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Theory of coupled optical PT-symmetric structures
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Starting from Lagrangian principles we develop a formalism suitable for describing coupled optical parity-
time symmetric systems. © 2007 Optical Society of America
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Physical systems exhibiting parity-time (PT) symme-
try have been the subject of intense investigation in
the past few years [1–4]. It has been shown in a se-
ries of studies that PT-symmetric Hamiltonians can
have a real eigenvalue spectrum—a surprising result
given that in general these Hamiltonians are non-
Hermitian [1]. Another intriguing aspect associated
with this family of pseudo-Hermitian configurations
is the possibility of an abrupt phase transition (from
a real to a complex spectrum) because of a spontane-
ous breakdown of PT symmetry. Following the work
of Bender et al. [2], an operator Â is PT symmetric if
it shares a common set of eigenvectors with the P̂T̂
operator, in which case �Â , P̂T̂�=0. Here the parity
operator P̂ is defined as P̂ : x̂→−x̂, p̂→−p̂ while the
time reversal operator leads to T̂ : p̂→−p̂, i→−i,
where p̂ , x̂ are the momentum and the position opera-
tors, respectively. From this latter requirement one
can show that the potentials associated with these
pseudo-Hermitian Schrödinger problems must sat-
isfy the condition V�x�=V*�−x� [2].

In optics, such complex PT-symmetric structures
can be realized within the context of the paraxial
theory of diffraction by involving symmetric index
guiding and an antisymmetric gain/loss profile, that
is, n�x�=n*�−x�. In other words, the index and gain
guiding in such configurations must be judiciously re-
alized. In these systems, the electric field envelope
obeys a normalized complex Schrödinger equation,
e.g.,

i
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��2 + V������,�� = 0, �1�

where �=z / �2kx0
2� is a scaled propagation distance,

�=x /x0 is a dimensionless transverse coordinate, and
x0 is an arbitrary spatial scale. Here, k=2�n0 /�0, n0
is the background refractive index, and V���
= �2k2x0

2 /n0�n��� represents the normalized complex
index distribution that satisfies the PT condition.
Note that in this physical model, the propagation dis-
tance � plays the role of time in quantum mechanics.
Given the fact that PT arrangements may provide an
additional degree of freedom in synthesizing novel
optical structures and materials, it would be of great
interest to study their optical behavior and charac-

teristics. One fundamental aspect associated with PT
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components has to do with their coupled-mode inter-
actions.

In this Letter we formulate a coupled-mode theory
(CMT) appropriate for PT-symmetric optical ele-
ments, i.e., when each individual element as well as
the entire system respects PT symmetry. This is done
through a Lagrangian treatment of the problem and
by employing the particular inner product of these
systems. As we will see, this new formulation is nec-
essary since the conventional CMT fails in this re-
gime. Pertinent examples are provided to demon-
strate the validity of our results.

We begin our analysis by considering the action of
the P̂T̂ operator on Eq. (1), which yields

− i
��*�− �,��

��
+

�2�*�− �,��

��2 + V����*�− �,�� = 0.

�2�

Note that in Eq. (2) V��� remains invariant as a re-
sult of the assumed PT symmetry. From Eqs. (1) and
(2) one can readily obtain the first conservation law
of the system; i.e., Q=�−�

� ��� ,���*�−� ,��d� is a con-
stant of motion independent of distance � [5]. Note
that, in contrast to conventional optical systems, this
latter conserved quantity does not represent the ac-
tual power. To obtain the equations of motion describ-
ing the coupling interaction between PT elements, we
employ the Lagrangian density associated with Eq.
(1), which is given by

L =
i

2
�������

*�− �� − ������*�− ��� + �������
*�− ��

− V��������*�− ��. �3�

Note that variation �L /���� ,��=����L /����
+����L /����−�L /��=0 leads to Eq. (2) while
�L /��*�−� ,��=0 gives Eq. (1). In addition, the Hamil-
tonian invariant of this system is given by �−�

� Hd�,
where H=V��������*�−��−�������

*�−��. We would
like to emphasize that the two conserved quantities
Q and the Hamiltonian H are not related to the ac-
tual optical power (defined as P=�−�

� ��� ,���*�� ,��d�)
or the energy of the system. In fact even below phase
transition, where the PT system has a real spectrum,
the power P is not necessarily conserved.

Next, let us consider two identical coupled PT

waveguide elements as shown schematically in Fig.
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1(a). Note that not only each element is locally PT,
but also the entire structure satifies PT symmetry
with respect to the geometric axis M at �=0. Here,
for simplicity and without any loss of generality, we
will consider a 1D configuration. In addition we as-
sume that the system is used below the phase tran-
sition point (in the real spectrum domain). We pro-
ceed by further assuming that the solution of this
coupled PT arrangement can be expressed as a super-
position of the local modes of the individual elements,
i.e.,

���,�� = �a���u1��� + b���u2����exp�i���, �4�

where u1,2��� represents the local eigenfunctions of
these two waveguides and � stands for their corre-
sponding real propagation eigenvalue because of PT
symmetry. By substituting Eq. (4) into the Lagrang-
ian density of Eq. (3) and by integrating over � we ob-
tain the reduced Lagrangian of this system �L�
=�−�

� Ld� as a function of the modal amplitudes
a��� ,a*��� ,b��� ,b*���, and their respective derivatives,
that is, ȧ=da /d�, etc. The two coupled-mode equa-
tions can then be obtained by extremizing the re-
duced Lagrangian with respect to the modal ampli-
tudes. By doing so we find, iȧI12+ iḃI22+aJ212+bJ122

=0 and iḃI21+ iȧI11+bJ121+aJ211=0. The first equa-
tion was obtained from ��L� /�b*=0 and the second
from ��L� /�a*=0. In these latter equations, Ikm
=�−�

� uk���um
* �−��d� and Jjkm=�−�

� Vj���uk���um
*

�−��d�. Because of the reflection �−�� used in these
inner products (overlap integrals) and the localiza-
tion of the eigenfunctions u1 and u2 around their re-
spective potentials [Fig. 1(b)], one finds that I12	I22
and I21	I11. As a result, the coupled-mode equations
describing this PT symmetric system are given by

i
da

d�
+ 
aa + �b = 0 �5a�

i
db

d�
+ 
bb + �a = 0, �5b�

where � is the coupling coefficient ��=J122/I12
=J211/I21� and 
a,b represent shifts in the propaga-

Fig. 1. (Color online) PT-coupled waveguide system: (a)
waveguide configuration (green represents gain region
while yellow stands for loss region) and (b) refractive index
(blue) and gain/loss profile (red). M stands for the

geometric symmetry axis.
tion constants (
a=J212/I12 and 
b=J121/I21) as a re-
sult of the coupling interaction.

We next show that the coupling constant in such an
arrangement is real. From the assumed PT symmetry
shown in Fig. 1(b) it is evident that u1���=u2

*

�−��. Expressing u1 in terms of its real and imagi-
nary parts, u1=u1R+ iu1I, we get I12=�−�

� u1
2���d�

=�−�
� �u1R

2 ���−u1I
2 ���+2iu1R���u1I����d�. Since for a

PT-symmetric potential u1R��� is an even/odd func-
tion while u1I��� is an odd/even function with respect
to its local center, it turns out that I12 is a real quan-
tity and so is I21. We will next prove that both J122
and J211 are real. To do so, we consider the evolution
equation associated with the first potential in isola-
tion, i.e., Eq. (1) with V���=V1���. By substituting
the stationary solution ��� ,��=u1���exp�i��� in this
equation we get −�u1���+u1�����+V1���u1���=0.
Multiplying this latter expression by u2��� and
integrating by parts, we get �V1���u1���u2���d�
=��u1���u2���d�+�u1����u2����d�. Noting that
u1���=u2

*�−�� one obtains J122=�V1���u2���u2
*�−��d�

=�V1���u2���u1���d�, in other words J122
=��u1���u2���d�+�u1����u2����d�. Using PT sym-
metry it is readily shown that ��u1���u2���d��*

=�u1���u2���d� and ��u1����u2�d��*=�u1����u2�d�,
i.e., they are both real quantities and so is J122. The
reality of J211 is also guaranteed because of symme-
try, e.g., J211=J122. Thus the coupling constant �
=J122/I12=J211/I21 happens to be real. Finally, by
considering the PT symmetry of the coupled struc-
ture, it is straightforward to show that J212 and J121
are complex conjugates of each other and so are the
perturbations introduced in the propagation constant
of each waveguide, e.g., 
a=
b

*.
In retrospect, we could have arrived at this same

formalism by projecting the evolution equations on
the PT-symmetric base functions u2,1

* �−�� as opposed
to u1,2

* ��� used in conventional CMT [6,7]. We also
note that had we used the standard coupled-mode
equations it would have instead resulted into a com-
plex coupling constant and real propagation constant
shifts 
a,b.

We will now illustrate our results using relevant
examples. Figure 2 (inset) shows the evolution of an
input optical beam in a PT-symmetric coupler when
each potential in isolation has the form V���
=A2 sech2��±D /2�+ iB sech��±D /2�tanh��±D /2�,
where A=�2+B2 /9 and D is the separation between
the two potentials. The choice for these particular po-
tentials is motivated by their analytical solutions,
which in this case are given by
sech��±D /2�exp	i�B /3�tan−1�sinh��±D /2��
. Using
the formalism developed above, we have computed
the normalized coupling length for various separa-
tions D. These results are in excellent agreement
with numerical results obtained from supermode
analysis and beam propagation methods as shown in
Fig. 2. We note that the coupled evolution in this ex-
ample is affected by the fact that 
a and 
b are com-
plex conjugates of each other (effectively one arm ex-

hibits gain and the other loss). Figure 3 on the other
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hand depicts the evolution of a single channel excita-
tion in an array made of PT potentials (below phase
transition), used in the previous example. In this con-
figuration, the phase-shift of the diffracted beams at
the left and right channels (symmetrically located
around the excitation site) is compared and found to
be zero. This in excellent agreement with the predic-
tions of the CMT derived here that suggests a real
coupling constant. Because of this arrangement, in

Fig. 2. (Color online) Normalized coupling length calcu-
lated from supermode analysis (solid curve) compared with
that obtained from the PT-CMT (dots) as a function of
waveguide separation D. Inset shows a simulation of beam
propagation when the separation between the two
waveguides is D=4.

Fig. 3. (Color online) Discrete diffraction in a PT-

waveguide array resulting from a single channel excitation.
this infinite array both the propagation shifts 
n and
the coupling constant are now real and hence the
modal amplitudes (associated with the bound states
of the first band) evolve as if the array were entirely
lossless [8], e.g., i�dan /d��+��an+1+an−1�=0. As a re-
sult, if the array is excited at the middle, the result-
ing discrete diffraction pattern follows the familiar
Bessel distribution, that is, an= �i�nJn�2���.

We would also like to stress that the Lagrangian
formalism can also be used to obtain shifts in the
propagation constant due to PT perturbations (i.e.,
perturbations that preserve the parity-time symme-
try) below the phase transition. In this case we as-
sume a solution of the form ��� ,��=a���u���exp�i���,
where u���exp�i��� is the eigenfunction of the unper-
turbed system. Following exactly the same procedure
as before and by solving the resultant differential
equation we find


� =

�
−�

�

u*�− ��
V���u���d�

�
−�

�

u*�− ��u���d�

, �6�

where 
� is the perturbation in the propagation con-
stant due to the PT perturbation in the optical poten-
tial 
V���. We note that the result of Eq. (6) is again
fundamentally different from that known from stan-
dard perturbation theory [9].

In conclusion, starting from Lagrangian principles,
we have developed a formalism suitable for describ-
ing coupled optical PT-symmetric systems.
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