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Abstract
We present closed form solutions to a certain class of one- and two-dimensional
nonlinear Schrödinger equations involving potentials with broken and unbroken
PT symmetry. In the one-dimensional case, these solutions are given in terms
of Jacobi elliptic functions, hyperbolic and trigonometric functions. Some
of these solutions are possible even when the corresponding PT -symmetric
potentials have a zero threshold. In two-dimensions, hyperbolic secant type
solutions are obtained for a nonlinear Schrödinger equation with a non-
separable complex potential.

PACS numbers: 03.65.Ge, 02.60.Lj, 11.30.Er, 42.65.Tg, 42.65.Wi

(Some figures in this article are in colour only in the electronic version)

1. Introduction

One of the pillars of quantum mechanics is the Hermiticity of every operator associated with a
physical observable. This is necessary given that the spectra of such self-adjoint operators—
whether discrete or continuous—must always be real. In the case of the Hamiltonian operator,
this requirement not only leads to real eigen energies but also ensures conservation of
probability [1]. In the late nineties, the notion of Hermiticity has been critically re-examined by
Bender and coworkers [2–5]. More specifically it was shown that non-Hermitian Hamiltonians
exhibiting parity-time (PT ) symmetry could have entirely real spectra. A Hamiltonian is PT
symmetric provided that it shares a common set of eigenfunctions with the P̂ T̂ operator. In
general the action of the parity operator P̂ is defined by the relations p̂ → −p̂, x̂ → −x̂ (p̂, x̂

stand for momentum and position operators, respectively) whereas that of the time operator
T̂ by p̂ → −p̂, x̂ → x̂, i → −i. Starting from the properties of the time operator T̂ one
can show that, T̂ Ĥ = p̂2/2 + V ∗(x), and hence P̂ T̂ Ĥ = Ĥ P̂ T̂ = p̂2/2 + V ∗(−x) = Ĥ . As
a result a Hamiltonian is PT symmetric as long as its potential has the following property:
V (x) = V ∗(−x) [2–5]. Evidently, the real part of a PT complex potential must be a
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symmetric function of position whereas the imaginary component should be anti-symmetric.
We emphasize that this latter requirement is necessary but not sufficient to guarantee the reality
of the spectrum [2, 3]. In fact, one of the most fascinating features of such pseudo-Hermitian
Hamiltonians is the existence of a sudden phase transition (after a critical threshold) beyond
which the eigenvalues of the system become partly or entirely complex. This transition is
better known in the literature as a spontaneous PT symmetry breaking [2, 3]. The potential of
these recent mathematical developments in various areas of physics has also been discussed in
a number of studies [2–10]. We would like to note that thus far most of the analytical studies
in this field (where the closed form solutions are possible) have been carried out in the linear
domain [11–13]. Over the years other non-Hermitian physical systems have also been studied
both theoretically and experimentally [14–17].

Quite recently the possibility of realizing PT -symmetric structures within the realm
of optics has been suggested [18–20]. This was done by exploiting the mathematical
correspondence between the quantum Schrödinger equation and the paraxial equation of
diffraction. In these studies it was shown that optical PT synthetic materials can lead to
altogether new behavior that is impossible in standard systems. Such effects include double
refraction, power oscillations, eigenfunction unfolding and non-reciprocal diffraction patterns
to mention a few [18, 19]. In addition, PT configurations are described by a unique algebra
and hence much of their behavior (including their coupled mode analysis) has to be properly
rederived [20]. The proposed optical PT systems can be realistically implemented through
a judicious inclusion of gain/loss regions in guided wave geometries [18]. In the suggested
optical analogy the complex refractive index distribution plays the role of the optical potential.
The parity-time condition implies that the real index profile should be even in the transverse
direction while the loss/gain distribution must be odd. Gain/loss levels of approximately
±40 cm−1 at wavelengths of ≈1 µm, that are typically encountered in standard quantum
well semiconductor lasers or semiconductor optical amplifiers and photorefractive crystals
should be sufficient to observe PT behavior [21, 22]. Optical nonlinearities (quadratic, cubic,
photorefractive, etc) provide an additional degree of freedom since they may allow one to
study such configurations under nonlinear conditions [19, 22].

In this paper we present analytical solutions to a certain class of one- and two-dimensional
nonlinear Schrödinger equations involving potentials with broken and unbrokenPT symmetry.
In the one-dimensional case, these solutions are given in terms of Jacobian elliptic functions,
hyperbolic and trigonometric functions. Some of these solutions are possible even when the
corresponding PT -symmetric potentials have a zero threshold. In two-dimensions, hyperbolic
secant type solutions are obtained for a nonlinear Schrödinger equation with a non-separable
non-Hermitian potential.

2. The one-dimensional PT -symmetric nonlinear Schrödinger equation

We begin our analysis by first considering one-dimensional optical wave propagation in a
Kerr nonlinear system that involves a PT -symmetric complex index distribution. In this case,
the optical beam evolution is governed by the following normalized nonlinear Schrödinger
(NLS)-like equation [18, 19],

i
∂ψ

∂z
+

∂2ψ

∂x2
+ [V (x) + iW(x)]ψ + g|ψ |2ψ = 0, (1)

where ψ is proportional to the electric field envelope, z is a scaled propagation distance and
g = +1 corresponds to a self-focusing nonlinearity while g = −1 to a defocusing one. In
equation (1), optical diffraction is described by the ψxx term and the complex PT -symmetric
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index distribution by the quantity V (x) + iW(x). Based on the previous discussion, the real
and the imaginary components of the PT -symmetric potential satisfy the following relations:
V (−x) = V (x),W(−x) = −W(x), respectively. Physically, V (x) is associated with index
guiding while W(x) represents the gain/loss distribution of the optical potential.

Nonlinear stationary solutions to equation (1) are sought in the form

ψ(x, z) = φ(x) exp(i λz), (2)

where φ(x) is the nonlinear eigenmode (which in general is a complex function) and λ is the
corresponding real propagation constant. In this case φ satisfies

d2φ

dx2
+ [V (x) + iW(x)]φ + g|φ|2φ = λφ. (3)

Equation (3) is supplemented with an appropriate set of boundary conditions. More specifically
we consider: (i) localized solutions approaching zero at infinity and (ii) periodic solutions.

2.1. Self-focusing case

In order to investigate optical wave propagation in self-focusing media we set g = +1 in
equation (1) (positive nonlinearity). As we will see, depending on the choice of optical
potentials and boundary conditions, the nonlinear equation (3) can admit various types of
exact solutions. As first demonstrated in [12], if the PT potential is of the Scarff II type, e.g.

V (x) = V0 sec h2(x), W(x) = W0 sec h(x) tanh(x), (4)

then the nonlinear Schrödinger equation (3) admits an exact solution (corresponding to zero
boundary conditions at ±∞) of the form

φ = φ0 sec h(x) exp[iµ tan−1(sinh(x))], (5)

where µ = W0/3, λ = 1 and φ0 =
√

2 − V0 +
(
W 2

0

/
9
)
. In equation (4), V0 and W0 are the

amplitudes of the real and imaginary parts that satisfy W0 � V0 + 1/4 in order to ensure that
the system is below the phase transition point [12]. In addition we have found that these modes
are nonlinearly stable over a certain range of potential parameters [19]. As we will see, other
classes of hyperbolic secant-like solutions can be obtained corresponding to different types of
localized PT potentials.

In what follows we show that equation (3) also admits a family of periodic solutions
residing on a PT -like complex periodic lattice [23–25]. To demonstrate such states, we
consider the following Jacobian periodic potentials:

V (x) = V0sn
2(x, k) + W 2

0 k2sn4(x, k), (6)

W(x) = W0sn(x, k)[4dn2(x, k) − k′2] (7)

where sn(x, k) denotes the Jacobi elliptic function with elliptic modulus 0 � k � 1 and
k′2 = 1 − k2 is the complementary elliptic modulus. We here assume thatW0 �= 0. Since
sn(x, k) and dn(x, k) are periodic in x with period 4K(k) and 2K(k), respectively, with
K(k) = ∫ π/2

0
dζ√

1−k2 sin2 ζ
being a complete elliptic integral, then V (x) and W(x) are periodic

functions with period 2K(k) and 4K(k) respectively (for 0 � k < 1). To better understand
the structure of the potential V (x), we examine the location of its critical points that are given
as solutions to sn(x, k)cn(x, k)

[
V0 + 2W 2

0 k2sn2(x, k)
] = 0. When V0 is strictly positive, we

find that over one period of the potential V (x), the critical points 0, 2K(k) are local minima
with a minimum value of V (x) being zero. On the other hand, the critical point x = K(k) is a
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(a) (b)

(c)

Figure 1. (a) The structure of the potential V (x) given in equation (6) for various values of k.
Note that the x coordinate has been scaled by the period of the elliptic function. Parameters are:
V0 = 0.25 and W0 = 0.5. (b) The same as (a) except for parameters V0 = −0.25 and W0 = 0.5
with kc = 0.7071. (c) The structure of the potential W(x) given in equation (7) for various values
of k and W0 = 0.5. Note that the x coordinate has been scaled by the period of the elliptic function.

local maximum whose value is equal to V0 + W 2
0 k2. In figure 1(a) we show a typical behavior

of V (x) for V0 = 0.25 and W0 = 0.5 for various values of the elliptic modulus k.
The situation can be quite different when V0 � 0. Here, an additional critical point(s)

(one or two) can appear due to a contribution from the term in the square bracket. Since
sn(x, k) is bounded from above by 1, the extra critical point(s) exist if |Ṽ0| <

√
2|W0|, and

k > kc ≡ |Ṽ0|/
√

2|W0|, where we have defined V0 ≡ −Ṽ 2
0 . In figure 1(b) we show a typical

behavior of the potential V (x) for V0 = −0.25 and W0 = 0.5 with kc = 0.7071. Note that when
k = 0.7, no extra fixed points show up, whereas two additional fixed points appear within one
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(a) (b)

Figure 2. (a) Real part of the band structure for the potentials in equations (6) and (7) obtained
for potential parameters V0 = 0.5, W0 = 0.1 and elliptic modulus k = 0.1. (b) Imaginary part
of the band structure for the potentials in equations (6) and (7) obtained for potentials parameters
V0 = 0.5, W0 = 0.1 and elliptic modulus k = 0.1.

period of the potential for higher values of k. Also, in figure 1(c), we show a typical sketch of
the potential W(x) for W0 = 0.5 for various values of the elliptic modulus k.

Next, we examine the following linear eigenvalue problem:

d2φ

dx2
+ [V (x) + iW(x)]φ = λφ (8)

that corresponds to the linearized version of equation (3). This will allow us to determine the
parameter range for which the eigenvalues λ are real. To do so, we first take advantage of the
fact that the combined potential V (x) + iW(x) is a periodic function of x which according
to the Floquet–Bloch theorem implies that the eigenfunctions φ satisfy φ = �p(x) exp(ipx),
�p(x + 4K(k)) = �p(x), where p stands for the real Bloch momentum. In this paper, we
will consider nonlinear periodic solutions with zero Bloch momenta (p = 0). We note that in
general the band structure, λ(p), of a non-Hermitian lattice can be complex. Yet, for periodic
PT -symmetric potentials, the band diagram can be entirely real as long as the potentials have
unbroken PT symmetry. The eigenvalue problem (8) was solved numerically using spectral
methods and was found that the spectrum λ(p) is complex for all values of V0, W0 and k. This
implies that the potentials of equations (6) and (7) have a zero threshold point, i.e., the PT
symmetry is always broken for any finite W0. In figure 2 we show a typical band structure
(real and imaginary) corresponding to the potentials in equations (6) and (7) for V0 = 0.5,
W0 = 0.1 and k = 0.1. To intuitively understand why in this case the spectrum can be partly
complex, we consider a simplified discrete (tight-binding) model based on a diatomic chain
(the potentials given in (6) and (7) resemble a diatomic chain). In the tight-binding model the
equations describing wave propagation in a linearly coupled diatomic chain are governed by
[22]

i
dan

dz
+ iγ an + bn + bn−1 = 0, (9)

i
dbn

dz
− iγ bn + an + an+1 = 0, (10)
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where γ is the gain/loss coefficient. We then assume a plane wave solution (a discrete
Floquet–Bloch mode) of the form

an = A eiωz eiQn, (11)

bn = Beiωz eiQn, (12)

where ω is the longitudinal wavenumber (spatial eigen energy) and Q is the Bloch momentum
that lies within the reduced Brillouin zone [−π/2, π/2]. Substituting equations (11) and (12)
into equations (9) and (10) we find that a nontrivial solution exists only if the wavenumber ω

satisfies the following:

ω2 = 4 cos2(Q/2) − γ 2. (13)

It is evident from the dispersion relation of equation (13), that at the edge of the Brillouin zone
the spectrum can indeed become complex for any finite gain/loss coefficient γ . Yet the fact
that the linear spectrum is not entirely real does not exclude the possibility of finding nonlinear
waves (solutions to equation (3)) that propagate without any change in intensity. Indeed for
the potentials given in equations (6) and (7) a periodic solution to equation (3) is given by

φ = φ0 cn(x, k) exp[iθ(x)], (14)

where

φ0 =
√

V0 + W 2
0 k2 + W 2

0 + 2k2, (15a)

λ = V0 + W 2
0 k2 + 2k2 − 1 (15b)

and

θ(x) = W0sn(x, k). (16)

The solution exists in the branch V0 > −(
W 2

0 k2 + W 2
0 + 2k2

)
. Note that the amplitude of this

solution is an even function of x whereas the phase is odd. In figure 3 we show a typical profile
of the real and imaginary parts of the nonlinear eigenmode (equation (14)) together with the
potentials given by equations (6) and (7). The case k = 0 is particularly interesting since
sn(x, 0) = sin(x) and cn(x, 0) = cos(x) and dn(x, 0) = 1. This limit leads to a potential of
the form

V (x) = V0 sin2(x), W(x) = 3W0 sin(x). (17)

In this same limit and for the complex potential of equations (17), from equations (14)–(16) one
directly obtains a sinusoidal nonlinear ‘Floquet–Bloch function’ for the nonlinear Schrödinger
equation, e.g.

φ =
√

V0 + W 2
0 cos(x) exp[iW0 sin(x)], (18)

that is valid for V0 > −W 2
0 with λ = V0 − 1 (see figure 4). The other interesting case occurs

when the elliptic modulus is equal to unity (k → 1). In this particular limit the Jacobian elliptic
functions reduce to cn(x, 1) = dn(x, 1) = sec h(x), sn(x, 1) = tanh(x) and the potentials
appearing in equations (6) and (7) take the form

V (x) = −(
V0 + 2W 2

0

)
sec h2(x) + W 2

0 sec h4(x), (19)

W(x) = 4W0 tanh(x) sec h2(x), (20)
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(a)

(b)

Figure 3. (a) The real and imaginary parts of the complex potential (equations (6) and (7)).
(b) The real and imaginary components of the solution φ given by equation (14). Parameters are:
V0 = 0.25, W0 = 0.5 and k = 0.9.

(a)

(b)

Figure 4. (a) The real and imaginary parts of the complex potential given by equation (17).
(b) The real and imaginary components of the solution φ given by equation (18). Parameters are:
V0 = 0.25 and W0 = 0.5.
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(a)

(b)

Figure 5. (a) The real and imaginary parts of the complex potential given by equations (19) and
(20). (b) The real and imaginary components of the solution φ given by equation (21). Parameters
are: V0 = 0.5 and W0 = 0.5.

where we have subtracted the constant term V0 + W 2
0 from the potential in equation (19) and

absorbed it in the definition of the eigenvalue λ (see equation (15)). It turns out that the
potentials in (19) and (20) exhibit a nonzero threshold for unbroken PT symmetry. In this
case the solution corresponding to the potential of equations (19) and (20) is thus given by

φ =
√

V0 + 2W 2
0 + 2 sec h(x) exp[iW0 tanh(x)], (21)

with V0 > −2
(
W 2

0 +1
)

and λ = 1. In figure 5 we show a graph of both potentials together with
the wavefunction (21) corresponding to the parameters value V0 = W0 = 1/2. Interestingly
enough, if we assume V0 = −W 2

0 then the potential appearing in equation (19) becomes
V (x) = −W 2

0 tanh2(x) sec h2(x) while the imaginary potential of equation (14) remains the
same. In this latter case the nonlinear wave solution is still of the hyperbolic secant type
(equation (21)) with an amplitude φ0 =

√
W 2

0 + 2.

Before ending this section, we would like to note that equation (1) also admits another
type of elliptic function solutions corresponding to other forms of potentials. For example,
solutions to equation (3) corresponding to the following periodic potentials:

V (x) = [
V0 + W 2

0 cn2(x, k)
]

dn2(x, k), (22)

W(x) = W0sn(x, k)[4 dn2(x, k) − 3k′2], (23)

are given by

φ =
√

2 − V0 dn(x, k) exp[iW0sn(x, k)], (24)
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valid for V0 < 2 with λ = 2 − k2. In the limiting case k → 0 the potentials in equations (22)
and (23) read V (x) = V0 + W 2

0 cos2(x) and W(x) = W0 sin(x) which result in

φ =
√

2 − V0 exp[iW0 sin(x)], (25)

with λ = 2.
Another possibility arises when the elliptic modulus approaches unity (k → 1). In that

case we find that V (x) = V0 sec h2(x) + W 2
0 sec h4(x), W(x) = 4W0 sec h2(x) tanh(x) and

φ =
√

2 − V0 sec h(x) exp[iW0 tanh(x)]. (26)

We would like to emphasize that the periodic solutions found here in PT -like lattices are to
some extent generalizations of those previously reported in Kerr systems with real periodic
potentials [26–28].

2.2. Self-defocusing case

Optical beam propagation in nonlinear self-defocusing Kerr media is governed by
equation (1) with g = −1 and its corresponding stationary solutions obey equation (3). As in
the self-focusing case, here periodic elliptic solutions also exist and have a similar structure
to those found in section 2.1. To this end, we consider the following elliptic potentials:

V (x) = −V 2
0 sn2(x, k) + W 2

0 k2sn4(x, k), (27)

W(x) = W0sn(x, k)[4 dn2(x, k) − k′2]. (28)

Using the Floquet–Bloch theorem we were able to numerically construct the band diagram
associated with the above potentials which happens to be similar to figure 2. We found
that the potentials given in equations (27) and (28) exhibit again a zero threshold point for
PT symmetry breaking. Even though the linear spectrum is not entirely real, a nonlinear
eigenmode can still exist. Indeed, the solution corresponding to this latter defocusing case for
the specific type of elliptic potentials (27) and (28) is given by

φ =
√

V 2
0 − W 2

0 k2 − W 2
0 − 2k2cn(x, k) exp[iW0sn(x, k)], (29)

with λ = W 2
0 k2 + 2k2 − V 2

0 − 1valid for V 2
0 > W 2

0 k2 + W 2
0 + 2k2. The limiting cases k → 0, 1

can be derived in a similar fashion as was done in section 2.1. Note that the solutions in the
defocusing case are similar to those in the focusing regime except for their amplitudes and
their domain of existence.

3. The two-dimensional PT -symmetric nonlinear Schrödinger equation

In the absence of an external potential, the one-dimensional NLS equation is an integrable
partial differential equation known to admit exact soliton solutions. However, in the presence
of an external potential, the NLS equation is only known to allow closed form solutions in
limited cases. Some of these results have quite recently been reported in conjunction with
PT -symmetric potentials [19].

The situation in two-dimensions (2D) is completely different. Here, the 2D NLS equation
is not integrable. In this section, we present closed form solutions to the 2D NLS equation in
the presence of a certain type of external PT -symmetric potentials.

In the 2D case, equation (1) takes the form

i
∂ψ

∂z
+ ∇2ψ + [V + iW ]ψ + |ψ |2ψ = 0, (30)

9
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Figure 6. Plot of the eigenfunction φ for potential parameters V0 = 1 and W0 = 0.5.

where ∇2 is the two-dimensional Laplacian and again the potentials V and W obey the PT
requirement, V (−x,−y) = V (x, y) and W(−x,−y) = −W(x, y). Here we consider the
complex potential

V = (
2 + W 2

0

/
9
)
[sec h2(x) + sec h2(y)] +

(
V 2

0 − W 2
0

/
9 − 2

)
sec h2(x) sec h2(y), (31)

W = W0[tanh(x) sec h(x) + tanh(y) sec h(y)]. (32)

Note that the real part of the potential V is not separable. Stationary nonlinear solutions are
then sought in the form

ψ(x, y, z) = φ(x, y) exp[iλz + iθ(x, y)], (33)

where φ and θ are real valued functions that satisfy the following differential equations:

∇2φ − |∇θ |2φ + V (x, y)φ + φ3 = λφ, (34)

φ∇2θ + 2∇θ · ∇φ + W(x, y)φ = 0. (35)

A bound state solution to equations (34) and (35) that satisfies the condition: φ → 0 as
(x, y) → ±∞ is given by

φ(x, y) =
√

2 − V 2
0 +

(
W 2

0

/
9
)

sec h(x) sec h(y), (36)

θ(x, y) = W0

3
[arctan(sinh(x)) + arctan(sinh(y))], (37)

with the propagation constant λ = 2. In figures 6 and 7 we show a typical profile of the
eigenfunction φ and the phase θ for potential parameters V0 = 1 and W0 = 0.5.

It is interesting to note that for the real potential case (W0 = 0) then θ = 0 and
equation (34) reduces to the classical 2D NLS equation with an external potential whose
solution is given by equation (36) with W0 = 0.

10
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Figure 7. Plot of the phase θ for potential parameter W0 = 0.5.

4. Conclusions

In conclusion, a new class of one- and two-dimensional nonlinear modes residing in parity-
time symmetric wells and lattices is reported. In the one-dimensional case, it is shown that
the solutions are of the Jacobi elliptic type. It is interesting to note that these solutions exist
even though the PT -like potentials have a zero threshold point (a point beyond which all the
spectra of the potentials become partly complex). In the two-dimensional case, hyperbolic-
secant type solutions are reported for both the standard and the PT -symmetric nonlinear
Schrödinger equation. Before closing we would like to mention that some issues related to
this new class of waves may still merit further investigation. These include their stability
analysis and its relation to the underlying band structure (in the case of a PT -like lattice).
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