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Multicomponent two-dimensional solitons
carrying topological charges
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We propose multihump N -component two-dimensional vector solitons for which each constituent carries a
different topological charge. These new structures exhibit a unique triple-point phase diagram that is
completely absent in the two-component limit.  2000 Optical Society of America
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Vector solitons are multicomponent solitons that mu-
tually self-trap in a nonlinear medium. Degenerate
two-component solitons were first suggested in Kerr
nonlinear media1 and then demonstrated in AlGaAs
waveguides.2 Vector solitons, whose components
belong to different modes of their jointly induced po-
tential, were later found in birefringent x �3� nonlinear
systems.3 Such composite multimode solitons can
have complex structures, and, in many cases, their
total intensity profile exhibits multiple humps, as was
recently demonstrated experimentally.4 In general,
self-trapping of a multicomponent wave packet occurs
when the vector constituents of the wave packet
correspond to bound states of their jointly induced
waveguide. This is the so-called self-consistency prin-
ciple, applied to vector solitons.5 Another necessary
requirement for establishing a vector soliton is the
absence of any interference (beating) among the eigen-
modes of the jointly induced potential. This can be
ensured either by use of two orthogonally polarized
components1,3 or by use of two different frequencies
when the material has a noninstantaneous nonlinear-
ity, and the frequency difference is larger than the
inverse of the material response time.6 In nonin-
stantaneous nonlinear media, the last requirement is
readily satisfied by use of mutually incoherent beams,
as has been demonstrated in photorefractives.7 The
recent progress in vector solitons was paralleled by
rapid progress in soliton interactions and has stimu-
lated exciting ideas that are unique to multicomponent
solitons. Examples include shape transformations8

and energy exchange between colliding vector solitons.9

Here we propose �N $ 3� two-dimensional vector
solitons for which each component carries a different
topological charge (‘‘spin’’).10,11 We find that this
family is characterized by a unique triple-point
phase diagram, which is completely absent in the
0146-9592/00/010061-03$15.00/0
two-component case. Moreover, we show that these
higher-dimensional vector structures �N $ 3� are
composed of lower-dimensional building blocks. With
soliton collisions in mind, it is clear that the spin, the
multimode nature, and the multihump structure offer
new features for interactions between two-dimensional
vector solitons. Here we draw on the thresholding
nonlinearity12 and employ the self-consistency prin-
ciple. However, we emphasize that the core ideas
and findings presented here are expected to be univer-
sal. As is evidenced by the one-plus-one-dimensional
[�1 1 1� D] multimode solitons found for this non-
linearity,5 the main physical ideas hold for the
saturable nonlinearities, as was demonstrated experi-
mentally4 and theoretically.13 The composite solitons
presented here therefore provide insight into ways to
realize these structures in a saturable nonlinearity.

We start from the normalized equations

i
≠Uj

≠z
1 =2

�Uj 1 F �I �Uj � 0 , (1)

where Uj , j � 0, 1, . . . , N 2 1 are the envelopes
of the N interacting beams; =2

� � ≠2�≠x2 1 ≠2�≠y2.
Equation (1) describes N coupled beams in an optical
medium with a normalized refractive-index change
F �I � of zero for I , Ith and constant F0 � 1 otherwise,
with the total intensity I �

PN21
j�0 jUj j

2. We seek
multicomponent soliton solutions to Eq. (1) for which
each component Uj carries a different topological
charge mj , in the form

Uj �r, u, z� � uj �r�exp�imju�exp�imjz� , (2)

where mj are the propagation constants of the vector
constituents and vanishing boundary conditions at
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infinity are imposed. Substituting Eq. (2) into Eq. (1),
we find that
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where k
2
j � F0 2 mj . 0 and mj . 0. The solutions to

system (3) are given by
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Kmj �pmj a�
Kmj �pmj r� r $ a

,

(4)

where Jmj �Kmj � are the regular (modified) Bessel
functions of the first (second) kind of order mj ; a is
the normalized radius (the so-called V number14) of
the induced waveguide. The propagation constants
satisfy

p
mj Kmj21�pmj a�
Kmj �pmj a�

1
kjJmj21�kja�

Jmj �kja�
� 0 . (5)

Eigenvalue equation (5) describes the eigenmodes
of a weakly guiding step-index fiber for which the
polarization states can be found in Ref. 14. We im-
pose the self-consistency condition on the vector
components; i.e., the total intensity at the margins
of the induced waveguide is equal to the threshold
intensity Ith �

PN21
j�0 h

2
j J2

mj
�kja�. The fundamental

two-component configuration was discussed in
Ref. 15, and multiple branches of existence curves
of composite solitons were found. Here we explore
higher-dimensional �N � 3, 4� cases and consider
multicomponent solitons with �mj �N21

j�0 � �0, 1, 2� and
�mj �N21

j�0 � �0, 1, 2, 3�. (Note that degenerate cases
such as (0, 1, 1) and (0, 2, 2) are also possible.) The rea-
son why we consider here composite solitons in which
one component always carries zero charge is that the
total intensity vanishes at the center if all components
have nonzero charge. Such structures are expected to
be highly unstable, even in saturable nonlinearities,
as was shown for scalar rings,16 unless their shapes
are azimuthally intensity modulated in the form of
necklace beams.17 By solving Eq. (5) and imposing
the self-consistency principle on the N components, we
construct a triple-point phase diagram for the (0, 1, 2)
composite solitons [Fig. 1(b)]. Importantly, the exis-
tence of this triple-point phase diagram is inherent in
N $ 3 composite structures and is absent in the N � 2
case. For h1 � 0 [fundamental (0, 2) vector structure]
and by increasing h2, the total intensity shape changes
from single hump (SH) to triple hump (TH) [Figs. 2(a)
and 2(b)] with the existance of a relatively small region
[the black area in Fig. 1(b)] where solutions correspond
to a hollow waveguide [Fig. 2(d)].

When h1 . 0, the total intensity still exhibits the
same shapes until h1 reaches 0.8, where a new tran-
sition to a double hump (DH) is observed [Fig. 2(c)].
With a further increase in h1 (decrease in h2), the
existence area of TH shapes shrinks (expands) until
it approaches a critical value of h
c
1 � 1.8 (and h

c
2 �

2.3) where the SH and TH shape boundaries coin-
cide and give rise to a single transition boundary
(SH to DH). As h1 reaches its maximum value 3.57
�h2 � 0�, we recover the whole range of the exis-
tence curve of the basic two-component (0, 1) composite
structure. Notice that the boundary layer of the hol-
low waveguide [the darkest area of Fig. 1(b)] has al-
most a constant width along any cross section in the
�h1, h2� plane. Conceptually, the (0, 1, 2) structure
can be thought as being made of two fundamental com-
posite states, i.e., (0, 1) and (0, 2). By superimposing
these two basic states we can span the whole range of
existence of (0, 1, 2) vector solitons. Similarly, we can
construct a general N-component vector soliton with
structure �0, m1,m2, . . . , mN21� from its correspond-
ing basic building blocks �0,mj �. Our last example is
the (0, 1, 2, 3) composite structure �N � 4�. Unlike in
the N � 3 case for which the phase diagram is two-
dimensional, here it is three dimensional, with areas
in which soliton solutions exist exhibiting SH, DH, or
TH shapes together with solutions that correspond to a
hollow waveguide (see Fig. 3).

Fig. 1. (a) Propagation constants m0 (solid curves), m1
(dotted curves), and m2 (dashed curves) as a function of
the normalized radius a of the induced waveguide (the V
number). (b) Triple-point phase diagram for the (0, 1, 2)
composite solitons at a � 5.

Fig. 2. u2
0 (dotted curves), u2

1 (dashed curves), u2
2 (dotted–

dashed curves), and total intensity I (solid curves) for
the (0, 1, 2) case. The parameters �h1, h2� are (a) (1.5, 2),
(b) (1, 2.7), (c) (1.8, 2.5), and (d) (1.8, 2.7).
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Fig. 3. u2
0 (dotted curves), u2

1 (short-dashed curves), u2
2

(dotted–dashed curves), u2
3 (long-dashed curves), and total

intensity I (solid curves) for the (0, 1, 2, 3) case. The
parameters �h1, h2, h3� are (a) (1.2, 2, 2), (b) (1.8, 2.1, 2.1),
(c) (1, 2, 2.5), and (d) (2.1, 2.1, 2.2).

Having found these composite solitons, we can
reasonably ask: Are they stable or, if they are not,
are they at least observable? Because here we deal
with a thresholding nonlinearity that does not lend
itself to stability analysis, the stability issue is still
a fully open question. Nevertheless, we have a good
indication that at least the SH and DH families of the
composite solitons should be stable, or least weakly un-
stable, to facilitate experimental observation. First,
all saturable nonlinearities support stable �2 1 1�D
solitons,18 so certainly the scalar limit of uj � 0 for
j $ 1 is stable. Multimode multihump �1 1 1�D soli-
tons were observed experimentally and were found
numerically to be stable for many diffraction
lengths.4 Moreover, recently it was shown that
these SH and DH �1 1 1�D solitons are indeed stable
over large regions in parameter space.19 Finally, it
is now established that nonlinearity saturation also
arrests transverse instabilities of �1 1 1�D solitons in
three dimensions, as was found for bright and dark
solitons20 and recently21 also for the vector solitons
reported in Ref. 7. For these reasons, we believe
that such structures should be observed in an actual
experimental setting.

In conclusion, we have predicted the existence of mul-
tihump N-component composite solitons that carry dif-
ferent topological charges, which exhibit a triple-point
phase diagram. These multicomponent self-trapped
wave packets can provide exciting possibilities for spin
interactions, such as spin exchange, spin fragmenta-
tion, degeneracy, and multishape transformation.
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