functions in the upper half complex k
plane whereas M(x, t, k), N (x, t, k) are analytic functions in the lower
half complex k plane [29]. The solutions φ(x, t, k) and φ(x, t, k) of the
scattering problem (21) with the boundary conditions (186) are linearly
independent. The same hold for ψ(x, t, k) and ψ(x, t, k). We denote by
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+(x, t, k) ≡ (φ(x, t, k), φ(x, t, k)) and ,(x, t, k) ≡ (ψ(x, t, k), ψ(x, t, k)).
Clearly, these two set of functions are linearly dependent and write

+(x, t, k) = S(k, t),(x, t, k), (190)

where S(k, t) is the scattering matrix given by

S(k, t) =
(

a(k, t) b(k, t)
b(k, t) a(k, t)

)
. (191)

The elements of the scattering matrix S(k, t) are related to the Wronskian of
the system via the relations

a(k, t) = W (φ(x, t, k),ψ(x, t, k)), (192)

a(k, t) = W (ψ(x, t, k),φ(x, t, k)), (193)

and

b(k, t) = W (ψ(x, t, k),φ(x, t, k)), (194)

b(k, t) = W (φ(x, t, k),ψ(x, t, k)), (195)

where W (u, v) is the Wronskian of the two solutions u, v and is given by
W (u, v) = u1v2 − v1u2 where in terms of components u = [u1, u2]T where
T represents the transpose. Moreover, it can be shown that a(k), a(k) are
respectively analytic functions in the upper/lower half complex k plane.
However b(k) and b(k) are generally not analytic anywhere.

10.2. Inverse scattering problem

The inverse problem consists of constructing the potential functions r (x, t)
and q(x, t) from the scattering data (reflection coefficients), e.g., ρ(k, t) =
e−4ik2t b(k, 0)/a(k, 0) and ρ(k, t) = e4ik2t b(k, 0)/a(k, 0) defined on Imk = 0
as well as the eigenvalues k j , k j and norming constants (in x) C j (t), C j (t).
Using the Riemann–Hilbert approach, from Eq. (190) one can find equations
governing the eigenfunctions N (x, t, k), N (x, t, k) [29]

N (x, t, k) =
(
1
0

)
+

J∑

j=1

C j (t)e2ik j x N (x, t, k j )
k − k j

+ 1
2π i

∫ +∞

−∞

ρ(ζ, t)e2iζ x N (x, t, ζ )
ζ − (k − i0)

dζ, (196)
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N (x, t, k) =
(
0
1

)
+

J∑

j=1

C j (t)e−2ik j x N (x, t, k j )

k − k j

− 1
2π i

∫ +∞

−∞

ρ(t)(ζ )e−2iζ x N (x, t, ζ )
ζ − (k + i0)

dζ. (197)

To close the system we substitute k = kℓ and k = kℓ in (197) and (196),
respectively, and obtain a linear algebraic integral system of equations that
solve the inverse problem for the eigenfunctions N (x, t, k) and N (x, t, k). In
the case with zero reflection coefficient, i.e., ρ(t) = ρ(t) = 0 the resulting
algebraic system governing the soliton solution reads

N (x, t, kℓ) =
(
1
0

)
+

J∑

j=1

C j (t)e2ik j x N (x, t, k j )

kℓ − k j
, (198)

N (x, t, kℓ) =
(
0
1

)
+

J∑

j=1

C j (t)e−2ik j x N (x, t, k j )

kℓ − k j
. (199)

10.3. Recovery of the potentials

To reconstruct the potentials for all time: q(x, t), r (x, t) we compare the
asymptotic expansions of Eq. (197) and (196) to the Jost functions and find
(for pure soliton solution only)

q(x, t) = 2i
J̄∑

ℓ=1

C̄ℓ(t)e−2i k̄ℓx N̄1(x, k̄ℓ). (200)

r (x, t) = −2i
J∑

ℓ=1

Cℓ(t)e2ikℓx N2(x, kℓ). (201)

Once all the symmetries of the scattering data are known, we can obtain
the solution q, which satisfies the spatial symmetries by solving the above
equations.

10.4. Evolution of the scattering data

The time dependence of the potentials q and r in Eq. (200) and (201) is
encoded in the eigenvalues and norming constants C j and C j . Their time
evolution is derived from Eq. (23) and (24). The space, time and space-time
nonlocal NLS, mKdV and SG equations belong to the same hierarchy, i.e.,
they all originate from the same scattering problem (21) with different A, B
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and C which in turn determines the time evolution of the scattering data
and norming constants. For the problems we will be studying in detail here,
following the derivation outlined in [29] for the temporal evolution one finds
the following: In all cases we have

a(k, t) = a(k, 0), ā(k, t) = ā(k, 0),

so that the zero’s of a(k) and ā(k), denoted by, k j , k̄ j , j = 1, 2...J,
respectively are constant in time. For NLS and nonlocal NLS problems

bNLS(k, t) = b(k, 0)e−4ik2t ,

b̄NLS(k, t) = b̄(k, 0)e4ik2t , k ∈ R,

CNLS
j (t) = C j (0)e−4ik2

j t , (202)

C
NLS
j (t) = C j (0)e4ik

2
j t . (203)

Here, k j and k j are often called the soliton eigenvalues and C j (0), C̄ j (0) are
termed norming constants. For mKdV and nonlocal mKdV problems

bmKdV(k, t) = b(k, 0)e8ik3t ,

b̄mKdV(k, t) = b̄(k, 0)e−8ik3t , k ∈ R,

CmKdV
j (t) = C j (0)e8ik3

j t , (204)

C
mKdV
j (t) = C j (0)e−8ik

3
j t , (205)

and for the sine-Gordon (sG) equation we have

C sG
j (t) = C j (0)e−i t/(2k j ), (206)

C
sG
j (t) = C j (0)eit/(2k j ). (207)

In the latter equations we used the boundary condition (83).

11. Symmetries and soliton solutions

In this section, we construct soliton solutions to the time and space-time
nonlocal NLS as well as the mKdV and sine-Gordon (sG) equations. Pure
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soliton solutions correspond to zero reflection coefficients, i.e., ρ(ξ, t) = 0
and ρ̄(ξ, t) = 0 for all real ξ . In this case the system (196), (197) reduces
to an algebraic equations (199) and (198) supplemented by the time
dependence (202-205) that determine the functional form of the solitons for
the nonlocal NLS, mKdV, and sG equations. Next, we obtain a one-soliton
solution of the N , N̄ equations (198) and (199) by taking J = J̄ = 1 to
find

N2(x, t) = N̄1(x, t) = 1

1 + C1(t)C̄1(t)

(k1 − k̄1)2e−2i(k1−k̄1)x

. (208)

The corresponding potentials (200)–(201) are given by

q(x, t) = 2ie−2i k̄1x C̄1(t)

1 + C1(t)C̄1(t)

(k1 − k̄1)2e−2i(k1−k̄1)x

, (209)

r (x, t) = − 2ie2ik1xC1(t)

1 + C1(t)C̄1(t)

(k1 − k̄1)2e−2i(k1−k̄1)x

. (210)

Below, for the 2 × 2 AKNS scattering problem we will give the rele-
vant symmetries and (for simplicity) their associated one-soliton solutions
considered in this paper.

11.1. Standard AKNS symmetry: r (x, t) = σq∗(x, t)

The original symmetry (associated with solitons) considered in [12] was

r (x, t) = σq∗(x, t), (211)

where we recall σ = ∓1. The (additional) time dependence of the scattering
data associated with the classical NLS equation is

b̄(k, t) = σb∗(k, t), k ∈ R,

and for σ = −1

C̄ j (t) = −C∗
j (t), j = 1, 2..., J.

The corresponding continuous and discrete symmetries in scattering space,
at the initial time, are given by

ā(k, 0) = a∗(k∗, 0), b̄(k, 0) = σb∗(k, 0), k ∈ R

σ = −1 : k̄ j = k∗
j , C̄ j (0) = −C∗

j (0), j = 1, 2..., J (212)
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The above symmetries allow us to formulate the general linearization of
the classical NLS equation (1) with the reduction (211) given above. Then
the corresponding well-known one soliton solution of the classical NLS
equation (1) is obtained from Eqs. (209) and (210) with J = 1, k1 = ξ + iη;
it is given by

qN L S(x, t) = 2ηsech(2η(x − 4ξ t − x0))e−2iξ x+4i(ξ 2−η2)t−iψ0, (213)

where e2ηx0 = |C1(0)|/(2η),ψ0 = arg(C1(0)) − π/2. We also note that the
above symmetries in scattering space imply that r (x, t) given by Eq. (210)
automatically satisfy the physical symmetry (211).

11.2. Reverse time AKNS symmetry: r (x, t) = σq(x, −t), q ∈ C

The solution corresponding to the physical symmetry

r (x, t) = σq(x, −t), (214)

of the corresponding nonlocal in time NLS equation (3) can be obtained by
employing the following temporal symmetries in scattering space:

b̄(k, t) = −σb(−k, −t),

C̄(k̄ j , t) = C(k j , −t), σ = −1,

and we denote

C̄(k̄ j , t) = C̄ j (t) and C(k j , t) = C j (t).

The symmetries at t = 0 satisfy

ā(k, 0) = −a∗(−k, 0), b̄(k, 0) = −σb(−k, 0), k ∈ R, (215)

σ = −1 : k̄ j = −k j , C̄ j (0) = C j (0), j = 1, 2, ...J. (216)

Further details of how to obtain these symmetries are given in the Appendix
(see also [6]). With the symmetries: k̄1 = −k1 and C̄1(0) = C1(0) and using
the above time dependence for C1(t), C̄1(t) the nonlocal in time NLS
equation (3) has the following one soliton solution

qT N L S(x, t) = 2iC1(0)e2ik1x e4ik2
1 t

1 + C2
1 (0)

4k2
1

e4ik1x

, (217)

rT N L S(x, t) = −2iC1(0)e2ik1x e−4ik2
1 t

1 + C2
1 (0)

4k2
1

e4ik1x

. (218)
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One can see that the symmetry condition r (x, t) = −q(x, −t) is automati-
cally satisfied. With k1 = ξ + iη another form of the solution is

qT N L S(x, t) = 2iC1(0)e2iξ x e4i(ξ 2−η2)t e−2ηx e−8ξηt

1 + C2
1 (0)
4k2

1
e4iξ x e−4ηx

. (219)

Note that as |x | → ∞, qT N L S(x, t) → 0, but as ξ t → −∞, qT N L S(x, t) →
∞ so in general it is an unstable solution. If we write

C1(0)
2k1

= e2ηx0e−2iψ0,

then a singularity can occur when

1 + e4i(ξ x−ψ0)e−4η(x−x0) = 0,

or when

x = x0, 4(ξ x0 − ψ0) = (2n + 1)π, n ∈ Z.

When we take a special case: ξ = 0 the solution is stable; it can be singular
depending on C1(0); but if we further take C1(0) = |C1(0)| so that ψ0 = 0,
and call |C1(0)|/(2η) = e−2ηx0 we find

qT N L S R(x, t) = 2ηsech[2η(x − x0)]e4iη2t , (220)

which is not singular. We note that from Eq. (213) the one soliton solution
of NLS with ξ = 0 is given by

qT N L S(x, t) = 2ηsech(2η(x − x0))e−4iη2t−iψ0, (221)

which is the same solution as given above in Eq. (220) but with ψ0 = 0.
Indeed, ψ0 = 0 is necessary for this to be a solution of Eq. (3). Indeed any
solution to the classical NLS (1) that satisfies the property

q∗(x, t) = q(x, −t), (222)

automatically satisfies the corresponding nonlocal (in time) NLS equation
(3). This holds when the solution (221) obeys ψ0 = 0. In this regard, we
also note that the solution

q(x, t) = ηtanh(ηx)e2iη2t , (223)

with nonzero boundary conditions q(x, t) ∼ ±ηe2iη2t as x → ±∞, which is
a “dark” soliton solution of the classical NLS equation (1), solves Eq. (3)
with σ = 1.
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11.3. PT Symmetry: r (x, t) = σq∗(−x, t)

The physical PT symmetry (associated with solitons) considered in [14, 22]
was

r (x, t) = σq∗(−x, t). (224)

The corresponding continuous and discrete symmetries in scattering space
are given by

a(k, t) = a∗(−k∗, t) = a(k, 0), ā(k, t) = ā∗(−k∗, t) = ā(k, 0), (225)

b̄(k, t) = σb∗(−k, t), k ∈ R. (226)

When σ = −1 there are soliton eigenvalues

k j = −k∗
j , k̄ j = −k̄∗

j , j = 1, 2..., J.

We calculate the norming constants from

C j (0) = b j/a′(k j), b j = eiθ j , θ j ∈ R, j = 1, 2..., J,

C̄ j (0) = b̄ j/ā′(k̄ j ), b̄ j = ei θ̄ j , θ̄ j ∈ R, j = 1, 2..., J, (227)

and the terms a′(k j), ā′(k̄ j ) are computed via the trace formulae [22]. When
J = 1 the eigenvalues are on the imaginary axis: k1 = iη, k̄1 = −i η̄, η >
0, η̄ > 0; then the trace formulae gives

C1(0) = i(η + η̄)eiθ , C̄1(0) = −i(η + η̄)ei θ̄ , (228)

the one-soliton solution of the PT symmetric nonlocal NLS equation (2)
with the reduction

r (x, t) = σq∗(−x, t),

is found to be

qPT (x, t) = 2(η + η̄)ei θ̄e−2η̄x−4i η̄2t

1 − ei(θ+θ̄)e−2(η+η̄)x+4i(η2−η̄2t)
. (229)

An alternative form of writing the above one-soliton solution (229) is

q(x, t) = (η + η̄)ei(θ̄−θ−π)/2e−(η̄−η)x e−2i(η2+η̄2)t

cosh
[
(η + η̄)x − 2i(η2 − η̄2)t − i(θ + θ̄ + π )/2

] . (230)

Next, some remarks are in order.! The solution q(x, t) given in (229) is doubly periodic in time with periods
given by T1 = π

2η̄2 and T2 = π
2(η2−η̄2) .
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! The intensity |q(x, t)|2 breathes in time with period given by T = π
2(η2−η̄2) .! The solution (229) can develop a singularity in finite time. Indeed, at the

origin (x = 0) the solution (230) becomes singular when

tn = 2nπ − (θ + θ )

4(η2 − η2)
, n ∈ Z. (231)

! The solution (229) is characterized by two important time scales: the
singularity time scale and the periodicity of breathing.! A feature of the solution (229) (and other singular solutions discussed in
this paper) is that it can be defined after singularity has developed; i.e., it
has a pole in time and it can be avoided in the complex time plane; i.e.,
the solution is of Painlevé type.! We recall that not all members of the one-soliton family develop a
singularity at finite time. Indeed, if one let η = η̄ ≡ η in (229) then we
arrive at the well-behaved soliton solution of the nonlocal PT symmetric
NLS equation (2)

q(x, t) = 2ηsech[2ηx − iθ ]e−4iη2t , (232)

where η and θ are arbitrary real constants.

Note that when θ ̸= 0 the soliton given (232) is not a solution to the
classical (local) NLS equation (1). The PT symmetric induced potential is
given by (see Eq. (3))

V ≡ q(x, t)q∗(−x, t) = 4η2sech2[2ηx − iθ ]. (233)

The real and imaginary parts of the induced potential are, respectively, given
by

VR =
4η2

[
cos2 θ cosh2(2ηx) − sin2 θ sinh2(2ηx)

]

[
cos2 θ cosh2(2ηx) + sin2 θ sinh2(2ηx)

]2 ,

VI = sin(2θ ) sinh(4ηx)

2
[
cos2 θ cosh2(2ηx) + sin2 θ sinh2(2ηx)

]2 .

11.4. Reverse space-time symmetry: r (x, t) = σq(−x, −t), q ∈ C

The corresponding continuous and discrete symmetries in scattering space
are given by

b̄(k, t) = σb(k, −t), k ∈ R. (234)

When σ = −1 we calculate the norming constants from

C j (0) = b j/a′(k j), j = 1, 2..., J,
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where the terms a′(k j), ā′(k̄ j ) are computed via the trace formulae [22].
Following the same procedure as in [22] we also find

b(k j , −t)b(k j , t) = 1 ⇒ b(k j , 0) = ±1, (235)

and

b̄(k j , −t)b̄(k j , t) = 1 ⇒ b̄(k j , 0) = ±1. (236)

For a one-soliton solution, σ = −1, J = 1, the trace formulae yield

a′(k1) = 1

k1 − k̄1
, ā′(k̄1) = −1

k1 − k̄1
⇒ ā′(k̄1) = −a′(k1). (237)

Thus,
C1(0) = (k1 − k̄1)b(k1, 0), C̄1(0) = −(k1 − k̄1)b̄(k1, 0).

This implies that

C2
1 (0) = C̄2

1 (0).

The one soliton solution of the complex space-time nonlocal NLS equation
(3) is again found using the above method with time evolution of the
scattering data. We have

q(x, t) = 2i C̄1(0)e−2i k̄1x e4i k̄2
1 t

1 + C1(0)C̄1(0)

(k1 − k̄1)2
e2i(k1−k̄1)x e4i(k̄2

1−k2
1)t

, (238)

and

r (x, t) = − 2iC1(0)e2ik1x e−4ik2
1 t

1 + C1(0)C̄1(0)

(k1 − k̄1)2
e2i(k1−k̄1)x e4i(k̄2

1−k2
1)t

. (239)

With C2
1 (0) = C̄2

1 (0) it follows that r (x, t) = −q(−x, −t). Calling k1 =
ξ1 + iη1, k̄1 = ξ̄1 − i η̄1, η1 > 0, η̄1 > 0 and the above time dependence for
C1(t), C̄1(t) leads to the one-soliton solution for Eq. (4)

qC ST N L S(x, t) = 2i C̄1(0)e−2i ξ̄1x−2η̄1x e4i(ξ̄ 2
1 −η̄2

1)t e8ξ̄1η̄1t

1 + 31)
, (240)

where
) = e−4i(ξ 2

1 −η2
1)t+4i(ξ̄ 2

1 −η̄2
1)t e8ξ1η1t+8ξ̄1η̄1t e2i(ξ1−ξ̄1)x e−2(η1+η̄1)x ,

and 31 = C1(0)C̄1(0)/[k1 − k̄1]2 = γ1 = ±1. The above soliton is stable in
the sense that as ξ̄1η̄1 → ∞ we find qC ST N L S(x, t) to be bounded. It also
appears that if we let 31 = e2(η1+η̄1)x0e2iψ0 we can have a singularity when

−2(η1 + η̄1)(x − x0) + 8(ξ1η1 + ξ̄1η̄1)t = 0,
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and

4
((
ξ̄ 2

1 − η̄2
1

)
− (ξ 2

1 − η2
1)

)
t + 2ψ0 = (2n + 1)π, n ∈ Z.

The singularity can be eliminated by taking (ξ̄ 2
1 − η̄2

1) − (ξ 2
1 − η2

1) = 0 and
2ψ0 ̸= (2n + 1)π, n ∈ Z. As shown, the above symmetries yield solutions of
NLS and nonlocal NLS type equations.

11.5. Complex reverse time symmetry: r (x, t) = σq∗(−x, −t)

This symmetry yields a solution of the complex space-time nonlocal mKdV
equation (3). The symmetries needed for this case are

a(k, t) = a∗(−k∗, −t) = a(k, 0),

ā(k, t) = ā∗(−k∗, −t) = ā∗(−k∗, 0),

b̄(k, t) = σb∗(−k, −t), k ∈ R.

When σ = −1

k1 = iη, η > 0, k̄1 = −i η̄, η̄ > 0, (241)

C1(t) = C1(0)e8η3t , (242)

C̄1(t) = C̄1(0)e8η̄3t , (243)

C1(0) = i(η + η̄)b1, b1 = ei(θ+π), θ ∈ R,

C̄1(0) = −i(η + η̄)b̄1, b̄1 = ei θ̄ , θ̄ ∈ R.

Substituting into Eq. (209) yields the one-soliton solution of the complex
nonlocal mKdV equation

q(x, t) = − 2(η + η̄)ei θ̄e−2η̄x+8η̄3t

1 + ei(θ+θ̄)e−2ηx+8η3t−2η̄x+8η̄3t
. (244)

We see that there are four real parameters in the above solution: η, η̄, θ, θ̄ .
Another way to write this solution is as follows

q(x, t) = (η + η̄)e−i(θ/2−θ̄/2)eη(x−4η2t)e−η̄(x−4η̄2t)

cosh
[
(η(x − 4η2t) + η̄(x − 4η̄2t) − i(θ + θ̄)/2

] . (245)

We see that this solution can be singular if θ + θ̄ = (2n + 1)π, n ∈ Z.
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11.6. Real reverse space-time symmetry: r (x, t) = σq(−x, −t), q ∈ R

There is only one change from the complex PT time reversal symmetry
case,

C1(0) = i(η + η̄)b1, C̄1(0) = −i(η + η̄)b̄1, (246)

but now with

b1 = ±1, b̄1 = ±1.

Thus, the only difference from the complex PT time reversal symmetry
case is that in the prior case we require θ, θ̄ = 0,π . Therefore, in this case
there are only two free real parameters η, η̄ and the real nonlocal mKdV
equation (3) the one-soliton solution is given by

q(x, t) = 2γ1(η + η̄)e−2η̄x+8η̄3t

1 + γ2e−2ηx+8η3t−2η̄x+8η̄3t
, (247)

where γ j = ±1, j = 1, 2. If, say γ1 = γ2 = 1 then the solution can be
written in the following form:

q(x, t) = (η + η̄)eη(x−4η2t)e−η̄(x−4η̄2t)

cosh
[
(η(x − 4η2t) + η̄(x − 4η̄2)t

] . (248)

This solution is not singular. When η = η̄ the solution reduces to the
well-known solution of the real mKdV equation

q(x, t) = 2η

cosh
[
(2η(x − 4η2t)

] . (249)

Finally, we construct soliton solution for the (real) space-time nonlocal sine-
Gordon equation (82). The sG equation belongs to the same symmetry class
as the space-time nonlocal mKdV equation. As such, for the one-soliton
solution, the eigenvalues are given by k1 = iη1 and k̄1 = −i η̄1 with η1 > 0
and η̄1 > 0. Furthermore, the evolution of the norming constants is given by
Eqs. (206) and (207):

C sG
1 (t) = C1(0)e−t/(2η1), (250)

C
sG
1 (t) = C1(0)e−t/(2η1). (251)

The solution is thus found from Eq. (209) to be

q(x, t) = 2ie−2η̄1xC1(0)e−t/(2η1)

1 − C1(0)C̄1(0)e−t/(2η)

(η1 + η̄1)2e2(η1+η̄1)x

, (252)
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where C1(0) = i(η + η̄)b1, C̄1(0) = −i(η + η̄)b̄1, b1 = ±1, b̄1 = ±1 and

1
η

= 1
η1

+ 1
η̄1

.

12. Conclusion and outlook

More than 40 years have passed since AKNS published their paper:
“Inverse scattering transform—Fourier analysis for nonlinear problems,”
which appeared in this journal in 1974. Until recently, it was thought that
all “simple” and physically relevant symmetry reductions of the “classical”
AKNS scattering problem had been identified. However, in 2013, the authors
discovered a new “hidden” reduction of the PT symmetric type which leads
to a nonlocal NLS equation that admits a novel soliton solution. Surprisingly
enough, the AKNS symmetry reduction found in [14] is not the end of
the story. In this paper we unveil many new “hidden” symmetry reductions
that are nonlocal both in space and time and, in some cases, nonlocal in
time-only. Each new symmetry condition give rise to its own new nonlocal
nonlinear integrable evolution equation. These include the reverse time NLS
equation, reverse space-time nonlocal forms of the NLS equation, derivative
NLS equation (which includes the reverse space-time nonlocal derivative
NLS equation as a special case), loop soliton, modified Korteweg-deVries
(mKdV), sine-Gordon, (1+1)- and (2+1)-dimensional multiwave/three-wave
interaction, reverse discrete-time nonlocal discrete integrable NLS models
and DS equations. Linear Lax pairs and an infinite number of conservation
laws are discussed along with explicit soliton solutions in some cases. All
equations arise from remarkably simple symmetry reductions of AKNS and
related scattering problems. For convenience, below we list some of the
symmetries associated with the AKNS scattering problem (21–24).

r (x, t) = σq∗(x, t), (253)

r (x, t) = σq∗(−x, t), (254)

r (x, t) = σq(−x, −t), q ∈ C, (255)

r (x, t) = σq(x, −t), q ∈ C, (256)

r (x, t) = σq∗(−x, −t), (257)
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r (x, t) = σq(−x, −t), q ∈ R, (258)

where σ ∓ 1. In future work, these symmetries will be extended to other
vector, matrix AKNS and (2 + 1)-dimensional AKNS-type systems. The
symmetry (253) was discussed in [12] along with the subcase r (x, t) =
σq(x, t), q ∈ R. The symmetry (254) was first discussed in [14], particularly
with application to the PT symmetric NLS equation and related hierarchies.
The symmetry (255) was first noted in [22] with regard to the nonlocal
mKdV and SG equations, though the IST and one soliton solutions were
not given there. We show here that the symmetries (253), (254), (255), and
(256) are all associated with the IST and solutions of the NLS and nonlocal
NLS equations while the symmetries (253, (257), and (258) are associated
with the IST and solutions of the mKdV and nonlocal SG equation.

We close this section with an outlook toward future research direction
pertaining to the emerging field of integrable nonlocal equations including
what we here term here as reverse space-time and reverse time systems.

1. IST and left-right Riemann-Hilbert (RH) problems for reverse space-
time and inverse scattering for the reverse time-only nonlocal NLS
type equations.
In [14, 22], it was shown that a “natural” approach to solve the
inverse problem associated with the nonlocal NLS equation (2) is to
formulate two separate RH problems: one for x < 0 (left) and one at
x > 0 (right) then use the appropriate (nonlocal) symmetries between
the eigenfunctions to reduce the number of independent equations and
recover the potentials q and r . The left–right RH approach has the
advantage of reducing the integral equations on the inverse side to
integral equations for one function. It will be valuable to develop the
left–right RH equations for the reverse space-time nonlocal equations
and thereby develop a more complete inverse scattering theory.
Indeed, inverse scattering is an important field of mathematics and
physics independent of solving nonlinear equations.

2. Nonlocal Painlevé type equations. The Painlevé equations are cer-
tain class of nonlinear second-order complex ordinary differential
equations that usually arise as reductions of the “soliton evolution
equations,” which are solvable by IST cf. [13]. They are particularly
interesting due to their properties in the complex plane and their as-
sociated integrability properties. The first nonlocal (in space) Painlevé
type equation was obtained in [14] and came out of a reduction of
Eq. (2). Using the ansatz

q(x, t) = 1
(2t)1/2

f (z)eiν log t/2, z = x
(2t)1/2

, (259)
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one can show that f (z) satisfies

fzz(z) + i z fz(z) + (ν + i) f (z) − 2σ f 2(z) f ∗(−z) = 0, (260)

where σ = ∓1. Since Eq. (260) comes out of Eq. (2) which, in
turn arose using the so-called PT preserving symmetry reduction
r (x, t) = σq∗(−x, t), we thus refer to (260) as a PT preserving
Painlevé equation. The situation for the reverse space-time and reverse
time only nonlocal NLS cases is different. Here, the proper ansatz we
use for the reduction to ODE is of the form

q(x, t) = 1
(2t)1/2

f (z), z = x
(2t)1/2

. (261)

Substituting this ansatz into Eq. (3) gives

fzz(z) + i z fz(z) + i f (z) − 2σκ f 2(z) f (κz) = 0, (262)

where σ = ∓1 and κ = (−1)−1/2. In this case, κ = i if one chooses
−1 = e−iπ and (−1)−1/2 = eiπ/2 but κ = −i if one chooses −1 = eiπ

and (−1)−1/2 = e−iπ/2, i.e., it is branch dependent. Since the number
κ is branch dependent, it can wait to be defined when one does an
application. On the other hand, from Eq. 4 one obtains the following
ODE reduction

fzz(z) + i z fz(z) + i f (z) − 2σκ f 2(z) f (−κz) = 0, (263)

with σ = ∓1. Equations (262) and (263) are nonlocal Painlevé type
equations. As a future research direction, it would be interesting to
study the behavior of solutions to the above new nonlocal Painlevé
equations.

3. IST for the reverse time discrete and the reverse discrete-time NLS
equation. In Section 9, we used various discrete symmetry reductions
based on the Ablowitz–Ladik scattering problem to obtain two new
discrete nonlocal in both “space” and time nonlinear Schrödinger
equation. A future research direction would be to develop the full IST
and obtain soliton solutions of these equations.
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Appendix

In this Appendix, for the physical space symmetries discussed in this paper
we will provide the symmetries associated with the AKNS eigenfunctions.
To do so, we call v(x, k) ≡ (v1(x, k), v2(x, k))T a solution to system (21).
Note: σ = ∓1.

1. For the standard AKNS symmetry (256), i.e., r (x, t) = σq∗(x, t) we
have

ψ(x, t, k) =
(

0 1
σ 0

)
ψ∗(x, t, k∗), (A.1)

and

φ(x, t, k) =
(

0 σ
1 0

)
φ∗(x, t, k∗). (A.2)

2. For the reverse time AKNS symmetry (256), i.e., r (x, t) = σq(x, −t)
we have

ψ(x, t, k) =
(

0 1
σ 0

)
ψ(x, −t, k), (A.3)

and

φ(x, t, k) =
(

0 σ
1 0

)
φ(x, −t, k). (A.4)

3. For the PT symmetry (254), i.e., r (x, t) = σq∗(−x, t) we have

ψ(x, t, k) =
(

0 −σ
1 0

)
φ∗(−x, t, −k∗), (A.5)

ψ(x, t, k) =
(

0 1
−σ 0

)
φ

∗
(−x, t, −k∗). (A.6)

4. For the reverse space-time symmetry (255), i.e.,
r (x, t) = σq(−x, −t), q ∈ C we have

ψ(x, t, k) =
(

0 −σ
1 0

)
φ(−x, −t, k), (A.7)

ψ(x, t, k) =
(

0 1
−σ 0

)
φ(−x, −t, k). (A.8)
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5. For the complex reverse space-time symmetry (255), i.e.,
r (x, t) = σq∗(−x, −t) we have

ψ(x, t, k) =
(

0 −σ
1 0

)
φ∗(−x, −t, −k∗), (A.9)

ψ(x, t, k) =
(

0 1
−σ 0

)
φ

∗
(−x, −t, −k∗). (A.10)

6. For the real reverse space-time symmetry (255), i.e.,
r (x, t) = σq(−x, −t), q ∈ R we have the above symmetry given in
item (5) associated with r (x, t) = σq∗(−x, −t) and

ψ(x, t, k) =
(

0 −σ
1 0

)
φ(−x, −t, k), (A.11)

ψ(x, t, k) =
(

0 1
−σ 0

)
φ(−x, −t, k). (A.12)

The above symmetry relations can be turned into symmetry relations
for the scattering data a(k), b(k) and eigenvalues k j , k̄ j , j = 1, 2...J from
the Wronskian relations (192), (193), (194), and (195). Finally symmetries
for the normalization coefficients C j , C̄ j , j = 1, 2...J can be found either
directly from the above by analytic continuation or by individually finding
b j and a′(k j ) associated with C j = b j/a′(k j ) and b̄ j and ā′(k j ) associated
with C̄ j = b̄ j/ā′(k j ) as was done in [22].
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