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Collisions between (2+1)D rotating propeller solitons
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We study theoretically the collisions between (2 + 1)D rotating-dipole-type bimodal solitons and find that such

interactions exhibit many interesting exchanges of angular momentum.
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Solitons are self-trapped wave packets that behave as
particles: A single soliton propagates without loss of
energy and momentum. This analogy holds also for
collisions between solitons, which can be elastic or in-
elastic, depending on whether the system is integrable.
Soliton collisions have been thoroughly investigated
over the years.! In the (1 + 1)D integrable case, colli-
sions are elastic: The number of solitons is conserved,
each soliton conserves its power and linear momen-
tum, and no energy is transferred from bound (soliton)
states to radiation states. But, in such a system,
(2 + 1)D solitons are unstable, so soliton interactions
are restricted to a single plane. In saturable nonlin-
earities collisions are much richer, because in such
media (2 + 1)D solitons are stable. Thus collisions
can occur between (2 + 1)D solitons with trajectories
in different planes. Also, in this system collisions
at shallow angles are inelastic.! Thus far, various
types of interaction, e.g., fusion, fission, and spiraling
of solitons, have been identified in saturable non-
linearities.! The ability of saturable nonlinearities to
support stable (2 + 1)D self-trapping can be exploited
to launch (2 + 1)D composite (or multimode) solitons.
These are (2 + 1)D solitons that comprise multiple
components, each populating a different mode of their
jointly induced waveguide. Multimode solitons were
first suggested in the form of temporal solitons®>* and
later on in the (1 + 1)D spatial domain,” where they
were first observed in 1998.5 In (2 + 1)D, composite
bright solitons were suggested first in a vortex-type
form""!! and later in a dipole-type form,!? for which
the first mode is an elliptical beam and the second
mode is a two-dimensional dipole. Experimentally,
such solitons were observed in a dipole-type'®!* and
in a multipole’®!® form. Recently we demonstrated,
theoretically and experimentally, so-called rotating
propeller solitons.!” These solitons consist of a
bell-shaped mode jointly trapped with a dipole mode,
rotating in unison. We call them propeller solitons
because their planes of equal phase are shaped as
propeller blades. Such solitons have their entire
intensity structures rotating during propagation,
making it easy to observe manifestations of their
angular momentum. Here, we study numerically
collisions between propeller solitons and show that
they exhibit interesting features that result from
exchanges of angular momentum between the field
constituents of the interacting solitons.

The system is described by the normalized
equations!”®
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where j = 1, 2 are the two modes in the composite
soliton, ¢; is the slowly varying envelope, and I =
|11 + |2l?. The nonlinearity is saturable, as can
be found in electronic transitions in a homogeneously
broadened two-level system or (with some approxima-
tion) in photorefractives. We find the wave functions
of 1 and 5 by using the weakly nonlinear procedure
of Ref. 17, which yields 1(r, z) = ui(r)exp(iu12z) and
Po(r, 0, 2) = us(r)[Rrexp(if® + iQ.z) + R_exp(—if +
iQ_z)]exp(insz), where R, and R_ are parameters
that determine the rotation rate, u; and ug are propa-
gation constants, and 4 and Q_ depend on R, and
R_. The radial structures u; and uy are found by use
of a relaxation code. Both R, and R_ must be nonzero
(otherwise ¢ is a vortex), and R; # R_ (otherwise
9 is a stationary dipole). The angular momentum at
z = 0 is due to the topological charge of the counterro-
tating vortices. We numerically find (by launching the
solution and observing its evolution) that a propeller
soliton is stable for more than 80 diffraction lengths,
the total power of each field is conserved, and the
linear and angular momenta of all fields together are
conserved."”

Collisions of solitons in saturable nonlinearities
depend strongly on the relation between collision angle
6 and critical angle §..! When a soliton is viewed as
a guided mode of its own self-induced waveguide,® 6,
is the (complementary) critical angle for total internal
reflection in the waveguide, as is known from wave-
guide theory. When they collide at 0 > 6., scalar
solitons go through each other unaffected,! whereas for
0 < 6. solitons can couple light into each other’s wave-
guides; hence the collisions are inelastic, leading to
fusion or fission. 6. plays a key role also for compos-
ite solitons.””'® The other key factor in a collision of
propeller solitons is their angular momentum. The
propeller can have right- or left-handed rotation, so
collisions between corotating propeller solitons differ
from those between counterrotating solitons. The
final key factor is the orientation of i9: Inasmuch
as this mode has two poles (labeled + and — in
the figures), one can arrange the input such that
the poles of one propeller are of the same sign as
those of the other, or of opposite sign. The relative
arrangement determines the forces that the solitons
exert on each other.! These factors suggest that
collisions between such solitons exhibit interesting
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features. Here we concentrate on the generic
effects. We study collisions between two such solitons
of identical initial power and identical rotation rate
and with trajectories in the same plane.

First we launched two propellers at 8 > 6.. The
solitons went through each other almost unaffected,
with only a tiny perturbation, irrespective of whether
they corotated or counterrotated and of their initial
arrangement. When we launched the propeller soli-
tons at # < 6. (including 6 = 0), the solitons interacted
in a fascinating fashion. Consider the first collision
[Fig. 1(a)]l, for which we launched two corotating
propellers at 8 = 0, arranged symmetrically (dipoles
in parallel). The collision outcome was three fission
products [Fig. 1(c)]. In the center, a new propeller
soliton emerged, rotating in the same direction yet a
little slower than each of the input solitons. On the
sides, two self-trapped beams, in which both field con-
stituents populated the lowest mode, emerged. The
side beams propagated in a plane that was different
from the original (x, z) plane of the input trajectories.
The equal-phase planes of the incoming propellers
resembled propeller blades, which means that each
pole of the dipole had a Poynting vector tilted with
respect to the (x, z) plane. The incoming propellers
were destroyed during the collision process because
their inner poles bound and formed a rotating dipole.
The surviving outer poles propagated in the direction
determined by their individual Poynting vectors, at
the point where they broke free from the inner poles
[z = 10; Fig. 1(a)]. Examining the central soliton
revealed that, after the soliton had stabilized (at
z = 90), the power of each component was conserved
(to within 0.03%/z, which part escaped to radiation).
Furthermore, the total angular momentum L, of the
central composite soliton (the sum of the angular
momenta of its constituents, calculated with respect
to the center of mass of the whole system, i.e., parallel
to the z axis in the center between the input solitons)
was conserved (to within our numerical accuracy). In
the side beams, the power in each mode decreased at
0.13-0.21%/z, and L, decreased at 0.04%/z; i.e., L,
decreased considerably more slowly than the power,
indicating that the small amount of power escaping
to radiation did not carry much angular momentum.
A striking feature is the cyclic exchange of angular
momentum between ; and s of the outer beams
[Fig. 1(b)], while their total L, is conserved (with slow
decay). This effect reflects a tiny back-and-forth
wobbling of ¢ and ¢ about their common center of
mass in the outer beam. The central (new) propeller
soliton also exhibited a cyclic exchange of L, between
its modes but on a much smaller scale. This seems
a general feature of collisions between propeller soli-
tons: The modal constituents of emerging daughter
solitons exchange angular momentum cyclically. The
fact that collisions between propeller solitons result
in new solitons, one of which is a new propeller
soliton for which power and angular momentum are
almost ideally conserved, is a striking indication that
propeller solitons are robust.

The second collision [Fig. 2(a)] was at 6 < 6. but
with counterrotating propellers. Three new solitons
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emerged from the collision, but now the central soliton
was no longer a dipole-type composite soliton. In-
stead, both of its constituents were bell shaped (both
populating the fundamental mode), with different
amplitudes [Fig. 2(b)]. This central composite soliton
propagated with a trajectory in a plane inclined with
respect to the collision plane. In contradistinction
to the collision of corotating propeller solitons (of
Fig. 1), the outer beams were counterrotating pro-
pellers. Interestingly, the leftmost outgoing beam
had right-handed rotation, i.e., counter to the incoming
rightmost propeller, which had left-handed rotation
(the opposite occurred for the rightmost beam). The
poles in the dipole of the outer propeller solitons ex-
changed energy similarly to the perturbed stationary
dipole,'? but here, in addition, the dipole rotated. The
central soliton lost the propeller structure because of
the symmetric counterrotating initial arrangement of
the poles, and the two outer emerging solitons had
opposite angular momenta like the input beams that
initiated them. When we repeated the simulation of
Fig. 2(a) (collision of counterrotating propellers) but
with opposite polarity of one of the dipoles, again three
daughter solitons emerged. However, the central
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Fig. 1. (a) Collision of two corotating, symmetrically
arranged propeller solitons at 6 = 0. The propaga-
tion length of 100 z units is 120 diffraction lengths.
(b) Evolution of the angular momentum of ¢; (solid
curve), of 5 (dotted curve), and total L, (dashed curve)
in the rightmost outgoing beam. Each component has
oscillating angular momentum, but their sum is constant.
The leftmost outgoing beam has identical behavior.
(¢) Input—output configurations of the dipole mode. The
initial conditions (in normalized units) are as follows: For
1, FWHM, 2.9; peak intensity, 4. For i peak-to-peak
separation, 3.6; peak intensity, 0.49; distance between the
input propellers, 8. The rotation rate of the envelope
is =9°/z. For A = 0.488 um and Ang/ny = 107%, the
FWHM of ¢; is 9.7 um, the peak-to-peak separation
of ¢ is 11.7 pm, and the distance between the input
propellers is 26.2 um.
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Fig. 2. (a) Collision of two counterrotating, symmetrically
arranged propeller solitons at 6 < #,. The collision angle
in dimensional units is 8 X (2Ano/no)?; e.g., for Ang/no =
107* the collision angle is 0.57°. (b) Illustration of the
input—output configurations of the dipole mode. The
negative poles collide, and each breaks into two nonequal
portions. The central parts fuse and together form a
nonrotating (—) pole. The outer parts are captured by the
original positive poles, and each forms a nonsymmetric
rotating dipole. (c) Collision of two corotating, antisym-
metrically arranged propeller solitons for the same 6 as
in (a). The distance between the input propellers is 20
[normalized units] = 65.5 um (for the parameters of Fig. 1)
in both cases. Other initial conditions are as in Fig. 1.

soliton was then a stationary, nonrotating, dipole-type
composite soliton. Thus, from a collision between
counterrotating oppositely arranged propeller solitons,
a stationary dipole composite soliton emerged.

In the third collision, shown in Fig. 2(c), we launched
two corotating propellers in an antisymmetric arrange-
ment, at § < 6.. Then there was no fission: Two
composite solitons emerged from the collision. The
propellers went through each other, coming out
slightly perturbed, rotating in the initial direction but
with trajectories in tilted planes. Each outgoing beam
conserved its L,, but its modes exchanged angular
momentum [similarly to Fig. 1(b)]. This passing of
solitons through each other is unique in saturable
systems: In all other collisions of solitons at § < 6. in
such media, the solitons strongly interact. It seems
that here the interaction effects were canceled out.

We studied several collision cases. Collisions of
high symmetry (e.g., all solitons of the same P and
L, and launched in a symmetric or antisymmetric
scheme) can be classified into one of the above cases.
Collisions of lower symmetry offer new properties. At
zero angles, in some cases we observed chaotic-looking
behavior, and there was no clear outcome for a long
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propagation distance. To conclude, we have studied
collisions between dipole-type composite solitons that
carry angular momentum. The angular momentum
gives rise to fascinating features, which arise from
transmission of angular momentum from the input
solitons to the fission products, which are solitons
themselves. We have found that propeller solitons
are robust, as they can survive collisions even under
the critical angle, much like their stationary cousins.
In fact, in all the collisions between rotating propeller
solitons for which the outcome is self-trapped beams,
at least one of the emerging beams is a (stationary or
rotating) dipole-type composite soliton.

This study was supported by the Israeli Ministry of
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partment of Applied Mathematics, University of Col-
orado, Boulder, Colorado 80309-0526.

References

1. G. 1. Stegeman and M. Segev, Science 286, 1518 (1999).

2. D. N. Christodoulides and R. I. Joseph, Opt. Lett. 13,
53 (1988).

3. M. V. Tratnik and J. E. Sipe, Phys. Rev. A 38, 2011
(1988).

4. M. Haelterman, A. P. Sheppard, and A. W. Snyder,
Opt. Lett. 18, 1406 (1993).

5. A. W. Snyder, S. J. Hewlett, and D. J. Mitchell, Phys.
Rev. Lett. 72, 1012 (1994).

6. M. Mitchell, M. Segev, and D. N. Christodoulides, Phys.
Rev. Lett. 80, 4657 (1998).

7. Z. H. Musslimani, M. Segev, D. N. Christodoulides, and
M. Soljacic, Phys. Rev. Lett. 84, 1164 (2000).

8. Z. H. Musslimani, M. Segev, and D. N. Christodoulides,
Phys. Rev. Lett. 86, 799 (2001).

9. Z. H. Musslimani, M. Segev, and D. N. Christodoulides,
Opt. Lett. 25, 61 (2000).

10. Z. H. Musslimani, M. Solja¢i¢, M. Segev, and D. N.
Christodoulides, Phys. Rev. E 63, 66608 (2001).

11. (2 + 1)D multimode dark solitons were suggested by
A. P. Sheppard and M. Haelterman, Opt. Lett. 19, 859
(1994).

12. J. J. Garcia-Ripoll, V. M. Perez-Garcia, E. A. Ostro-
vskaya, and Y. S. Kivshar, Phys. Rev. Lett. 85, 82
(2000).

13. T. Carmon, C. Anastassiou, S. Lan, D. Kip, Z. H. Mus-
slimani, M. Segev, and D. N. Christodoulides, Opt.
Lett. 25, 1113 (2000).

14. W. Krolikowski, E. A. Ostrovskaya, C. Weilnau, M.
Geisser, G. McCarthy, Y. S. Kivshar, C. Denz, and B.
Luther-Davies, Phys. Rev. Lett. 85, 1424 (2000).

15. A. S. Desyatnikov, D. Neshev, E. A. Ostrovskaya,
Y. S. Kivshar, W. Krolikowski, B. Luther-Davies, J. J.
Garcia-Ripoll, and V. M. Perez-Garcia, Opt. Lett. 26,
435 (2001).

16. A. S. Desyatnikov and Y. S. Kivshar, “Necklace-ring
vector solitons,” submitted to Phys. Rev. Lett.

17. T. Carmon, R. Uzdin, C. Pigier, Z. H. Musslimani, M.
Segev, and A. Nepomnyashchy, Phys. Rev. Lett. 87,
143901 (2001).

18. The transformation to physical units for (x, y)
means dividing by (27/A)(2An0/n0)? and for (z)
by (27/X)(Ang/ny). One diffraction length for the
propeller is =1.2 z (normalized).

19. A. W. Snyder, D. J. Mitchell, L. Polodian, and F.
Ladouceur, Opt. Lett. 16, 21 (1991).



