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Abstract—We study the existence of a novel class of waves, with
constant intensity (CI) in coupled non-Hermitian photonic systems.
These generalized plane waves exist only in optical structures that
are composed of gain and loss (in both linear and nonlinear do-
mains). In the framework of coupled mode theory, we examine
the properties of such supermodes in finite waveguide lattices. In
particular, CI-supermodes with periodic, localized, and disordered
phases in finite chains of optical elements are considered in detail.
Extensions to the nonlinear regime and the connection to the con-
tinuum limit are also studied.

Index Terms—PT-symmetry, random lattices, coupled waveg-
uides, non-Hermitian Hamiltonians, coupled mode theory.

I. INTRODUCTION

OVER the past few years, considerable theoretical and
experimental effort has been devoted to the new area

of parity-time (PT ) symmetric photonics. The corresponding
non-Hermitian structures combine gain and loss in a unique
way with the refractive index satisfying the symmetry rela-
tion n(x) = n∗(−x). One of the main features of such non-
Hermitian systems is the existence of spontaneous symme-
try breaking at an exceptional point (EP) [1]–[4], that is di-
rectly related to the novel concept of PT -symmetry which
was first suggested in the framework of non-Hermitian quan-
tum mechanics [5]–[7]. The spontaneous symmetry breaking
takes the system from a regime of real energy eigenvalues to a
partial complex spectrum with conjugate pairs of eigenvalues.
Based on these fundamental studies, the idea of PT -symmetry
in paraxial waveguide optics was recently introduced [8]–[10]
and experimentally realized [11], [12]. These research activities
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lead to the field of PT symmetric photonics, with a plethora
of theoretical and experimental works spanning a wide range
of topics from unidirectional invisibility and solitons to PT -
lasers and optical isolators [13]–[28]. Non-optical applications
include PT -electronics circuits [29] and PT -acoustic sensor
devices [30], [31].

An interesting recent development in this context of non-
Hermitian photonics, was the introduction of the idea of con-
stant intensity waves (CI-waves) [28]. The most well-known
CI-wave in wave physics is that of simple plane wave, which is
a solution of the Helhmoltz equation in a homogeneous (bulk)
space. As we will demonstrate, this fundamental concept can be
generalized to an inhomogeneous environment by adding gain
and loss to the system. This new class of CI-waves exists only
for non-Hermitian materials but are not necessarily restricted to
PT -symmetric potentials. We have to mention at this point, that
besides the importance of these waves for wave optics, wave-
form engineering and cloaking, they are also of fundamental
importance for nonlinear dynamics, since they allow us to study
for the first time the phenomenon of modulation instability in
an inhomogeneous environment.

The focus of this paper, is to answer the question whether CI-
waves also exist in discrete systems. So far they were derived for
continuum non-Hermitian Hamiltonians and it was proved that
they are radiation eigenmodes of the corresponding waveguide
structure [28]. More specifically, in the framework of coupled
mode theory, we derive analytical relations for the required gain-
loss modulation and the appropriate periodic boundary condi-
tions for such modes to exist. We examine periodic and disor-
dered lattices that support CI-supermodes. Physically speaking,
discrete systems can be either evanescently coupled waveguides
or optical cavities. Our analysis is general and is valid for both
physical setups, and in the continuum limit of infinitely many
waveguides the CI-mode of the corresponding non-Hermitian
potential [28] is recovered.

II. CI-WAVES IN COUPLED SYSTEMS

We begin our analysis by considering optical wave propa-
gation in a non-Hermitian potential in the context of coupled
mode theory. In this case, the beam evolution is governed by
the following normalized paraxial equation of diffraction for N
coupled optical elements (waveguides or cavities)

i
dUn

dz
+ c(Un+1 + Un−1) + (βn + igγn )Un = 0 (1)
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Fig. 1. Schematics of a non-Hermitian lattice of coupled optical waveguides,
that supports constant-intensity modes. The waveguides form a ring, because of
the imposed periodic boundary conditions and D,L,G,c stands for a dielectric,
loss, gain element and for the coupling constant, respectively.

where Un (z) represents the amplitude of the electric field enve-
lope, z is the propagation distance, and n = 1, ...N the wave-
guide index. c is the coupling coefficient between adjacent
neighbors, and taken to be real here [32]. We can normalize
the propagation distance in order for c to be equal to one (in
normalized units). Each channel is characterized by either gain
(γn < 0) or loss (γn > 0) and by its real refractive index βn .
The gain-loss amplitude is described by the parameter g. For
g = 0 the system is obviously Hermitian. The main question we
will address in the most general case of an optical non-Hermitian
lattice is if and under which conditions CI-waves exist. We are
looking for stationary solutions of constant intensity of the form:

Un (z) = eiθn eiλz (2)

where θn is a given phase distribution over all waveguide chan-
nels and λ is the propagation eigenvalue. It is important to
understand that in order for such CI-modes to exist periodic
boundary conditions must be imposed at the endpoints of the
lattice. In particular, periodic boundary conditions must be valid
for the field, namely

U0 = UN ,UN +1 = U1 . (3)

We can see that in order for the CI-modes given in Eq. (2) to be
a solution to Eq. (1), the complex refractive index must satisfy
(for any given phase distribution) and gain-loss amplitude g = 1
the relations:

βn = λ − cos(θn+1 − θn ) − cos(θn−1 − θn ) (4)

γn = −sin(θn+1 − θn ) − sin(θn−1 − θn ). (5)

Since the CI-waves of Eq. (2) satisfy the periodic boundary
conditions of Eq. (3), it follows that the phase distribution θn

must satisfy the relations:

θ0 = θN , θN +1 = θ1 . (6)

Physically speaking, the periodic boundary conditions corre-
spond to an optical ring-lattice of coupled optical elements
(waveguides or cavities), as schematically depicted in Fig. 1.
The given phase distribution θn determines the real and imagi-
nary parts of the refractive index (through Eqs. (4), (5)) whereas
the eigenvalue λ (which can be removed by a gauge transfor-

Fig. 2. CI-mode (with λ = 3) in a lattice of N = 20 waveguides for a periodic
phase. In particular, (a) real part of the refractive index per waveguide, (b) gain-
loss distribution per channel, (c) the amplitude and phase of the CI-supermode,
and (d) the imaginary part of all eigenvalues versus g. The exceptional points
(EP) are denoted with orange dots and the value of g for which the CI-mode
exists with a dashed green line in (d).

mation as it affects only the real part of the index of refraction)
is a parameter. CI-waves were first introduced in [28], in the
context of the paraxial equation of diffraction and the nonlinear
Schrödinger equation in the continuum limit. The CI-waves of
such systems were radiation eigenmodes, while in our study
here they are true eigenmodes (more precisely supermodes) of
the entire system. We also note that for λ = 0, the CI-mode
is unidirectionally invisible, since the wave propagates without
any additional phase change and only in one propagation direc-
tion (for the opposite direction the complex conjugate potential
must be used). Since stationary solutions of constant intensity
in the nonlinear lattices are very common in nonlinear optics
and dynamics literature, we emphasize that these supermodes
exist under linear conditions and are the direct outcome of the
non-Hermiticity of the structure.

In order to elucidate our analytical approach with specific
results, we consider two numerical examples for the phase dis-
tribution θn . The first one (Fig. 2) is that of a periodic distribu-
tion, namely θn = 0.6 sin(2πn/N), with n = 1, 2, ..., N . Such a
phase results in a lattice with real and imaginary parts presented
in Fig. 2(a) and (b), respectively. Even though the Hermitian
system (g = 0) doesn’t support CI-modes the non-Hermitian
does (only for g = 1), as we can clearly see in Fig. 2(c), where
the amplitude and the phase of such a CI-supermode is plotted.
Even though the system is not exactly PT -symmetric, we find
that the spectrum can be real below a certain value of the gain-
loss amplitude. This is indeed the case as is shown in Fig. 2(d),
where the imaginary part of all eigenvalues is parametrically
plotted against the gain-loss amplitude g. As we can see, the CI-
mode exists in the unbroken phase, where the entire spectrum
is real.
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Fig. 3. CI-mode (with λ = 2) in a lattice of N = 40 waveguides for a Gaus-
sian phase. In particular, (a) real part and imaginary parts of the refractive index
per waveguide, (b) the amplitude and phase of the CI-supermode, (c) eigenvalue
spectrum in the complex plane, and (d) the real part of a few eigenvalues versus
g. The value of g for which the CI-mode exists is denoted with a dashed green
line in (d).

The second example Fig. 3(a) concerns a localized phase
distribution, θn = 2e−((n−N/2)/5)2

for which the CI-mode
[Fig. 3(b)] exists in an otherwise complex eigenvalue spectrum
[Fig. 3(c)]. The particular lattice is not PT -symmetric but still
the eigenvalue of the CI-supermode is, by construction, real.
This can be seen in Fig. 3(d), where the real part of the eigen-
values of the first three modes is parametrically plotted versus
the gain-loss amplitude g. For g = 1, one of the eigenvalues
(that of the CI-mode) becomes equal to 2, as is excepted. Both
examples show us that we can engineer the refractive index of
a lattice by adding gain and loss in order to make one of the
modes a CI-wave with a predetermined real eigenvalue λ, that
corresponds to the propagation constant of the mode. The rest
of the spectrum can be either real (for PT -symmetric matrices)
or complex in the general case.

III. CI-MODES IN DISORDERED SYSTEMS

One of the most striking results in condensed matter physics
pertaining to wave propagation in random media [33]–[35], is
the phenomenon of Anderson localization [36]–[40]. In this im-
portant field of solid state physics and optics the existence and
properties of linear localized modes in random systems has been
thoroughly investigated. The majority of the theoretical and ex-
perimental studies have however been concentrated on Hermi-
tian media (with the exception of the random lasers literature)
where Andreson localization is now well understood. Adding
gain and loss to the medium makes the fundamental question
of localization generally more complicated [41]. Here we show
analytically that any disordered medium that gives rise to An-

Fig. 4. CI-mode (with λ = 2, g = 1) in a disordered lattice of N = 100
waveguides with a random phase. In particular, (a) real part and imaginary parts
of the refractive index per waveguide, (b) gain and loss per channel, (c) the
amplitude and phase of the CI-supermode, and (d) eigenvalue spectrum in the
complex plane. The eigenvalue of the CI-supermode is denoted is denoted with
a blue circle.

derson localization (without gain and loss) can also produce
extended modes of uniform intensity (CI-supermodes) when a
suitable combination of gain and loss is added. For a random and
uniformly distributed phase distribution θn ∝ rand [0, 1], we can
construct for any realization the corresponding non-Hermitian
potential that one of its modes is a CI-wave. In particular, we
are interested in understanding the spectrum of the following
NxN non-Hermitian random matrix:

M =

⎡
⎢⎢⎢⎢⎣

β1 + igγ1 1 0 ... 1
1 β2 + igγ2 1 ... 0
... ... ... ... ...
0 0 ... βN −1 + igγN −1 1
1 0 ... 1 βN + igγN

⎤
⎥⎥⎥⎥⎦
.

The eigenvalues of M determine the physical propagation
constants of all modes. Such a non-Hermitian eigenvalue prob-
lem is obtained by Eq. (1) when we are looking for supermode
solutions of the form Un (z) = uneiμz . One of the modes of this
eigenvalue problem M �un = μ �un , with �un = [u1u2 ...uN ]�, is
(by construction) the CI-supermode. In Fig. 4 such a random
system of 100 coupled waveguides was considered. The real
and imaginary part of the refractive index distribution is
depicted for a particular realization of the lattice in Fig. 4(a) and
(b), respectively. As we can see, adding gain and loss to such
a system can, in principle alter the Anderson localized modes
of the Hermitian lattice to extended delocalized modes, one
of which is going to be a CI-supermode [Fig. 4(c)] with a real
eigenvalue [Fig. 4(d)].
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Fig. 5. CI-mode (with λ = 2) in a disordered lattice of N = 10 waveg-
uides for a random phase. In particular, (a) bifurcation curves of the
max(Im(λn )), min(Im(λn )) versus g for 50 different realizations. The red
curve denotes the one realization we consider, (b) parametric plot of the real
part of the propagation constants versus g, (c) refractive index distribution per
channel, (d) the amplitude and phase of the CI-supermode. For (c), (d) g = 1.

One way to avoid the intricate nature and complex spectrum of
such a complicated non-Hermitian random matrix, is to impose
some symmetries to the lattice (Fig. 5). In particular, we con-
sider the following random matrix, which describes a random
PT -symmetric ring lattice:

MPT =

⎡
⎢⎢⎢⎢⎣

β1 + igγ1 1 0 ... 1
1 β2 + igγ2 1 ... 0
... ... ... ... ...
0 0 ... β2 − igγ2 1
1 0 ... 1 β1 − igγ1

⎤
⎥⎥⎥⎥⎦

.

The real part of the index of refraction βn is symmetric with
respect to an axis of symmetry, whereas the imaginary part γn

is antisymmetric [15]. In order to get such a PT -symmetric
lattice, the phase distribution θn must be antisymmetric. There-
fore half of the lattice is random and the other half is spatially
reflected and conjugated in order for the PT -symmetry to hold.
As is well known the PT -symmetry in such random lattices is
”exponentially fragile” [15]. This means that for a high num-
ber of lattice sites, the symmetry is broken for an exponentially
small value of the gain-loss amplitude g. Based on our analysis,
a CI-supermode can be found in any random lattice, but since
one of our goals is to identify realistic physical systems where
the study of modulation instability has a physical meaning (and
is not triggered by the existence of amplifying eigenvalues), we
are mostly interested in disordered lattices where CI-modes ex-
ist in an entirely real eigenvalue spectrum. In Fig. 5(a), for 50
different realizations of a lattice with N = 10, the maximum
and minimum eigenvalues are shown as a function of g. All of
them exhibit an EP for a different value of g. Out of 50 real-
izations only one (red curve) is unbroken for g = 1. For this
specific realization we calculate the parametric dependance of
the real part of all 10 eigenvalues (top to bottom) to g as plotted

in Fig. 5(b). Quite interestingly, the symmetry follows the pat-
tern broken-unbroken-broken-unbroken, due to the multimode
nature of the potential. In particular, the second-third and fourth-
fifth modes form pairs of complex conjugate eigenvalues after
the EPs. For the particular realization chosen here, the corre-
sponding refractive index distribution and the characteristics of
the CI-mode, are depicted in Fig. 5(c) and (d), respectively. For
higher values of waveguide elements (N > 20) the symmetry
is broken for extremely low values of the gain-loss amplitude
g. Therefore, in order for the CI-mode to occur in a real eigen-
value spectrum (for few of the realizations), we have to consider
a rather small number of waveguide channels N . Apart from the
direct relevance of these CI-modes to the problem of modulation
instability in disordered lattices, one direction of possible inter-
est would also be an extension to z-dependent non-Hermitian
Hamiltonians [16] where the refractive index is also modulated
along the propagation direction and dynamical localization takes
place.

IV. CI-MODES OF DISCRETE NONLINEAR

SCHRÖDINGER EQUATION

Even though such CI-modes are a linear phenomenon, one
natural question, very relevant for modulation instability stud-
ies, is if such CI-solutions exist also in nonlinear domain. The
answer is positive and we can analytically derive again these
nonlinear CI-supermodes. We begin our analysis by consid-
ering nonlinear optical wave propagation in a non-Hermitian
potential in the context of coupled mode theory. In this case,
the beam evolution is governed by the following normalized
discrete nonlinear Schrödinger equation for N coupled optical
elements (waveguides or cavities)

i
dUn

dz
+ c(Un+1 + Un−1) + (βn + iγn )Un + σ|Un |2Un = 0

(7)

where σ represents the sign of the optical Kerr nonlinearity (σ >
0 for self-focusing and σ < 0 for defocusing). We are looking
for stationary solutions of constant intensity of the following
form (for c = 1, and g = 1):

Un (z) = Aeiθn eiλz . (8)

As in the linear case, here also periodic boundary conditions
must be satisfied. Substitution of the above equation to the dis-
crete nonlinear Schrödinger equation, leads to the following
expression for the real, imaginary part of the lattice and λ, re-
spectively,

βn = −cos(θn+1 − θn ) − cos(θn−1 − θn ) (9)

γn = −sin(θn+1 − θn ) − sin(θn−1 − θn ) (10)

λ = A2σ (11)

where the nonlinear eigenvalue λ is related to the accumulated
self-phase modulation over the propagation distance. Based on
such solutions, one can now study the fundamental phenomenon
of modulation instability in inhomogeneous non-Hermitian cou-
pled systems, that can have any refractive index distribution,
even a random one.
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V. CONTINUUM LIMIT OF AN INFINITE WAVEGUIDE LATTICE

In this last paragraph, we examine how we can recover
the continuum limit, namely the passage from the coupled
mode equations Eq. (1) to the paraxial equation of diffrac-
tion (and without loss of generality for λ = 0). This hap-
pens when the finite number of waveguides becomes infinite
(N → ∞) and when the distance between adjacent channels
tends to zero (Δx → 0). By applying the gauge transforma-
tion Un (z) = φn (z) exp(i2cz) Eq. (1) becomes for g = 1:

i
dφn

dz
+ c(φn+1 + φn−1 − 2φn ) + (βn + iγn )φn = 0. By al-

lowing c = 1/(Δx)2 and taking the limit, the last equation
reads, iφz + φxx + V (x)φ = 0, with V (x) = limΔx→0(βn +
iγn ). The corresponding of equations (4) and (5) (includ-
ing the 2φn extra term) by applying trigonometric identities
can be written for the real part, βn = −2c cos[(θn+1 − 2θn +
θn−1)/2]cos[(θn+1 − θn−1)/2] + 2c and the imaginary γn =
−2c sin[(θn+1 − θn + θn−1)/2]cos[(θn+1 − θn−1)/2]. By us-
ing the approximations cosx ≈ 1 − x2/2 for the real part and
sinx ≈ x , cosx ≈ 1 for the imaginary (all of them of second
order), we end up with the following limits:

lim
Δx→0,N →∞

βn =
(

dθ

dx

)2

(12)

lim
Δx→0,N →∞

γn = − d2θ

dx2 (13)

where we have used the following approximations for the first
dθ/dx ≈ (θn+1 − θn )/(Δx), dθ/dx ≈ (θn − θn−1)/(Δx)
and second dθ2/dx2 ≈ (θn+1 − 2θn + θn−1)/(Δx)2 deriva-
tive, respectively. By setting W (x) = dθ/dx we get
the continuous non-Hermitian potential of [28] that is
V (x) = W 2 − idW/dx and the corresponding CI-solution.
From the above derivation, one can understand that the
existence of CI-modes is not an artifact of the coupled
mode equations, but they exist in both approaches, namely
discrete and continuum. In the first case (discrete approach) the
CI-wave is a supermode of the lattice whereas in the second
one (continuum approach) it is a radiation eigenmode. In both
cases the field must satisfy periodic boundary conditions.

VI. CONCLUSION AND OUTLOOK

In summary, we examined the properties of CI-waves in cou-
pled photonic structures. Such modes exist only in the presence
of gain and loss and they are part of the eigenvalue spectrum
(propagation constants) of the corresponding problem. We de-
rived analytical expressions that are valid for both the linear and
the nonlinear domain. The effect of the disorder in such waves
was also systematically investigated, with a focus on the transi-
tion from Anderson localization (Hermitian system) to uniform
intensity eigenmodes (non-Hermitian lattice). Potential applica-
tions of such CI-waves may be relevant in scattering geometries.
One could be in the context of lasers, where modulation of gain-
pump and loss can lead to lasing modes with uniform intensity
and lower lasing thresholds. Another direction could be that
of directional cloaking-invisibility and acoustics. In order to

achieve that one should extend the concept of a CI-wave in an
inhomogeneous scattering environment, a topic that we are cur-
rently investigating. The acoustic realization would mean that
a space could be constructed where an acoustic mode of con-
stant intensity can propagate undistortedly. For one particular
frequency, everybody in such a space can hear this frequency
with the same intensity.
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