
November 1, 2007 / Vol. 32, No. 21 / OPTICS LETTERS 3185
Optical beam instabilities in nonlinear
nanosuspensions
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We investigate the modulation instability of plane waves and the transverse instabilities of soliton stripe
beams propagating in nonlinear nanosuspensions. We show that in these systems the process of modula-
tional instability depends on the input beam conditions. On the other hand, the transverse instability of
soliton stripes can exhibit new features as a result of 1D collapse caused by the exponential nonlinearity.
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Over the last two decades the mechanical interaction
between light and dielectric nanoparticles has re-
ceived considerable attention and has led to the
emergence of new tools in optics such as optical twee-
zers and traps [1–5]. The nonlinear Kerr-like charac-
ter of this process was recognized in a series of pub-
lications starting with the pioneering work of Ashkin
et al. [6–11]. Lately, two independent theoretical
studies have shown that the interplay between the
optical and thermodynamic forces in nanosuspen-
sions leads to exponential nonlinearities [12–14]. As
noted in Refs. [12,13], even though these exponential
nonlinearities are always of the self-focusing type,
two different regimes can be distinguished based on
the refractive index contrast between the nanopar-
ticles and the host medium. Both beam self-trapping
(solitons) as well as self-induced transparency effects
were predicted in such configurations [13].

In this Letter we consider optical beam instabili-
ties in nanocolloidal systems. Depending on the re-
gime, the modulational instability (MI) behavior can
display either Kerr or non-Kerr characteristics.
Transverse MI of soliton stripe beams is also investi-
gated, and a new instability is identified as a result of
the 1D collapse caused by the exponential nonlinear-
ity.

We start our analysis by writing the evolution
equation for an optical beam propagating in a nano-
particle colloidal system [13]:
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Here � is the electric field envelope, kBT is the ther-
mal energy, � is the particle polarizability [13], np
and nb are the particle and the background (host me-

dium) refractive indices, respectively, and Vp is the
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particle volume. In addition, k0 is the free space
wavenumber and �0 is the unperturbed particle con-
centration (in the absence of any illumination). In
this equation �0 represents a possible infinite light
background or a plane-wave component (if it exists)
upon which the beam rests. This term arises from the
integration of the Nernst–Planck equation
�� /4kBT��� ���2−��=0 [13], which leads to �� /4kBT�
�����2− ��0�2�=ln�� /�0�. By rearranging, one obtains
the nonlinear term appearing in Eq. (1). It is worth
noting that this model describes only diluted suspen-
sions (with typical filling factors below �0.3%) and
hence particle–particle interactions can be ignored.
Note that for very dense colloidal systems the nonlin-
ear Rayleigh losses described by the last term in Eq.
(1) [13] (with � being the scattering cross-section)
dominate the dynamics and greatly suppress nonlin-
ear effects. In normalized units, Eq. (1) takes the
form [13]
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where �= �4kBT / �� � �1/2u, �=z / �2k0nbw2�, X=x /w, Y
=y /w, and the spatial scale w is given by w−2

=2k0
2nb �np−nb �Vp�0. In Eq. (2), � is a normalized loss

coefficient. Note that Eq. (2) was written in a general
form to account for different scenarios. The case a=
+1 corresponds to a system with an index contrast m
greater than unity �m=np /nb�1�, while a=−1 is
used for m	1. The constant b is either 1 or 0 depend-
ing on whether the input is a plane wave (or rests on
a plane wave) that covers the entire cell or a quasi-
plane-wave broad beam that covers only a small por-
tion of the cell, respectively.

We first consider the process of MI in the absence
of scattering losses. To do so we write the plane-wave
solution of Eq. (2) as u=uo exp�i
��, where 

=a exp�a�1−b�uo

2�. By introducing a small perturba-
tion ��X ,�� in this solution u= �uo+��X ,���exp�i
��
and by substituting this latter form back into Eq. (2),

then to first order in � we get
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i�� + �XX + uo
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Assuming a solution of the form �=A cos���−KX�
+ iB sin���−KX�, and by eliminating the arbitrary
constants A, B, we obtain

�2 = K2�K2 − 2uo
2 exp�a�1 − b�uo

2��. �4�

From Eq. (4) we see that under plane-wave excitation
conditions �b=1� the MI of this system exhibits a
Kerr response [15,16] regardless of the refractive in-
dex contrast. On the other hand, for the more realis-
tic case of a quasi-plane-wave input, when the beam
is wide enough to avoid appreciable diffraction but
does not cover the entire cell �b=0�, the situation is
different. In this latter case, when the particle polar-
izability is positive �m�1�, Eq. (4) becomes �2

=K2�K2−2uo
2euo

2
�. Here, as in the case of Kerr nonlin-

earities, the maximum gain happens to be at the
peak intensity of the beam �uo max� and the spatial
frequency at which this maximum gain is attained
occurs at K2=uo

2 exp�uo
2�. Figure 1(a) shows the gain

curve for a system of polystyrene nanoparticles �np
=1.56� of radius �r=50 nm� suspended in water when
the particle concentration 7�1017 m−3. For this set of
parameters, the power density of the incident plane
wave is 1 MW/cm2. Conversely, when the particle po-
larizability is negative �m	1�, the MI exhibits en-
tirely different characteristics as the dispersion rela-
tion takes the form �2=K2�K2−2uo

2e−uo
2
�. In this case,

in contrast to the previous one, the maximum gain
does not monotonically increase with the peak inten-
sity uo. In fact the maximum intensity occurs when
uo=1 at a spatial frequency K=1/e. The gain curve in
Fig. 1(b) was obtained for “nanobubbles” (with np
	1) of 50 nm radius suspended in water at a concen-
tration of 2�1018 m−3 (the power density is
0.7 MW/cm2). In all the examples considered in this
paper the wavelength is taken to be 0=0.532 
m.

Next we consider the transverse MI of soliton
stripes (along y) [17] in the absence of Rayleigh
losses. In this case we assume a solution of the form
u= �us�X�+��X ,Y ,���exp�i���, where us�X� is a 1D
soliton solution of Eq. (2), ��X ,Y ,�� is a small pertur-

Fig. 1. (Color online) MI gain versus perturbation wave-
number for (a) an exponentially nonlinear �np /nb�1� and
(b) an exponentially saturable nonlinear nanosuspension
system �np /nb	1� for the parameters given in the text. The
solid/dotted curves depict the MI gain when b=0/b=1 for
uo=1.
bation and � is the soliton eigenvalue. In this case
us���=0, and hence �0=0. Substituting this latter
form in Eq. (2) and by retaining only first-order terms
in � we get
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If in turn we assume

��X,Y,�� = �V�X� + W�X��exp�i��� + qY��

+ �V*�X� − W*�X��exp�− i��*� + qY��,
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then from Eq. (5) we obtain the following linear
coupled eigenvalue equations:
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For any specific power level (corresponding to a cer-
tain soliton solution us), the above generalized eigen-
value problem can be solved for each transverse spa-
tial frequency q. The solution us�X� is stable against
transverse modulation perturbations when � is real,
and it becomes unstable in the complex � domain.

We first consider the case when the particle’s re-
fractive index is higher than that of the background,
i.e., when a=1. In this case, as demonstrated in Ref.
[13], the soliton solution has two regimes of stability
with respect to longitudinal perturbations (along x) of
the form ��X ,�� (Vakhitov–Kolokolov criterion). The
transverse instability �−q gain curve corresponding
to a 1D soliton that belongs to the stable region [13]
��	2.49� is shown in Fig. 2(a), where we have used
the same parameters as in Fig. 1(a). This gain curve
was obtained for a soliton solution of Eq. (2) at a lin-
ear power density of 1.3 kW/cm and at �=1.7. From
Fig. 2(a) one can see that the solution is marginally
stable at q=0, unstable for long wavelength pertur-
bations, and becomes stable for q�1.9. This behavior
qualitatively resembles that encountered in nonlin-
ear Kerr systems [17]. Contrary to this latter case, in
the longitudinally unstable region ���2.49�, the
transverse instability displays new features due to
the competition between longitudinal and transverse
instabilities. Figure 2(b) shows the gain curve for a

Fig. 2. (Color online) Transverse MI gain of a stripe soli-
ton versus perturbation wavenumber q for an exponen-
tially nonlinear colloidal system when the 1D soliton solu-
tion belongs to (a) the stable ��=1.7� and (b) the unstable

��=3� branch.
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soliton stripe at power density of 1.33 kW/cm and for
�=3, i.e., when it belongs to the unstable branch of
the power-eigenvalue diagram discussed before in
Ref. [13]. Note that in this case the soliton stripe
beam is unstable even at q=0, which might be ex-
plained as follows. When q=0, the transverse pertur-
bation ��X ,Y ,�� described in Eq. (6) effectively re-
duces to the longitudinal perturbation ��X ,��, which
in this specific case is known to be unstable, thus giv-
ing rise to a complex eigenvalue solution to the gen-
eralized eigenvalue problem of Eq. (7). Figures
3(a)–3(c) depict the propagation dynamics of the
stripe soliton corresponding to Fig. 2(a). As clearly
seen in Figs. 3(b) and 3(c), transverse instability and
filamentation persist even when the Rayleigh losses
are included in the simulations. Figures 3(d)–3(f)
show what will happen to the stripe beam corre-
sponding to Fig. 2(b) (unstable 1D soliton). In this
case, in spite of the scattering losses, the beam
quickly disintegrates into collapsing filaments as a
result of the synergy of the longitudinal and trans-
verse instabilities. Nonetheless, when the nanopar-
ticles have a negative polarizability (nanoparticles
suspended in a higher refractive index host medium),
the 1D soliton solution is always stable, and one
would expect soliton stripes to be marginally stable

Fig. 3. (Color online) (a)–(c) and (d)–(f): Propagation dy-
namics of the stripe soliton beams associated with Figs.
2(a) and 2(b), respectively. (a), (d) input profiles. Output in-
tensity in (b) a lossless system at z=1.9 mm, (c) in a lossy
system (45% of losses at the output) at 6 mm. (e) Output
beam in the absence of losses (after 3 mm), and (d) effect of
losses (16% after 0.8 mm of propagation).

Fig. 4. (Color online) (a) Transverse MI gain of a stripe
soliton versus perturbation wavenumber for a saturable ex-
ponentially nonlinear colloidal dispersion when �=0.75.
Corresponding propagation dynamics in this same system
after z=7 mm for (b) an input soliton stripe beam, when (c)
losses are neglected and (d) nonlinear Rayleigh losses are
included.
at q=0, in a way similar to that shown in Fig. 2(a). In
fact this prediction is in perfect agreement with lin-
ear stability analysis as depicted in Fig. 4(a), where
the normalized gain curve corresponds to the
nanobubble suspensions considered in Fig. 1(b). The
�−q diagram in Fig. 4(a) was obtained at a power
density of 2.8 kW/cm when �=0.75. Figures 4(b)–4(d)
show propagation dynamics of a stripe soliton beam
[that corresponds to Fig. 4(a)]. In the absence of
losses this beam becomes transversely unstable [Fig.
4(c)] starting from the u=1 regions where the MI
gain is maximum. In Figs. 4(b) and 4(c) these regions
are located at the two edges of the finite stripe. Fig-
ure 4(d) shows the output beam when the nonlinear
Rayleigh losses are included. In this case the fila-
mentations process affects the entire beam more
quickly because of self-induced transparency effects
[13]. In all previous simulations, to keep the simula-
tion window finite, we use very wide super-Gaussian
soliton beams in the y direction as opposed to ideal
soliton stripes. This explains the high-frequency dis-
persive waves that appear in Fig. 4(d) that eventu-
ally decay with propagation.

In conclusion we investigated the modulation in-
stability of plane waves and the transverse instabili-
ties of soliton stripe beams propagating in nonlinear
nanosuspension systems.
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