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• Exact constant intensity solutions to a vector NLS system with PT -symmetric potential are constructed.
• Wave solutions propagate without scattering despite the presence of gain and loss.
• A linear stability analysis reveals the existence of an intensity threshold for instability development.
• Direct numerical simulations confirm the stability analysis and reveal the formation of coherent structures.
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a b s t r a c t

A class of exact multi-component constant intensity solutions to a vector nonlinear Schrödinger (NLS)
system in the presence of an external PT -symmetric complex potential is constructed. This type of uniform
wave pattern displays a non-trivial phase whose spatial dependence is induced by the lattice structure. In
this regard, light can propagate without scattering while retaining its original form despite the presence
of inhomogeneous gain and loss. These constant-intensity continuous waves are then used to perform a
modulational instability analysis in the presence of both non-hermitian media and cubic nonlinearity. A
linear stability eigenvalue problem is formulated that governs the dynamical evolution of the periodic
perturbation and its spectrum is numerically determined using Fourier–Floquet–Bloch theory. In the
self-focusing case, we identify an intensity threshold above which the constant-intensity modes are
modulationally unstable for any Floquet–Bloch momentum belonging to the first Brillouin zone. The
picture in the self-defocusing case is different. Contrary to the bulk vector case, where instability develops
only when the waves are strongly coupled, here an instability occurs in the strong and weak coupling
regimes. The linear stability results are supplemented with direct (nonlinear) numerical simulations.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Modulational instability (MI) is a special type of symmetry
breaking instability [1] whereby a uniform in space intensity so-
lution to some underlying evolution equation disintegrates due to
the intricate interplay between external perturbations (e.g. ran-
dom noise), dispersion/diffraction and nonlinearity. The instability
manifests itself in the appearance of a nonlinear coherent struc-
ture that, in many realistic cases, takes the form of a periodic
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wave pattern. Historically speaking, it was first theoretically pre-
dicted and experimentally observed in the context of fluidmechan-
ics [2,3]. Soon thereafter it was realized that modulational insta-
bility is rather a universal phenomenon that exists in many other
branches of nonlinear sciences, such as biology, chemistry [4,5],
plasma physics [6] and nonlinear optics [7–12] (see [13] for amore
in-depth history of MI).

Another type of modulational instability that exists in higher
dimensions is the so-called transverse instability. Here, the
solution to a two-dimensional governing equation is uniform in
one space dimension and displays somenontrivial spatial structure
in the other. It was first identified by Zakharov and Rubenchik in
the context of the two-dimensional nonlinear Schrödinger (NLS)
equation [14] and has been predicted and observed in many
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research areas such as fluid mechanics [15,16], Bose–Einstein
condensates [17–20] and nonlinear optics [21–23] (see [24] for a
review).

Recently, there has been a resurgent mathematical and com-
putational interest in the modulational instability problem as-
sociated with the nonlinear Schrödinger equation. In particular,
special emphasis has been placed on the nonlinear evolution stage
and long-time dynamics (beyond the linear stability regime). In
particular, Zakharov and Gelash [25,26] as well as Biondini and
Mantzavinos [27] have studied the nonlinear MI process by solv-
ing the focusing NLS equation with nonzero boundary conditions
on the whole real line using the inverse scattering transform
method [28].

In most theoretical studies of modulational instability the
underlying evolution equations are mathematically modeled by
nonlinear partial differential equations (PDEs) with constant
coefficients that simplify the analysis since constant-intensity (CI)
solutions are readily obtained. Physically, this corresponds towave
propagation in homogeneous media. The problem of modulational
instability becomes significantly more difficult (both conceptually
and mathematically) for waves propagating in inhomogeneous
nonlinear media where now the underlying dynamical models
are non-constant coefficient PDEs. A typical example is the
Gross–Pitaevskii (or NLS) equation

iϕz + ϕxx + V (x)ϕ + g|ϕ|
2ϕ = 0, (1)

where ϕ is a complex wave function, V is a real-valued external
potential and g = 1 (focusing nonlinearity) or g = −1 (defocus-
ing nonlinearity). The difficulty here is that Eq. (1) does not admit
solutions of the formϕ(x, z) = ϕ0 exp(ikx+iκz)whereϕ0 is a com-
plex amplitude independent of x and z, k is the wavenumber, and
κ = κ(k) is a real propagation constant. Hence it is impossible to
carry out a true MI analysis. Note that if one allows the potential
in (1) to also depend on z, then one can perform a numerical study
of modulational instability as was done in [29] for a parabolic po-
tential with a z-dependent amplitude. We point out that modula-
tional instability of periodic (in x) solutions to Eq. (1) corresponding
to periodic potentials have also been studied in the literature [30,
31]. In certain limiting cases one can replace the Gross–Pitaevskii
or NLS equation (1) by its asymptotic reductionwhich significantly
simplifies the MI analysis [32]. For example, the following dis-
crete nonlinear Schrödinger equation modeling wave propagation
in waveguide arrays

i
dζn
dz

+ ζn+1 + ζn−1 + γ |ζn|
2ζn = 0, n ∈ Z, (2)

is obtained from Eq. (1) in the tight-binding limit [33] [see Ref. [34]
for detailed derivation of Eq. (2)]. The constant intensity solutions
to Eq. (2) are readily found by substituting the ansatz ζn(z) = ζ̃ exp
(iσ z + iQn), where σ ,Q , γ and ζ̃ are real constants.

Over the last few years there has been an intense theoreti-
cal [35–39] and experimental [40–42] research interest in the gen-
eral area of optical wave propagation in linear and nonlinearmedia
with balanced gain and loss. Such wave phenomena are modeled
by the nonlinear Schrödinger equation (1) where now the exter-
nal potential V is assumed to be complex and satisfies the so-called
parity-time (PT )-symmetry condition [43,44]

V ∗(x) = V (−x), (3)

where ∗ denotes complex conjugation. Allowing the potential
V to become complex-valued opens up many opportunities to
explore intriguing wave dynamics that do not exist otherwise. The
concept of an exceptional point is one such important example
that exists only in non-hermitian systems and has lead to many
novel physical applications such as PT -synthetic lattices [45],
unidirectional invisibility [46], photonic molecule lasers [47,48],
and optical isolators [49,50].

Building upon these parity-time symmetry concepts, recently
modulational instability of constant-intensity solutions to the
nonlinear Schödinger equation (1) in the presence of the general
class of complex potentials

V (x) = W 2(x)− i
dW
dx
, (4)

where W is a smooth and real-valued function, was studied for
the first time in [51]. In this case, constant intensity solutions are
obtained in the form

ϕ(x, z) = ϕ0eigϕ
2
0 z+i

 x
0 W (ξ)dξ , (5)

with constant and real amplitude ϕ0. In [51], it was shown
that for the self-focusing case all large amplitude CI waves (5)
are unstable to modulated perturbations. Furthermore, it was
numerically observed that CIwaves areweakly unstable in the self-
defocusing regime. This is contrary to the bulk (V (x) = 0) case
where no MI exists. Direct numerical simulations revealed that
periodic perturbations forced the CI waves to disintegrate into a
train of nonlinear coherent structures.

We would also like to point out that modulational instability
in the nonlinear Schrödinger equation with only linear losses
has been considered in the context of weakly nonlinear water
waves [52]. There, it was found that any amount of a certain type
of dissipation arrested all MI development. Thus the presence of
a complex potential can lead to many unexpected and perhaps
counterintuitive outcomes.

It is well known that nonlinear wave coupling can lead to
many new and fascinating physical phenomena. In this regard, the
dynamical evolution equations describing two interacting paraxial
waves propagating in inhomogeneous nonlinear Kerr media are
given by the following dimensionless vector NLS system

i
∂ψ

∂z
+
∂2ψ

∂x2
+ V (x)ψ + g(|ψ |

2
+ β|φ|

2)ψ = 0, (6)

i
∂φ

∂z
+
∂2φ

∂x2
+ V (x)φ + g(β|ψ |

2
+ |φ|

2)φ = 0, (7)

where ψ and φ are complex-valued envelope functions, z is the
propagation direction, g = ±1, and β ≥ 0 is the cross-phase
modulation coefficient. For example, in the homogeneous case
(V = 0) the cross-phase modulation term β can generate an
instability (of plane waves) that otherwise would be stable [53,
54] (see Appendix). Vector solitons in the form of bright–bright,
bright–dark, or dark–dark have also been theoretically and
experimentally observed in many settings [55,56].

In this paper we study modulational instability of vector
constant-intensity solutions to system (6) and (7) in the presence
of a complex PT -symmetric potential. The main results of this
paper are:

• Construction of vector CI waves with nonlinear spatial phase to
system (6) and (7) in the presence of a PT -symmetric complex
potential.

• Formulation of a linear eigenvalue problem whose unstable
spectrum is computed using a Fourier–Floquet–Bloch method.

• The existence of a threshold intensity above which vector CI
waves are unstable.

• Identification of certain ring-type regions in wave amplitude
space where CI solutions become modulationally unstable in
the self-defocusing case.

• Direct numerical simulations of vector MI beyond the linear
stability regime.
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Fig. 1. The real (solid blue lines) and imaginary (red dashed lines) parts of complex
potential (4) forW1 = 0.1 and different integer values of W0 .

This paper is organized as follows: In the next section we
give a closed form solution to system (6) and (7) whose intensity
is uniform in space. In Section 3, we investigate the spectral
properties of PT -symmetric potential (4) for the specific example
W (x) given in Eq. (13). In particular, we identify regions in
potential parameter space where the spectrum is entirely real. A
linear stability eigenvalue problem governing the evolution of a
small perturbation is derived and numerically solved in Section 4
along with a detailed discussion of the dynamical behavior of
the modulational instability. A full set of nonlinear simulations
that support and supplement our stability findings are given in
Section 5. We conclude with an outlook for future works in
Section 6.

2. Exact vector constant-intensity waves

For the system given in Eqs. (6) and (7), exact constant intensity
solutions are given by

ψ(x, z) = Aeiµzeiθ(x), (8)

φ(x, z) = Beiνzeiθ(x), (9)

θ(x) =

 x

0
W (ξ)dξ, (10)

µ = g(A2
+ βB2), (11)

ν = g(βA2
+ B2), (12)

where A and B are constant amplitudes taken, for simplicity, to be
real.Wemay think of this solution set as a PT -symmetric extension
of the corresponding bulk planewavemodes (W = constant) with
chirped spatial phase. While the solutions given in (8) and (9) are
valid for any real-valued and differentiable function W , based on
physical arguments (such as the requirement that the spectrum
of the linear problem associated with Eq. (6) be entirely real) it
is reasonable to choose V to satisfy the PT -symmetry condition
(3). This in turn restricts the choice of W to be even. Throughout
the rest of the paper, we shall consider the representative periodic
potential [51]

W (x) = W0 + 2W1 cos x, (13)

with non-negative coefficients W0 and W1. In this case, the spatial
phase (10) is given by

θ(x) = W0x + 2W1 sin x. (14)

The periodicity requirementψ(x+ 2π, z) = ψ(x, z) (similarly for
φ) impliesW0 is an integer. Typical potential profiles are shown in
Fig. 1.

3. Linear spectral bands

We start the analysis by first examining the spectral properties
of low-intensity solutions to Eq. (6) in the form ψ(x, z) = εΨ
(x)eiEz (a similar ansatz holds for φ), where |ε| ≪ 1 and E is the
propagation constant. To leading order in ε, the wavefunction Ψ
satisfies the eigenvalue problem

LΨ = EΨ , L ≡
∂2

∂x2
+ V (x). (15)

Since the operator L is not self-adjoint with respect to the
L2([0, 2π ]) inner product, the eigenvalues are, in general, com-
plex. However, as it was shown in [43,44] if the potential V is
PT -symmetric, i.e., satisfies condition (3), then in certain parame-
ter regime, the spectrum of L can be entirely real. Under such cir-
cumstances the question of modulational instability is physically
relevant and interesting.

To compute the spectrum ofLwenumerically solve eigenvalue
problem (15) using the partial wave expansion (also known as
Hill’s method [57,58]). The results have also been tested using
spectral Fourier differentiation matrices [59]. By Floquet–Bloch
theory [60], the eigenfunctions of Eq. (15) are expressed asΨ (q; x)
= η(q; x)eiqx such that η(q; x + 2π) = η(q; x), with q being the
real Bloch (quasi)momentum. Substituting this ansatz into Eq. (15)
yields

(∂x + iq)2 η +

W 2

− iWx

η = Eη. (16)

Given that the functionsW (x), V (x) andη(x) are 2π-periodic, their
respective Fourier series representations are given by

W (x) =

∞
n=−∞

Wneinx, (17)

V (x) =

∞
n=−∞

Vneinx, (18)

η(x) =

∞
n=−∞

ηneinx. (19)

Since W (x) is real and even, it follows from Eq. (17) that the
coefficients are real and satisfyWn = W−n. From Eqs. (4), (17) and
(18) it follows that the Fourier expansion coefficients for V satisfy

Vn = nWn +


m

WmWn−m, n ∈ Z, (20)

which for theW given in (13) read

V0 = W 2
0 + 2W 2

1 , V±1 = W1 (2W0 ± 1) ,

V±2 = W 2
1 ,

(21)

and Vj ≡ 0 for |j| ≥ 3. Thus, Eq. (16) can be rewritten in terms of an
infinite set of coupled algebraic equations. Restricting the Fourier
modes to the interval |n| ≤ N/2 for some fixed large even integer
N , we obtain the system

Lη⃗ = Eη⃗, (22)

L(q) =



V
−

N
2

V−1 V−2

V1 V
−

N
2 +1

. . .
. . .

V2
. . .

. . .

. . .

V−2
V N

2 −1 V−1

V2 V1 V N
2


, (23)

for the eigenvector η⃗ =

η−N/2, . . . , ηN/2

T and the eigenvalue E.
Here, L(q) is an (N +1)× (N +1)matrix whose nonzero elements
are shown (23) with Vn(q) ≡ V0 − (n + q)2.
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Fig. 2. Regions of broken (Im E ≠ 0, green) and unbroken (Im E ≈ 0, yellow)
PT -symmetry computed from linear eigenvalue problem (22) with different
potential parameters W0 and W1 . (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Real (top) and imaginary (bottom) parts of the first three linear bands
obtained from system (22) withW1 = 0.1. Different colors indicate different bands
ordered from top to bottom. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Eigenvalue problem (22) is numerically diagonalized for Bloch
momentum q restricted to the first Brillouin zone [−1/2, 1/2]. We
compute the spectrum E(q) corresponding to potential (13) for a
wide range of potential parameters, a summary of which is shown
in Fig. 2. Each point in the (W1,W0) plane represents an eigenvalue
of the matrix L(q) with the largest imaginary part among all
possible Bloch momenta q residing in the first Brillouin zone.
We observe regions of broken (complex pairs of eigenvalues) and
unbroken (real spectra) PT -symmetry. The transition boundary
divides eigenvalues whose imaginary parts have magnitude less
than 10−10 with those above this tolerance. The first three bands
Ej(q), j = 1, 2, 3 (sorted according to their real parts) are
displayed in Fig. 3 for various values of W0. As one can see,
increasing the magnitude ofW0 relative toW1 forces the spectrum
to transition from being complex at the edges of the Brillouin
zone, which occurs at W0 = 0 and W0 = 1, to pure reality at
W0 = 2.

4. Modulational instability

Having identified parameter regimes where the spectrum of
L is purely real, we next focus our study on the issue of stabil-
ity/instability of the CI wave solutions presented in Section 2. To
that purpose, we write solutions of system (6) and (7) in the form

ψ(x, z) = [A + εu(x, z)] eiµz+iθ(x), (24)

φ(x, z) = [B + εy(x, z)] eiνz+iθ(x), (25)

where |ε| ≪ 1 measures the strength of the perturbation eigen-
function U⃗ ≡ (u,U, y, Y )T where, by definition, U = u∗ and
Y = y∗. To first order in ε, one obtains the dynamical system

i
∂U⃗

∂z
= MU⃗, (26)

where M is the 4 × 4 matrix

M =


−L+

A −gA2
−gβAB −gβAB

gA2 L−

A gβAB gβAB

−gβAB −gβAB −L+

B −gB2

gβAB gβAB gB2 L−

B

 , (27)

and

L±

A = ∂2x + gA2
± 2iW∂x, (28)

L±

B = ∂2x + gB2
± 2iW∂x. (29)

The linear stability system (26) governs the evolution (in z) of the
perturbation field U⃗(x, z). Throughout the rest of the paper, the
eigenvalue problem (26) is solved on the spatial domain [−π, π]

only and the z dependence of the perturbation is assumed to be ex-
ponential. With this in mind, we proceed by expressing the vector
U⃗ in terms of the Fourier–Floquet–Bloch expansion

U⃗(x, z) =

∞
n=−∞

un
Un
yn
Yn

 ei(n+p)x+iλz, (30)

where λ = λ(p) is the stability eigenvalue dependent on the real
‘‘perturbationmomentum’’ p. Substituting expansion (30) into sys-
tem (26) yields the following infinite-dimensional set of algebraic
equations

−(n + p)2un − 2
∞

m=−∞

Wm [(n − m)+ p] un−m

+ g

A2(un + Un)+ βAB(yn + Yn)


= λun, (31)

(n + p)2Un − 2
∞

m=−∞

Wm [(n − m)+ p]Un−m

− g

A2(Un + un)+ βAB(Yn + yn)


= λUn, (32)

−(n + p)2yn − 2
∞

m=−∞

Wm [(n − m)+ p] yn−m

+ g

βAB(un + Un)+ B2(yn + Yn)


= λyn, (33)

(n + p)2Yn − 2
∞

m=−∞

Wm [(n − m)+ p] Yn−m

− g

βAB(Un + un)+ B2(Yn + yn)


= λYn, (34)

for the Fourier coefficients un,Un, yn and Yn where n ∈ Z. The lin-
ear stability approach presented here is valid for propagation dis-
tances z much less than the typical distance Zlin given by

Zlin ≡ −
ln(ε|w|)

|Im λ|
, (35)

where |w| measures the largest peak amplitude among the two
modes u and y. The system (31)–(34) is generic in the sense that
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it is valid for any periodic W . For the potential considered in
Eq. (13), system (31)–(34) reduces to

−2W−1ωn+1un+1 +

(gA2

− ω2
n)− 2W0ωn


un

− 2W1ωn−1un−1 + gA2Un + gβAByn + gβABYn = λun, (36)
−gA2un − 2W−1ωn+1Un+1 +


−(gA2

− ω2
n)− 2W0ωn


Un

− 2W1ωn−1Un−1 − gβAByn − gβABYn = λUn, (37)
gβABun + gβABUn − 2W−1ωn+1yn+1 +


(gB2

+ ω2
n)

− 2W0ωn] yn − 2W1ωn−1yn−1 + gB2Yn = λyn, (38)
−gβABun − gβABUn − gB2yn − 2W−1ωn+1Yn+1

+

−(gB2

− ω2
n)− 2W0ωn


Yn − 2W1ωn−1Yn−1 = λYn, (39)

where by definition ωn(p) = n + p. Recall that for the potential
W (x) in Eq. (13) it follows that W−1 = W1. Exploiting the fast de-
cay properties of the Fourier coefficients, we find, after restricting
the Fourier sum to the band-limited modes −N/2 ≤ n ≤ N/2, the
4(N + 1)× 4(N + 1) eigenvalue problem

λ(p)U⃗ = M(p)U⃗, (40)

where the eigenvector U⃗ =


u⃗, U⃗, y⃗, Y⃗

T
is composed of the fol-

lowing vectors

u⃗ =

u−N/2, . . . , uN/2

T
, (41)

U⃗ =

U−N/2, . . . ,UN/2

T
, (42)

y⃗ =

y−N/2, . . . , yN/2

T
, (43)

Y⃗ =

Y−N/2, . . . , YN/2

T
. (44)

Furthermore, the matrix M is given by

M =


Ω − 2W gA2I gβABI gβABI
−gA2I −Ω − 2W −gβABI −gβABI
gβABI gβABI χ − 2W gB2I

−gβABI −gβABI −gB2I −χ − 2W

 , (45)

with I denoting the (N + 1)× (N + 1) identity matrix. Here, W is
the (N + 1)× (N + 1)matrix

W =



W0ω−
N
2

W1ω−
N
2 +1

W1ω−
N
2

W0ω−
N
2 +1 W1ω−

N
2 +2

W1ω−
N
2 +1 W0ω−

N
2 +2

. . .

. . .
. . . W1ω N

2
W1ω N

2 −1 W0ω N
2


,

(46)

andΩ, χ are the diagonal matrices

Ω =



gA2
− ω2

−
N
2

gA2
− ω2

−
N
2 +1

. . .

gA2
− ω2

N
2

 , (47)

χ =



gB2
− ω2

−
N
2

gB2
− ω2

−
N
2 +1

. . .

gB2
− ω2

N
2

 , (48)

where only the nonzero elements are shown. It is evident from
ansatz (30) that when λ is complex the CI waves (8) and (9) are
Fig. 4. The largest magnitude of the unstable eigenvalues λ(p) scanned over all
possible perturbation momenta p residing the in first Brillouin zone. Parameters
are β = 1, A = B = 1/2 for (a) g = 1 and (b) g = −1. The different curves
correspond to (solid blue)W0 = 2 and (dashed red)W0 = 3.

Fig. 5. The unstable eigenvalues obtained from system (40) for focusing (top) and
defocusing (bottom) nonlinearities with parameters: A = 1/2,W0 = 2,W1 = 0.1
and β = 1. Different columns correspond to different values of B with each curve
denoting a different band.

modulationally unstable. The unstable spectrum obtained from
system (40) is computed for a wide range of potential param-
eters (W1,W0) residing in a subset of the unbroken PT -phase
shown in Fig. 2 (yellow region). The largest unstable eigenvalue
(representing the worst case scenario) scanned over all possi-
ble perturbation momenta p is shown in Fig. 4 for fixed val-
ues of W0 and wave amplitude. The bulk MI results (see Ap-
pendix) are recovered when W1 = 0 [54]. In the self-focusing
case [see Fig. 4(a)], we identify (in general) the most unsta-
ble modes to occur in the shallow (small W1) lattice limit. In-
creasing the ratio W0/W1, the maximum unstable eigenvalue
begins to approach its bulk limit. For defocusing nonlinear-
ity [see Fig. 4(b)] we observe regions of modulationally stable
low-intensity modes existing around W1 = 0. Typical examples
of the unstable band modes Im (λ) as a function of the Bloch
momentum p are shown in Fig. 5. Note that only the right-half
of the first Brillouin zone is displayed due to reflection symme-
try around p = 0. For focusing nonlinearities, the overall pic-
ture is that coupling leads to a stronger instability than what
is observed in the scalar case. This scenario persists across the
Brillouin zone. Recall that in the bulk case similar effects occur
i.e. wave coupling typically leads to a more profound instabil-
ity. On the other hand, for defocusing nonlinearity and in the
presence of a complex potential the CI modes are also modula-
tionally unstable though the coupling seems to have less impact
than the one observed in the previous case. At larger intensities
these unstable eigenvalue bands continue to resemble the isolated
‘‘humps’’ pattern observed in the bottom row of Fig. 5.

An interesting observation that is seen from Fig. 5 among the
self-focusing bands is the absence of instability at p = 0 for
low amplitude modes, whereas when B increases an instability
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Fig. 6. The maximum magnitude of Im λ(p = 0) obtained from Eq. (40) with (top
row) focusing and (bottom row) defocusing nonlinearity. Brighter regions denote
nonzero (unstable) values and black areas indicate purely real (stable) amplitudes.
The other parameters are: W0 = 2, β = 1 and (left column) W1 = 0.1 and (right
column)W1 = 0.4.

develops. To further characterize this instability and understand
the role the amplitudes of the CI waves play in MI development,
we compute the unstable eigenvalues Im λ(p) at the center of the
Brillouin zone (p = 0) for various values of A and B. A top view
of the maximum unstable eigenvalue as a function of A and B is
shown in Fig. 6. In the self-focusing case, near radially-symmetric
contours of constant maximum unstable spectrum are observed.
The black regions in Fig. 6(a) and (b) correspond to low-intensity
eigenmodes with purely real (neutrally stable) eigenvalues. The
dark areas indicate the existence of a threshold above which the
formation of modulationally unstable modes occur. This intensity
threshold for the appearance of instability also occurs in the bulk
MI case (see Appendix). The instability properties for the self-
defocusing case appear to be markedly different than their self-
focusing counterparts. For example, in the potential parameters
considered in Fig. 6(c) low-amplitudewaves are found to be stable.
On the other hand, increasing W1 (i.e. more gain and loss) results
in a stability threshold shown in Fig. 6(d). A bright barrier of
instability, located at a (nearly) constant radial distance from the
origin, separates two stable (black) regions.

Next we examine the role of the cross-phase modulation
coupling β in the development of MI. For that purpose, eigenvalue
system (40) is solved on a 2π-periodic domain (p = 0) and
the largest unstable eigenvalue is displayed in Fig. 7. The striking
feature in both nonlinearity types is the presence of a coupling
threshold that separates stable/weakly-coupled regions (black
areas) and unstable/strongly-coupled waves (bright areas). We
point out that the bulk results are recovered when W1 = 0. Here,
there is no MI for the defocusing nonlinearity when β is less than
one (see Appendix). For each of the cases considered in Fig. 7 the
largest values of |Im(λ)| occur in the regions of strongest coupling.
Furthermore, as thewave amplitudes increase (see right column in
Fig. 7) the amount of coupling needed to excite an unstable mode
decreases. Indeed, in Fig. 7(b) no coupling threshold is present.

5. Direct numerical simulations

In this sectionwe supplement the above findings by performing
several direct (nonlinear) numerical simulations. In particular,
we numerically integrate Eqs. (6) and (7) with initial conditions
corresponding to perturbed CI waves with 2π-periodic boundary
conditions, i.e.

ψ(x + 2π, 0) = ψ(x, 0), φ(x + 2π, 0) = φ(x, 0). (49)
Fig. 7. The maximum magnitude of Im λ(p = 0) obtained from Eq. (40) with
(top row) focusing and (bottom row) defocusing nonlinearity for W0 = 2. Brighter
regions denote nonzero (unstable) values and black areas indicate purely real
(stable) regions. The amplitudes are fixed at (a)A = 1/2, (b)A = 2, (c)A = 1,
and (d)A = 3 (note B = A).

This in turn implies that p = 0. Specifically, the initial conditions
considered are of the form
ψ(x, 0)
φ(x, 0)


=


A
B


eiθ(x) + ε


ρ(x)
δ(x)


, |ε| ≪ 1, (50)

where ρ and δ represent one of the following perturbation types:
• The numerically exact linear eigenmode given in Eq. (30) i.e.

ρ
δ


=


u(x, 0)
y(x, 0)


eiθ(x), (51)

• The tent function
ρ
δ


=


1 − |x|/π
1 − |x|/π


. (52)

The first choice allows us to connect and test the validity of the
linear stability regime, while the second one, whose Fouriermodes
decay slowly, should excite any unstable Fourier–Floquet modes
(cf. [61]). The initial value problems (6) and (7) are numerically
integrated in z using a Fourier spectral fourth-order Runge–Kutta
method.

First, let us present the results pertaining to the self-focusing
(g = 1) nonlinearity. Using the first choice of perturbation given
in Eq. (51), we monitor the evolution of each individual wave as
a function of the propagation distance z. The results are shown
in Fig. 8. As expected, for short distances z ≪ Zlin ≈ 2.77, the
intensities (particularly the one for φ) grow exponentially fast
in z, after which they saturate and both waves propagate in a
bounded and recurrent manner. Recall that certain low amplitude
perturbation eigenvectors were predicted to be linearly stable in
Fig. 6. To confirm that these modes are indeed stable and explore
any nonlinear instability effects not covered in the above linear
stability analysis, we performnumerical experiments using the full
nonlinear system and the perturbed initial state in Eq. (50) with
the tent function in (52). The findings of such a simulation for equal
amplitudes are shown in Fig. 9. The dynamical wave pattern shows
a bounded evolution over long distances in z. This is in contrast to
the exponentially growing pulses seen in Fig. 8.

Finally,we simulate the full nonlinear system for the defocusing
(g = −1) nonlinearity with initial disturbance given in Eqs. (50)
and (51) valid when z ≪ Zlin where Zlin ≈ 19.49. At these values,
a weak instability is found to take place over long distances in z
(see Fig. 10). Periodic intensity bursts are observed to occur in a
breather-like fashion in z and this intensity pattern is observed to
hold its overall form in space over the course of its evolution.
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Fig. 8. Dynamic evolution of intensities (a) |ψ |
2 and (b) |φ|

2 for the focusing
nonlinear system (6)–(7) with initial perturbation given in Eqs. (50) and (51). The
parameters are: A = 1/2, B = 1,W0 = 2,W1 = 0.1 and β = 1. The perturbation
parameters are: ε = 0.05 and maxx |u(x, 0)| ≈ 0.343, maxx |y(x, 0)| ≈ 0.686
with λ ≈ 3.971 + 1.217i. (c) The maximum intensity of ψ(x, z) (solid black curve)
and φ(x, z) (dashed blue curve) as a function of z.

Fig. 9. (a) Dynamic evolution of focusing nonlinear system (6)–(7) with initial
perturbation given in Eqs. (50) and (52). The simulation parameters are:A = 0.45 =

B,W0 = 2,W1 = 0.1, β = 1, ε = 0.05. (b) The maximum intensity of ψ(x, z)
[same as φ(x, z)] as a function of z.

Fig. 10. Dynamic evolution of intensities (a) |ψ |
2 and (b) |φ|

2 for the defocusing
nonlinear system (6)–(7) with initial perturbation given in Eqs. (50) and (51). The
problem parameters are: A = 0.9, B = 0.36,W0 = 2,W1 = 0.4, β = 1. The per-
turbation parameters are: ε = 0.1 and maxx |u(x, 0)| ≈ 1.045, maxx |y(x, 0)| ≈

0.418 and λ = 5.518 + 0.116i. (c) The maximum intensity of ψ(x, z) (solid black
curve) and φ(x, z) (dashed blue curve) as a function of z. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
6. Conclusions and outlook

In this paper we presented a class of exact vector constant-
intensity solutions of a two-component nonlinear Schrödinger
system in the presence of a PT -symmetric potential. A unique
feature of these solutions is their highly nonlinear phases which
are directly tied to the spatial structure of the external lattice.
Remarkably, such waves can propagate without distortion or
reflection despite the fact that the medium, represented by the
potential, is highly active, namely it has local gain and loss. This
attribute is in some sense counterintuitive given the fact that the
presence of obstacles should in fact lead to wave scattering and
amplitude modulation.

The construction of such spatially homogeneous coupledwaves
allowed us to study vector modulational instability for both self-
focusing and defocusing nonlinearities. Indeed, a linear stability
eigenvalue problem was derived and its unstable spectrum was
numerically determined using Fourier–Floquet–Bloch theory. For
both types of nonlinearity we numerically observed the existence
of an intensity threshold above which uniform-intensity waves
are modulationally unstable. The linear stability results were
supplemented with direct numerical simulations.

We note at this point, that the coupled nonlinear Schrödinger
equations considered in this work, may be physically related to
coupled nonlinear waveguide arrays [62] as well as two-species
Bose–Einstein condensates [63–65]. These MI results, together
with those obtained in [51], open many opportunities for future
research directions. For example, the

• formation of PT -symmetric roguewaves in inhomogeneous and
non-hermitian optical systems,

• extension of the present analysis to multi-dimensional scalar
and vector modulational instability,

• connection between modulational instability and formation of
PT -symmetric lattice solitons. In this regard, we note the work
of [66] where solitons in PT symmetric potentials (4) have been
constructed for localized W .

• study of scalar and vector modulational instability in complex
potentials in the presence of four-wave mixing. In this case,
Eqs. (6) and (7) become

i
∂ψ

∂z
+
∂2ψ

∂x2
+ V (x)ψ + g(|ψ |

2
+ β|φ|

2)ψ + g2ψ2φ∗
= 0,

(53)

i
∂φ

∂z
+
∂2φ

∂x2
+ V (x)φ + g(β|ψ |

2
+ |φ|

2)φ + g2φ2ψ∗
= 0,

(54)

where g2 ∈ R. In fact, the CI waves (8)–(12) still solve this new
system with the restriction that the propagation constants µ
and ν are equal, which implies that β = 1.
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Table A.1
Parameters for which it is possible for instability criteria (A.4) to be satisfied. The
plus/minus signs correspond to the two signs in Eq. (A.4) where MI is possible and
the null symbol indicates that no MI is possible.

0 < |β| < 1 |β| = 1 |β| > 1

g > 0 ± + +

g < 0 ∅ ∅ +

Appendix. Bulk modulational instability

Here a review [54,67,61] of the bulk or potential-free modu-
lational instability results are given for both the scalar and vec-
tor versions of Eqs. (6) and (7). In this case, eigenvalue system
(31)–(34) can be solved exactly on the domain [0, d] with peri-
odic boundary conditions. For the scalar case (β = 0) the stabil-
ity/instability eigenvalues are given by

λn = ±ωn

ω2n2 − 2gA2, n ∈ Z (A.1)

where ω = 2π/d. The eigenfunctions are unstable when λn ∈ C,
or equivalently when the intensity satisfies the instability criteria

0 <
ω2n2

2g
< A2. (A.2)

We point out that this instability condition is only met with focus-
ing (g > 0) nonlinearity. Additionally, we observe the absence of
unstable modes at low intensities i.e. A2 < A2

th given the intensity
threshold A2

th = 2π2/(gd2). This intensity threshold is lowered by
either extending the domain length d or through a stronger attrac-
tive nonlinearity g .

Next let us consider the potential free two-component (β ≠ 0)
problem on the same periodic domain of length d. The vector situ-
ation contains richer variety of parameter regimes corresponding
to modulational instability. Here, the four stability eigenvalues are

λn = ±ωn


ω2n2 − Ig ±


I2
g + 4g2A2B2(β2 − 1),

Ig = g(A2
+ B2). (A.3)

Notice the eigenvalues take an imaginary (unstable) value when

0 < ω2n2 < Ig ±


I2
g + 4g2A2B2(β2 − 1). (A.4)

The instabilities can be factored into three scenarios based on the
magnitude of the coupling coefficient: weak coupling (0 < β < 1),
balanced coupling (β = 1), and strong coupling (β > 1). Based
on these three categories and the type of nonlinearity we can de-
termine whether the instability condition in Eq. (A.4) is satisfied
for appropriate intensities. These findings are summarized in Ta-
ble A.1. One of the intriguing observations is the presence of MI
under defocusing nonlinearity in the strong coupling regime. This
is in contrast to the scalar findings given in Eq. (A.2) where only
focusing nonlinearity can cause instability.
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