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• Transverse instability of low-dimensional solitons for the biharmonic nonlinear Schrödinger equation is explored.
• Numerical, asymptotic and variational techniques are used to characterize the unstable spectrum.
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a b s t r a c t

Spectral transverse instabilities of one-dimensional solitary wave solutions to the two-dimensional
nonlinear Schrödinger (NLS) equation with fourth-order dispersion/diffraction subject to higher-
dimensional perturbations are studied. A linear boundary value problem governing the evolution of the
transverse perturbations is derived. The eigenvalues of the perturbations are numerically computed using
Fourier and finite difference differentiation matrices. It is found that for both signs of the higher-order
dispersion coefficient there exists a finite band of unstable transverse modes. In the long wavelength
limit we derive an asymptotic formula for the perturbation growth rate that agrees well with the
numerical findings. Using a variational formulation based on Lagrangianmodel reduction, an approximate
expression for the perturbation eigenvalues is obtained and its validity is compared with both the
asymptotic and numerical results. The time dynamics of a one-dimensional soliton stripe in the presence
of a transverse perturbation is studied using direct numerical simulations. Numerical nonlinear stability
analysis is also addressed.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Solitons, or solitary waves, are self-trapped nonlinear modes
that exist in many branches of science such as optics [1–5], fluid
mechanics [6], plasmas [7], ultra-cold gases [8], biology and chem-
istry [9,10]. Among the most intriguing and physically relevant
properties associatedwith these solitarywaves is the development
of symmetry-breaking instabilities that often lead to the genera-
tion of complex nonlinear coherent structures [11].

Modulational instability (MI) is an important example of a
symmetry-breaking instability where a constant (in space) am-
plitude and time-harmonic solution to the underlying governing
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equation of motion breaks up due to the exponential growth of
small modulated perturbations under the combined effects of dis-
persion/diffraction and nonlinearity. It was first identified in fluid
mechanics [12] and plasma physics [13] and subsequently re-
ported in many other areas of physics [14,15], particularly in non-
linear optics [16–21]. Very recently [22], modulational instability
of constant amplitude waves for the PT-symmetric NLS equa-
tion [23,24] has also been studied.

Another physically relevant modulational instability process
is the so-called transverse instability (TI) (see reviews [25–27]).
Contrary to the ‘‘conventional’’ MI (where the base state is constant
in all space dimensions), TI describes the break up of a line
soliton (a two-dimensional nonlinear mode localized in one space
dimension and uniform in the other) due to the exponential
growth of unstable perturbations in the transverse direction.
Mathematically speaking, it was first discovered by Zakharov
and Rubenchik [28] for the attractive two-dimensional nonlinear
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Schrödinger equation. They derived an asymptotic expression
for the perturbation eigenvalue valid in the long wavelength
limit and found that one-dimensional line soliton solutions are
transversally unstable. The long time dynamics of the soliton
evolution under transverse perturbations is the formation of a train
of two-dimensional localized filaments. A similar situation holds
for the two-dimensional repulsive (self-defocusing) NLS equation:
a dark soliton stripe becomes unstable against random transverse
perturbations and disintegrates into a sequence of vortices (snake-
type instability) [29–32]. Transverse instabilities of vector solitons
have also been studied theoretically [33–35], while experimental
observation of TI has been reported in the literature for both the
scalar and vector cases [36–38]. We point out that TI has also been
studied in other settings [39], most notably for the hyperbolic NLS
equation [40,41].

Most of the mathematical models used to study MI and
TI processes are based on nonlinear, dispersive and conserva-
tive evolution equations with the nonlinear Schrödinger equa-
tion being a prototypical example [6]. However, higher-order
dispersion/diffraction terms become important in certain special
regimes. Specifically, fourth-order dispersion has been demon-
strated to play an important role in fiber optics [42,43], rogue
waves [44] and quantum gravity models [45]. Additionally, modu-
lational instability in NLS-type systemswith high-order dispersion
has been extensively investigated [46–51].

In this paper, we study spectral transverse instabilities of one-
dimensional localized solitary waves subject to two-dimensional
perturbations. Themodel equation considered is based on the two-
dimensional nonlinear Schrödinger equation in the presence of
higher-order dispersion/diffraction

iφt +
1
2
∆φ − β∆2φ + γ |φ|

2 φ = 0, (1)

where φ is a complex-valued envelope (amplitude) function, β
is a real dispersion/diffraction coefficient, γ = ±1, ∆ is the
two-dimensional Laplacian describing dispersion/diffraction in the
transverse (x, y) plane and ∆2 is the so-called bi-Laplacian (or
biharmonic) operator. When β = 0, Eq. (1) successfully models
several physical phenomena related to optics [2,6], Bose–Einstein
condensates [52], and fluid mechanics [53]. For nonzero β , Eq. (1)
can be viewed as a special case of the more general complex
Swift–Hohenberg equation derived in [54] as a model of optical
wave propagation in a cavity near the onset of lasing. Moreover,
when β > 0 Eq. (1) models optical beams whose diameter is on
the order of its wavelength (linearly polarized nonparaxial beams),
where t plays the role of propagation distance. In this regard, Eq. (1)
could be viewed as an ‘‘intermediate’’ case between the paraxial
wave and Helmholtz equations [45,55–57].

A linear evolution equation for the transverse perturbation is
obtained. Using separation of variables, we find an eigenvalue
system whose spectrum is numerically computed with the help of
differentiation matrices. It is found that when β is positive there
exists a finite band of unstable transverse modes and the soliton
stripe is unstable against perturbations with small wavenumbers.
This long wavelength instability seems to disappear when β is
negative for solitons with small amplitude. In the long wavelength
limit we derive an asymptotic formula for the perturbation growth
rate that agreeswell with the numerical findings. This perturbative
result coincides with the formula obtained by Zakharov and
Rubenchik [28] for the ‘‘classical’’ two-dimensional nonlinear
Schrödinger equation (β = 0). Based on a variational approach,
an approximate expression for the perturbation eigenvalues is also
obtained and its validity is compared with the asymptotics as well
as the numerical results. The time dynamics of the soliton stripe
superimposed with a transverse perturbation is investigated by
numerically solving the Cauchy problem associated with Eq. (1).
Finally, numerical nonlinear stability results are also presented.

The outline of the paper is as follows. In Section 2 we identify
families of one-dimensional line soliton solutions followed by
(Section 3) a thorough analysis of their linear stability. In Sections 4
and5we report on analytical results for the linear stability analysis.
Comparison with direct simulations is presented in Section 6. We
conclude the discussion in Section 7.

2. Line (stripe) solitons

We start the discussion by considering a family of one-
dimensional soliton solutions to Eq. (1) that are independent of the
transverse coordinate y

φ(x, y, t) = ψ(x, µ)eiµt , (2)

which satisfy the nonlinear boundary value problem

1
2
∂2xψ − β∂4xψ + γ |ψ |

2 ψ = µψ. (3)

Eq. (3) is supplemented with the boundary conditions: ψ tends
to zero sufficiently fast as |x| goes to infinity. The eigenvalue µ
is referred to as the soliton propagation constant and its sign is
adjusted depending on the signs of β and γ . We note that Eq. (3)
in the presence of an external periodic potential has been studied
in [58]. To determine the eigenfunction and eigenvalue pair (ψ,µ)
we numerically integrate Eq. (3) using a spectral renormalization
method [59] (see details in the Appendix). It is worth mentioning
that a special solution for Eq. (3) is known to exist for β > 0, γ =

+1 and is given by [60]

ψ(x) =


3

40β
sech2


x

√
40β


, µ =

1
25β

. (4)

In Figs. 1 and 2 we show typical examples of nonlinear mode
profiles (solutions of Eq. (3)) for both positive and negative values
of β, γ and µ. First, we address the positive β case of which three
different solutions corresponding to different soliton eigenvalues
µ are depicted in Fig. 1. It is seen that the soliton amplitude
becomes larger as µ increases, and as a result the soliton profile
becomesmore localized. The soliton shown in Fig. 1(a) corresponds
to analytical solution (4) for β = 1/10. It is interesting to note
that the soliton shapes given in Fig. 1(b) and (c) display a weak
oscillatory tail and in some space domains become negative. This
is contrary to the analytical solution in Eq. (4) which is positive-
definite and monotonically decaying as x approaches ±∞. We
can understand this oscillatory feature by examining the large x
asymptotics of Eq. (3) given by

1
2
∂2xψ − β∂4xψ ≈ µψ. (5)

Making the ansatzψ(x) ∼ exp(sx)we find nontrivial solutions for
values of the exponent s satisfying

s = ±


1
4β


1 ±


1 − 16βµ

1/2

. (6)

It is evident that the exponent s is real when β = 1/10 and
µ = 2/5, whereas it becomes complex for µ = 2 and 4. This ex-
plains the oscillatory behavior of the soliton tails.

Next, consider the negative β case which appears to be
profoundly different. As noted in [61,62] there are no localized
solutions to Eq. (3) for positive γ andµ. Thus we limit ourselves to
the case where γ = −1 and negative µ values. With this in mind,
we show in Fig. 2 typical solutions for various soliton eigenvalues.
As one notices, the soliton profiles show a drastic difference in
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Fig. 1. Line soliton solutions to Eq. (3) forβ = 0.1, γ = +1 and soliton eigenvalues
(a) µ = 0.4, (b) µ = 2 and (c) µ = 4.

Fig. 2. Same as in Fig. 1, but for parameters β = −0.1, γ = −1 and soliton
eigenvalues (a) µ = −1.5, (b) µ = −4 and (c) µ = −8.

comparison to their β > 0 counterparts in the sense that they
become highly oscillatory. In the asymptotic limit (6), we also
observe that no exponentially decaying solutions exist when

1 > 16βµ > 0, β, µ < 0, (7)

since Re(s) = 0. For a fixed transverse power N =


R |ψ |
2 dx, the

soliton existence curves are summarized in a (β, µ) phase diagram
(see Fig. 3). As β → 0+, the eigenvalue approaches the classic NLS
propagation constant µ = N2/8, while as β → 0− numerical
simulations show µ → −∞. When β < 0, localized solutions
are found for eigenvalues below the curve µ = 1/(16β), while
in region (7) modes with exponential decay do not exist. We note
that as |β| → ∞ the soliton solutions develop slower exponential
decay and vice versa as |β| → 0. Typical soliton solutions for large
β values are shown in Fig. 4 for a fixed power.

Having found nonlinear modes for various sets of model
parameters, we next turn our attention to the question of linear
stability analysis.

3. Linear stability analysis

To study the linear stability of the line soliton solutions found
above, we write a weakly perturbed solution of Eq. (1) in the form

φ(x, y, t) = [ψ(x)+ εη(x, y, t)] eiµt , (8)

where |ε| ≪ 1 is a dimensionless parameter used to measure the
strength of the perturbation and η is a complex transverse pertur-
bation that depends on x, y and t . Note thatwe are considering here
Fig. 3. Soliton existence curves with fixed transverse power ∥ψ∥
2
2 = N for (a)

negative and (b) positive β, γ values (where |γ | = 1). The curve labels in panel (a)
are the same as in (b).

Fig. 4. Large β soliton solutions to Eq. (3) with fixed transverse power ∥ψ∥
2
2 = 2

for (a) positive and (b) negative β, γ values (where |γ | = 1).

the linear stability of a real-valued wave function ψ . Substituting
the ansatz (8) into Eq. (1) we find to order ε

iηt − µη +
1
2
∆η − β∆2η + γψ2 

2η + η∗


= 0. (9)

Eq. (9) is a linear constant coefficient in y and t (and variable in
x) PDE that governs the evolution of the perturbation η subject
to the following boundary conditions: η → 0 sufficiently fast as
x2 + y2 → ∞. With this in mind, we decompose the perturbation
in terms of its Fourier modes and assume that the t-evolution is
exponential

η(x, y, t) =


R


fq(x)ei(qy+ω(q)t) + g∗

q (x)e
−i(qy+ω∗(q)t)


dq, (10)

where fq, gq are the perturbation Fourier modes assumed to be lo-
calized in x and qwith corresponding wavenumber q and complex
frequency ω(q) that measures the perturbation growth rate. Sub-
stituting ansatz (10) into Eq. (9) and collecting terms proportional
to exp(i(qy + ωt)) and exp(−i(qy + ω∗t)) independently results
in the following non-Hermitian eigenvalue system

0 M12
M21 0

 
Fq
Gq


= ω


Fq
Gq


, (11)

where, by definition, Fq = fq+gq,Gq = fq−gq and the off-diagonal
elements are

M21 = L1 − q2/2 − βq4 + 2βq2∂2x , (12)

M12 = L2 − q2/2 − βq4 + 2βq2∂2x , (13)

for

L1 = −µ+ ∂2x /2 − β∂4x + 3γψ2, (14)

L2 = −µ+ ∂2x /2 − β∂4x + γψ2. (15)

Note that the linear operators L1 and L2 are self-adjoint with re-
spect to the standard L2(R) real-valued inner product

⟨u1, u2⟩L2(R) =


R
u1u2 dx, (16)
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Fig. 5. The imaginary part of the spectrum numerically generated by solving
eigenvalue problem (11) with γ = +1 for (a) β = 0.1 and (b) β = 0.25 and several
eigenvaluesµ. The solid, dashed, and dashed–dotted curves in panel (a) correspond
to the three solutions shown in Fig. 1.

which induces the norm

∥u∥2 =


R
u2(x) dx

1/2

. (17)

It is obvious from Eq. (10) that for a fixed wavenumber q, the
eigenvalue ω = ω(q) with nonzero imaginary component will
grow exponentially in t , hence the perturbation η becomes un-
bounded. In this case, we say that the nonlinear mode φ(x, y, t) =

ψ(x, µ) exp(iµt) is linearly unstable to transversally modulated
perturbations. To determine if such modes are indeed linearly sta-
ble or not we solve eigenvalue problem (11) and compute the
spectrum ω as a function of the transverse wavenumber q. This is
accomplished by numerically approximating the second and
fourth-order derivatives ∂2x and ∂4x using, for example, spectral or
finite difference differentiation matrices on a large computational
domain [63]. The imaginary part of the eigenvalue ω(q) (corre-
sponding to TI) is shown in Fig. 5(a) for β = 1/10, γ = +1 and
various values of the transverse wavenumber q. The solid, dashed
and dashed–dotted curves correspond to different soliton eigen-
values µ whose shapes are depicted in Fig. 1. The numerical re-
sults reveal the existence of a finite band I = (0, qcut(µ, β)) of
Fourier modes that grow exponentially in t and force the soliton
to disintegrate (see Section 6 for detailed numerical simulations).
The numerical findings suggest that the measure of the interval I
is a monotonic function of µ. Importantly, the instability appears
to develop for any small wavenumber q and attains its maximum
value Imωmax ≡ maxq Im (ω(q)) at some wavenumber qmax. We
observe that large soliton amplitudes experience the fastest insta-
bility development. The linear stability analysis suggests that the
line soliton is stable against short wavelength transverse pertur-
bations (see Section 6).

In order to understand the role of the biharmonic dispersion
coefficient β in the development of TI we have repeated the
above numerical experiments for moderate values of β . The main
characteristics of the instability pattern remain unchanged with
the slight exception that the unstable band measure shrinks and
the maximum unstable eigenvalue decreases (see Fig. 5(b)). Hence
a sizable instability pattern is observed on longer t scales. As an
example, for fixed µ = 4, γ = +1 we find for β = 0.1 that
qcut ≈ 2.65 and Imωmax ≈ 5.04 at qmax ≈ 2.06. Compare this
with β = 0.25 where qcut ≈ 2.17 and Imωmax ≈ 4.87 is located
at qmax ≈ 1.71. This result is somehow not so surprising since
for positive β the operator ∆ − β∆2 produces larger effective
dispersion/diffraction than the Laplacian alone, hence it tends to
weaken, but not eliminate, the instability.

Next we proceed with the negative β case. As before, system
(11) is solved numerically for the perturbation eigenvalues ω(q)
with negative values of γ andµ. In sharp contrast to what we have
so far observed, in Fig. 6(a) the unstable linear spectrum Imω(q)
Fig. 6. The imaginary part of the spectrum numerically generated by solving
eigenvalue problem (11) with γ = −1 for (a) β = −0.1 and (b) β = −0.25
and several eigenvalues µ. The solid, dashed, and dashed–dotted curves in panel
(a) correspond to the three solutions shown in Fig. 2.

Fig. 7. The imaginary part of the spectrum numerically generated by solving
eigenvalue problem (11) with (a) γ = 1 and (b) γ = −1 for a fixed transverse
power ∥ψ∥

2
2 = 2 and various values of β .

with relatively small soliton eigenvalues |µ| is now compactly sup-
ported on the interval Iq = (q(1)cut(β, µ), q

(2)
cut(β, µ)). Moreover,

the linear stability analysis predicts that long wavelength trans-
verse perturbations do not grow exponentially in t . The length
of this instability island Iq expands with increasing soliton eigen-
value |µ|. The numerical results seem to suggest that higher am-
plitude solitons are more susceptible to instability against long
wavelength perturbations. For fixed nonlinearity coefficient γ and
soliton eigenvalue µ, the moderate value of β = 0.25 seems to
have little effect on the overall nature of the spectrum, as one sees
in Fig. 6(b).

In the large β limit, higher-order dispersion/diffraction is dom-
inant and leads to a sizable suppression of transverse instability.
In Fig. 7 we show typical examples of the unstable eigenvalues for
the soliton solutions shown in Fig. 4 corresponding to various val-
ues of β . For both signs of the biharmonic coefficient, increasing
its magnitude reduces the interval of unstable wavenumbers for
which Im(ω) ≠ 0.

4. Asymptotic analysis: long wavelength limit

To support our numerical findings and to gain further insight
into the instability development we resort in this section to
perturbation theory and derive an asymptotic formula for the
perturbation eigenvalues ω(q) valid in the long wavelength limit
i.e. q → 0. We start by expanding the perturbation eigenfunctions
Fq and Gq as well as the eigenvalues ω(q) in an asymptotic series
for small q:

ω = qω1 + q2ω2 + · · · (18)

Fq(x) = F0(x)+ qF1(x)+ q2F2(x)+ · · · (19)

Gq(x) = G0(x)+ qG1(x)+ q2G2(x)+ · · · . (20)
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Fig. 8. Soliton power curves ∥ψ∥
2
2 (solid line) as a function of propagation constant µ for (a) β = 0.1, (d) β = 0.5, (b–c) β = −0.1, and (e–f) β = −0.5. Shown also is the

dependence of the ‘‘kinetic energy’’ 4 |β| ∥∂xψ∥
2
2 on µ (dashed line) for negative β . The third column is a zoom-in of the middle column around the intersection point.
Substituting expansions (18)–(20) into boundary value problem
(11) and collecting terms at each order of qwe find

O(1) : L1F0 = 0, L2G0 = 0, (21)

O(q) : L1F1 = P F
1 , L2G1 = P G

1 , (22)

O(q2) : L1F2 = P F
2 , L2G2 = P G

2 , (23)

and in general for any order n ≥ 3

O(qn) : L1Fn = P F
n , L2Gn = P G

n , (24)

where the functions P F
n and P G

n depend on the previous Fl and Gl
for l = 0, . . . , n−1. All the eigenfunctions Fn andGn are assumed to
be smooth and belong to the space of square integrable functions
defined on the whole real line. Our aim is to solve Eqs. (21)–(23)
successively. Since Eq. (1) admits gauge and space-translation in-
variance symmetries it follows

L1 (∂xψ) = 0, L2 (ψ) = 0. (25)

Relation (25) combined with the asymptotic result in Eq. (6) im-
plies that the dimension of the kernel (in L2(R)) of Lj, j = 1, 2 is
at most two.We have numerically solved the eigenvalue problems
L1v1 = λ1v1 and L2v2 = λ2v2 by representing each derivative by
its corresponding finite-difference or spectral differentiation ma-
trix with zero Dirichlet boundary conditions on a sufficiently large
spatial domain and collocating the functionψ2(x) along thematrix
diagonal. Our numerical findings strongly indicate that the only
eigenfunctions of L1 and L2 that belong to the L2(R) space, with
corresponding zero eigenvalues, are precisely those functions sat-
isfying (25). With this at hand, we shall therefore assume through-
out the rest of this paper that there exists {β0, µ0, γ0} for which
the dimension of the kernel of Lj, j = 1, 2 is exactly one. Under the
above assumption, we write the homogeneous solution to Eq. (21)
as F0 = C1∂xψ and G0 = C2ψ for nonzero constants C1 and C2.
At order q, we have P F

1 = ω1G0 and P G
1 = ω1F0. Differentiating

Eq. (3) with respect to µ we find F1 = C2ω1∂µψ . By the Fredholm
Alternative theorem, an L2(R) solution to L2G1 = P G

1 exists and is
given by G1 = C1ψ̃ such that L2ψ̃ = ω1∂xψ (up to a homogeneous
solution). At order q2, we haveP F

2 = C1ω1ψ̃+C2ω2ψ+C1∂xψ/2−

2βC1∂
2
x (∂xψ) andP G

2 = C2ω
2
1∂µψ+C1ω2∂xψ+C2ψ/2−2βC2∂

2
xψ .

The solvability condition

⟨ψ,P G
2 ⟩L2(R) = 0, (26)
gives the following expression for the perturbation spectrum

ω = ±iqΩ1/2
+ O(q2), (27)

where

Ω =
4β ∥∂xψ∥

2
2 + ∥ψ∥

2
2

∂µ ∥ψ∥
2
2

. (28)

Thus for positive β the numerator in Eq. (28) is positive-definite,
hence all solitary wave solutions to Eq. (3) satisfying the ‘‘slope’’
condition

∂µ ∥ψ∥
2
2 > 0, (29)

are unstable against transverse perturbations with large wave-
length and as a result grow exponentially in t . On the other
hand, for negative β all transverse perturbations with wavenum-
bers satisfying |q| ≪ 1 remain bounded for short t scales if
∥ψ∥

2
2 > −4β ∥∂xψ∥

2
2 and ∂µ ∥ψ∥

2
2 < 0. To apply criterion (27) for

any numerically generated stripe soliton, it suffices to compute the
power ∥ψ∥

2
2 and the ‘‘kinetic energy’’ term 4|β| ∥∂xψ∥

2
2 curves as a

function of the soliton propagation constantµ for various fixed val-
ues of β . It is clear from Fig. 8, that for positive β , the soliton power
is an increasing function ofµ, which combinedwith the slope con-
dition (29) yields transverse instability. On the other hand, when
β < 0 the slope condition alone is insufficient and one must also
examine the behavior of the numerator appearing in Eq. (28). To do
so, we show in Fig. 8 the soliton power (solid line, see also Fig. 9)
as well as the quantity 4 |β| ∥∂xψ∥

2
2 (dashed line) as a function of

µ for several negative β values. Contrary to the previous case, the
soliton power curves are now a decreasing function of the soliton
eigenvalue, hence ∂µ ∥ψ∥

2
2 < 0. Moreover, the two quantitates

4β ∥∂xψ∥
2
2 , ∥ψ∥

2
2 intersect each other at some µ = µ∗(β), giving

rise to transverse instability for µ < µ∗.
To confirm result (27) we have compared it with the numeri-

cally computed TI eigenvalues for β = 1/10, γ = +1 and vari-
ous soliton eigenvalues. The quantity ∂µ ∥ψ∥

2
2 is computed using

a centered finite difference stencil. A summary of the findings is
shown in Fig. 10. For small wavenumbers q, Eq. (27) agrees well
with the numerically generated perturbation eigenvalues (see also
Table 1 in Section 5). Similar tests have been performed for neg-
ative β values. In particular, for small soliton eigenvalues |µ|,
corresponding to low amplitude solutions, we find that the term
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Fig. 9. Transverse power surfaces (∥ψ∥
2
2) as a function of µ and β for (a) γ = −1

and (b) γ = +1. In panel (b), the one-dimensional solid curve ∥ψ∥
2
2 (µ) =

(10µ)1/2, µ = (25β)−1 corresponds to the existence curve of the exact solution
given in Eq. (4).

Fig. 10. The imaginary part of the TI spectrum computed from Eq. (27) (dashed line
with circles) and by numerical solution of eigenvalue problem (11) (solid line) for
β = 0.1 and γ = +1. The panels correspond to solution eigenvalues (a) µ = 0.4,
(b) µ = 2 and (c) µ = 4. The approximate slopesΩ1/2 are (a) 0.866, (b) 1.992 and
(c) 2.931.

Fig. 11. Same as Fig. 10, but for β = −0.1 and γ = −1. The panels correspond to
solution eigenvalues (a) µ = −4, (b) µ = −8 and (c) µ = −12. The approximate
slopesΩ1/2 are (a) 0, (b) 0.962, and (c) 1.984.

4|β| ∥∂xψ∥
2
2 is smaller than ∥ψ∥

2
2 and ∂µ ∥ψ∥

2
2 < 0 (see Fig. 8),

hence ω is real and the soliton is linearly stable (see Fig. 11(a)).
Moreover, as |µ| increases 4|β| ∥∂xψ∥

2
2 grows larger than ∥ψ∥

2
2

and the perturbation eigenvalues become purely complex (linearly
unstable) for small q (see Fig. 11(b) and (c)).
5. Variational formulation

The previous approaches to compute the transverse dispersion
relation ω(q) were based on numerical integration of boundary
eigenvalue problem (11) as well as on the asymptotic analysis
valid for small wavenumbers. In this section we take a different
approach to compute and study the development of the spectral
instability using a variational formulation. The central idea behind
the method is to reformulate Eq. (1) in terms of its corresponding
Lagrangian functional, then make a suitable solution ansatz that
depends on few degrees of freedom and obtain an effective
Lagrangian by integrating over a reduced number of degrees
of freedom. By taking the variational derivative of the reduced
Lagrangian, we obtain a coupled set of PDEs that are later used
to study perturbation theory. We remark that this variational
approach has been used to obtain approximate analytical forms for
solitons in various settings [64–66].

We begin by considering the Lagrangian functional

L =
1
2


R2×[0,T ]

G dxdydt, (30)

G = i

φ∂tφ

∗
− φ∗∂tφ


+ |∇φ|

2
+ 2β|∆φ|

2
− γ |φ|

4, (31)
that using the Euler–Lagrange equations with the respect to the
solution φ(x, y, t) reproduces Eq. (1). Our strategy for computing
the transverse instability dispersion curves is as follows. First, let
ϕµ(x) be a smooth and real-valued localized solution to Eq. (3)
corresponding to eigenvalueµ. Multiplying that equation by ϕµ(x)
and integrating over the whole real line gives

γ ∥ϕµ∥
4
4 = µ∥ϕµ∥

2
2 +

1
2
∥∂xϕµ∥

2
2 + β∥∂2x ϕµ∥

2
2, (32)

where we define the Lp(R) norm of ϕµ by

∥ϕµ∥p =


R


ϕµ

p dx
1/p

. (33)

We now make the ansatz solution to Eq. (1) that is a one-
dimensional soliton modulated in the transverse y-direction i.e.

φA(x, y, t) = A(t, y)ϕµ(x)eiµt , (34)
where A is a complex-valued amplitude that depends on y and
t . This separation of variables approach, where the trial function
ϕµ(x) is kept exact, simplifies the calculations and allows one to
relate back to the stability problem by choosing the amplitude
A to depend on t and y only. Also, in the method proposed
here, the solution ϕµ(x) is either known analytically, as is the
case in Eq. (4), or may be numerically generated. A more general
ansatz φA that includes more parameters (e.g. soliton width and
phase) is possible (see [67] for a classical NLS example). This could
lead to better approximations for the perturbation eigenvalue ω,
however the analysis could become cumbersome. The nice thing
about our ansatz is that it simplifies the calculations, captures
the structure of the unstable spectrum and agrees well with the
previous approaches.

Substituting (34) into the Lagrangian (30) and integrating the x
degree of freedom we obtain the effective Lagrangian

Leff

A, A∗


=

1
2


R

G(φ, ∂tφ,∇φ,∆φ)


φ=φA

dx, (35)

that after some calculations simplifies to

Leff(A, A∗) =
i
2


A∂tA∗

− A∗∂tA

E1 + µ|A|

2E1

+
1
2
|A|

2E2 +
1
2
|∂yA|

2E1 + β|A|
2E3

−β

A∗∂2y A + A∂2y A

∗

E2 + β|∂2y A|

2E1

−
γ

2
|A|

4E4, (36)
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where Ej, j = 1, 2, 3, 4 are positive constants that implicitly
depend only on β, γ and µ

E1 =


R
ϕ2
µ dx, (37)

E2 =


R


∂xϕµ

2 dx, (38)

E3 =


R


∂2x ϕµ

2
dx, (39)

E4 =


R
ϕ4
µ dx. (40)

To obtain the dynamical equation that governs the evolution of the
amplitude A, we use the first variation principle δL = 0 via the
Euler–Lagrange equation

∂Leff
∂A∗

−
∂

∂t
∂Leff
∂(∂tA∗)

−
∂

∂y
∂Leff
∂(∂yA∗)

+
∂2

∂y2
∂Leff

∂(∂2y A∗)
= 0. (41)

A straightforward calculation gives the one-dimensional bihar-
monic NLS-type equation

i∂tA −


µ+

E2
2E1

+ β
E3
E1


A +


1
2

+ 2β
E2
E1


∂2y A

−β∂4y A + γ
E4
E1

|A|
2A = 0. (42)

With this result at hand, we next proceed with the question of
stability. Note that A = 1 is a fixed-point of Eq. (42) which implies
that φA is an exact solution to Eq. (3). A small perturbation around
the steady and homogeneous state in the form
A(t, y) = 1 + εA1(t, y)+ · · · , ε ≪ 1, (43)
can be interpreted as a perturbation of the soliton ϕµ. Since, in this
case, Eq. (34) reads

φA(x, y, t) =

ϕµ(x)+ εA1(t, y)ϕµ(x)+ · · ·


exp(iµt), (44)

where A1ϕµ can be thought of as transverse perturbation η. Sub-
stituting the asymptotic expansion (43) into Eq. (42) one finds to
leading order in ε

γ E4 = µE1 +
1
2
E2 + βE3, (45)

which is identical to Eq. (32). At order εwe find the following linear
evolution equation

i∂tA1 +


1
2

+
2βE2
E1


∂2y A1 − β∂4y A1 +

γ E4
E1


A1 + A∗

1


= 0. (46)

Next we decompose the envelope A1 into its Fourier integral rep-
resentation

A1(t, y) =


R


uq ei(qy+ωt) + v∗

q e−i(qy+ω∗t)


dq, (47)

where uq and vq are the Fourier coefficients assumed to be constant
in t, y and localized in q. Here q ∈ R is the perturbation wavenum-
ber and ω is (in general) the complex frequency measuring the
perturbation growth rate. Upon substituting Eq. (47) into (46) one
obtains the non-Hermitian eigenvalue problem

0 W12
W21 0

 
Uq
Vq


= ω


Uq
Vq


. (48)

Here we define Uq = uq − vq, Vq = uq + vq and

W12 =
2γ E4
E1

−


1
2

+
2βE2
E1


q2 − βq4, (49)

W21 = −


1
2

+
2βE2
E1


q2 − βq4. (50)
The advantage of this variational approach over the one presented
in Section 3 is that eigenvalue system (48) is exactly solvable, un-
like the one given in Eq. (11) where only numerical diagonalization
and long wavelength perturbation analysis is available. Solving for
the eigenvalue ω gives the dispersion relation

ω2
= q2


1
2

+ 2βθ1


+ βq2


×


1
2

+ 2βθ1


q2 + βq4 − 2γ θ2


, (51)

where θ1 ≡ E2/E1 and θ2 ≡ E4/E1 are positive constants. For the
exact solution given in Eq. (4) the dispersion relation simplifies to

ω2
exact = q2


27
50

+ βq2
 

27
50

q2 + βq4 −
18

175β


. (52)

From this equation, it is clear that Im(ωexact) ≠ 0 when
βq2


27/50 + βq2


< 18/175, i.e. for small q. Furthermore, by let-

ting q1 =
1
2β + 2θ1 and K 2

=
2γ θ2
β

for β ≠ 0 Eq. (51) is factored as

ω2
= β2q2


q2 + q1

 
q2 − q22

 
q2 + q23


. (53)

Here we define

q22 =

−q1 +


q21 + 4K 2

2
, (54)

with q23 a positive quantity that depends on q1 and K 2. Since γ β >
0 (the only case considered here) it follows that K 2 is positive.

Thus the soliton stripe ψ is transversely unstable if ω2 < 0
and linearly stable otherwise. When β is positive it follows that
q1 > 0, in which case q22 remains positive as well. This in turn
implies the existence of a finite band of unstable Fourier modes
q ∈ (0, q2) for which Imω is nonzero. This result is consistent with
the numerical and perturbation findings obtained in Sections 3
and 4. Fig. 12(a)–(c) shows the instability growth rate Imω as a
function of the unstable modes q for typical parameters β = 1/10
and γ = +1. For comparison, we also show the numerically
computed eigenvalues obtained by solving Eq. (11). Note that the
variational curve in Fig. 12(a) is given by the analytic formula (52).
As one can see, there is a relatively good qualitative agreement
between the variational and numerical approaches. Both methods
predict nearly identical unstable band measure, location of the
most unstable mode qmax, as well as maximum growth rates (with
a slight difference from the numerical value Imωmax of about 8.7%,
4.8%, 3.3% in Fig. 12(a)–(c), respectively).

In the longwavelength limit (|q| ≪ 1), the perturbation growth
rate is given by

ω = ±iqΛ1/2
+ O(q2), (55)

where

Λ = γ θ2 (1 + 4βθ1) . (56)

Inspecting Eq. (56), the quantity Λ is seen to be positive, thus
it leads to exponential in t perturbation growth. Moreover, it
remarkably agrees with the asymptotically computed Ω values
given in Eq. (28). Table 1 shows typical values forΩ1/2,Λ1/2 aswell
as the numerically generated slopes obtained from system (11) for
different soliton propagation constants µ.

The situation for negative β proves to be much different than
what we have so far encountered. This is most evident from the
fact that q1 can now be negative for some β . In this case, the for-
mation of an otherwise nonexistent finite band of linearly stable
modes (at small q) followed by a measurable interval of unsta-
ble Fourier wavenumbers occurs. This can be explained by notic-
ing that for q2 less than −q1 > 0 the right-hand side of Eq. (53)
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Fig. 12. Instability growth rate obtained from Eq. (53) (dashed line) for β = 0.1, γ = +1 and eigenvalues (a) µ = 0.4, (b) µ = 2 and (c) µ = 4. The solid line is the
numerically computed eigenvalues from system (11). The bottom row is the same as the top row, but for parameters β = −0.1, γ = −1 and eigenvalues (d) µ = −4 and
(e) µ = −8.
Table 1
Numerical values (rounded to the third decimal digit) of Ω1/2 and Λ1/2 obtained
from formulas (28) and (56) for various soliton propagation constants. For com-
parison, we also show the numerically computed instability eigenvalues generated
from eigenvalue problem (11) for q = 0.01. Parameters are β = 0.1 and γ = +1.

µ Ω1/2 Λ1/2 Numerical

0.4 0.866 0.745 0.866
2 1.992 1.772 1.992
4 2.931 2.635 2.931

is positive, hence ω ∈ R. Further increasing q i.e. when q2 lies
in the interval (−q1, q22), the right hand side of Eq. (53) switches
sign, thus ω becomes purely complex. For fixed β , Fig. 8 shows
that there exists some soliton eigenvalue ν for which the ratio
θ1 = E2/E1 becomes large enough for all |µ| > |ν| to force q1
to switch sign and, as a result, the interval (0,−q1) shrinks to
zero. Thus the soliton becomes unstable for perturbations with
small wavenumbers. The transition from a positive to a nega-
tive q1 value occurs when θ1 < −1/(4β) and is accompanied
by the formation of a finite-size band of linearly stable modes
(Λ < 0 for β, γ < 0). Interestingly enough, Ω becomes neg-
ative as well when 0 < θ1 < −1/(4β), a surprising agree-
ment with the asymptotic result discussed in Section 4 given the
fact that we used a simple form for the variational ansatz. Finally,
two typical examples corresponding to negative and positive q1
values are shown in Fig. 12(d)–(e), respectively, for parameters
β = −1/10 and γ = −1. Overall, we observe a good agree-
ment between the numerically computed and semi-analytically
obtained stable/unstable perturbation eigenvalues.

6. Direct numerical simulations

In this section we perform several direct numerical simulations
to confirm the linear stability results obtained in Sections 3–5 as
well as report on the development of nonlinear instability.Wehave
numerically solved the Cauchy problem associated with Eq. (1)
using a fourth-order split-step integration method in t and Fourier
spectral discretization in x, y with boundary conditions: φ decays
rapidly to zero as |x| → ∞. The initial condition used in the
simulations is

φ(x, y, 0) = ψ(x)+ ε [∂xψ cos (Qy)+ iψ sin (Qy)] , (57)
where |ε| ≪ 1 and Q is the linear transverse perturbation wave-
number that corresponds to either a linearly stable or unstable
mode. This type of perturbation requires periodic boundary con-
ditions in the y-direction and allows one to focus on and excite
specific perturbations with prescribed wavenumber Q depicted in
Fig. 5 or Fig. 6, rather than exciting the entire unstable spectrum
(by integrating Eq. (10) over all wavenumbers q with their corre-
sponding amplitudes fq and gq which are localized in x and q)which
would then resemble a noisy perturbation.

First consider the positive β case. The dynamic evolution of
a moderate amplitude soliton under the combined effects of a
periodically modulated perturbation in the transverse y-direction
and longitudinal localization is shown in the top row of Fig. 13.
On a relatively short time scale, an exponentially growing neck-
type instability develops (consistent with the linear theory—see
Fig. 5(a)) and ultimately leads to a full break up of the mode
into a sequence of localized bright spots. The distance between
adjacent filaments is approximately 4.19 units, which is roughly
the period (2π/Q ) of the transverse perturbation. To validate the
linear stability results presented in Sections 3 and 5 we repeat
the numerical experiments, this time with wavenumber Q > qcut
corresponding to Imω(Q ) = 0. As one can see from the bottom
row in Fig. 13, for short times (linear stability regime) the wave
pattern remains almost undisturbed compared to the initial state
and develops weak bounded oscillations in the y-direction.

Next we shift our focus to the negative dispersion/diffraction
case (β < 0). Here we study nonlinear dynamics of transverse
perturbations superimposed on top of a soliton stripe. The
propagation constant µ is chosen such that the linear theory
(asymptotic and variational) presented in Sections 4 and 5 predicts
the existence of three linear stable or unstable Fourier bands,
which happenswhen q1 < 0.With this at hand, we have simulated
Eq. (1) with initial condition (57) for various values of Q residing
in each linear stability/instability band. When Q falls into the first
stable linear band (0 < Q 2 < −q1), full numerical simulations
reveal that the soliton almost preserves its initial shape on the
order of short time scale 1/Imωmax(q) ≈ 0.28 (see Fig. 14, top
row). This observation seems to persistwell beyond that time scale.
On the other hand, for the same fixed q1, but with Q 2 chosen now
inside the interval (−q1, q22) (corresponding to linearly unstable
modes) the soliton experiences severe instability and eventually
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Fig. 13. A snapshot top view of the intensity field |φ(x, y, t)|2 at various t obtained from numerical simulation of Eq. (1) using initial condition (57). The initial soliton profile
ψ(x) is chosen from Fig. 1(b) with parameters β = 0.1, µ = 2 and γ = +1. The perturbation parameters are ε = 0.05 and (top row) Q = 1.5, (bottom row) Q = 3.
disintegrates into an array of well separated two-dimensional
bright spots as shown in the bottom row of Fig. 14. Perturbations
with wavenumbers Q 2 belonging to the third linear stable band
(q22,∞) were also examined and found to remain bounded up to
t = 1, conferring with linear theory.

As a final remark, we have performed an extensive numer-
ical experiment regarding the long time behavior of the two-
dimensional filaments, in particular, the question of collapse.
Fig. 15 shows the maximum magnitude ∥φ(t)∥max = maxx,y
|φ(x, y, t)| as a function of t for different values of β corresponding
to initial condition (57) with fixed power ∥ψ∥

2
2 = 2. The perturba-

tionwavenumberQ corresponds to a linearly unstable eigenmode.
As one can see from Fig. 15, the max norm of the solution remains
bounded and oscillates for long time scales.

7. Conclusions

In this paper we have studied the dynamics and formation
of coherent structures that result from the development of
instabilities for families of one-dimensional localized waves due
to the presence of transverse perturbation. Our model equation
is the two-dimensional nonlinear Schrödinger equation in the
presence of a fourth-order dispersion/diffraction. The linear
stability analysis predicts the existence of a finite band of unstable
Fourier modes for which small transverse perturbations grow
exponentially in t and lead to the break up of the soliton stripe.
On time scales longer than the inverse of the growth rate Imωmax,
full nonlinear simulations reveal the formation of arrays of periodic
two-dimensional filaments. The numerical linear stability analysis
is supported by analytical results based on perturbation theory and
variational Lagrangian model reduction.
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Appendix. Spectral renormalization method

In this section we outline the spectral renormalization
method [59] used to numerically construct soliton solutions. Other
numerical methods based on functional optimization of Sobolev
gradients [68] can also be implemented. Solutions to Eq. (3) are
sought in the form φ(x, y, t) = ru(x)eiµt where r is a yet to be de-
termined renormalization factor and u(x) is the real-valued mode
profile satisfying

1
2
∂2x u − β∂4x u + γ r2u3

− µu = 0. (A.1)

Multiplying Eq. (A.1) by u and integrating over the whole space
gives

r2 =

1
2 ∥∂xu∥2

2 + β
∂2x u2

2 + µ ∥u∥2
2

γ ∥u∥4
4

. (A.2)

The function u(x) is thus obtained by the following fixed-point
iteration scheme

ûn+1 =
{ζ − µ} ûn + γ r2nF


u3
n


1
2k

2 + βk4 + ζ
, (A.3)
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Fig. 14. A snapshot top view of the intensity field |φ(x, y, t)|2 at various t obtained from numerical simulation of Eq. (1) using initial condition (57). The initial soliton profile
ψ(x) is chosen from Fig. 2(b) with parameters β = −0.1, µ = −4 and γ = −1. The perturbation parameters are ε = 0.05 and (top row) Q = 0.4, (bottom row) Q = 2.6.
Fig. 15. Maximum solution amplitude ∥φ(t)∥max = maxx,y |φ(x, y, t)| for ∥ψ∥
2
2 =

2 that is initially perturbed according to Eq. (57) for (a) β = 0.1, γ = 1,Q = 1.5
and (b) β = −0.1, γ = −1,Q = 2.6. In both cases ε = 0.05.

where r2n = r2

u=un

and F ,F −1 are the forward and inverse
Fourier transforms respectively defined by

f̂ = F [f ] =
1

√
2π


R
f (x)e−ikx dx, (A.4)

and

f = F −1

f̂


=
1

√
2π


R
f̂ (k)eikx dk. (A.5)

In iteration scheme (A.3) the parameter ζ is chosen such that ζ =

µ for β > 0 (in which case µ is also positive) and ζ < 0 satisfying
1 < 16βζ when β is negative. Alternatively, one may instead fix
the L2(R) norm ofψ i.e. set ∥ψ∥

2
2 = N . In this case, the fixed-point

spectral renormalization algorithm reads

r2n =
N

∥un∥
2
2

, (A.6)
µn =
γ r2n ∥un∥

4
4 −

1
2 ∥∂xun∥

2
2 − β

∂2x un
2
2

∥un∥
2
2

, (A.7)

ûn+1 =
{ζ − µn} ûn + γ r2nF


u3
n


1
2k

2 + βk4 + ζ
, (A.8)

for values of ζ discussed above, until convergence is reached.
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