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Spectral renormalization method for computing
self-localized solutions to nonlinear systems
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A new numerical scheme for computing self-localized states—or solitons—of nonlinear waveguides is pro-
posed. The idea behind the method is to transform the underlying equation governing the soliton, such as a
nonlinear Schrödinger-type equation, into Fourier space and determine a nonlinear nonlocal integral equa-
tion coupled to an algebraic equation. The coupling prevents the numerical scheme from diverging. The non-
linear guided mode is then determined from a convergent fixed point iteration scheme. This spectral renor-
malization method can find wide applications in nonlinear optics and related fields such as Bose–Einstein
condensation and fluid mechanics. © 2005 Optical Society of America
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Optical spatial or temporal solitons in nonlinear me-
dia have attracted considerable attention in the sci-
entific community. They have been demonstrated to
exist in a wide range of physical systems in both con-
tinuous and discrete settings.1–3 Such nonlinear
modes can form as a result of a balance between dif-
fraction or dispersion and nonlinearity. A central is-
sue for these types of nonlinear guided waves is how
to compute localized, i.e., soliton, solutions, which
generally involve solving nonlinear ordinary or par-
tial differential equations or difference equations.
Various techniques have been used, e.g., shooting and
relaxation techniques and the self-consistency
method, to find nonlinear modes that utilize the con-
cept that a soliton forms when the optical field in-
duces a waveguide structure via the nonlinearity and
self-traps itself (see, e.g., Refs. 4–6). Another method,
introduced by Petviashvili,7 for constructing localized
solutions of a nonlinear system is based on trans-
forming to Fourier space and determining a conver-
gence factor based upon the degree (homogeneity) of
a single nonlinear term (e.g., �U�pU has homogeneity
p+1). While it was first used to find localized solu-
tions in the two-dimensional Korteweg–deVries equa-
tion (usually referred to as the Kadomtsev–
Petviashvili equation8,9), the method has been
significantly extended and has been used to find lo-
calized solutions in a wide variety of interesting sys-
tems, e.g., dispersion-managed10 and discrete
diffraction-managed11,12 nonlinear Schrödinger equa-
tions, dark and gray solitons,13 and lattice vortices.14

This method often is successful only when the under-
lying equation contains nonlinearity with fixed homo-
geneity. However, many physically interesting prob-
lems involve nonlinearities with different
homogeneities, such as cubic–quintic, or even lack
any homogeneity, as in saturable nonlinearity.

In this Letter we describe a novel spectral renor-
malization scheme with which we can compute local-
ized solutions in nonlinear waveguides. The essence

of the method is to transform the underlying equa-
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tion that governs the soliton (e.g., nonlinear
Schrödinger type) into Fourier space and find a non-
linear nonlocal integral equation (or system of inte-
gral equations) coupled to an algebraic equation (or
system). The coupling prevents the numerical
scheme from diverging. The nonlinear guided mode is
then obtained from an iteration scheme, which in the
cases we have investigated converges rapidly. The ad-
vantages of the present method are that (i) it can be
applied to a large class of physically interesting prob-
lems including those in which the self-consistency
method fails, as is the case for second-harmonic gen-
eration, (ii) it is relatively easy to implement (e.g.,
compared with relaxation methods), (iii) it can
handle higher-order nonlinearities with different ho-
mogeneities, and (iv) it is spectrally efficient. More-
over, this method can find wide applications in non-
linear optics, Bose–Einstein condensation, and fluid
dynamics. We begin by considering a scalar nonlinear
Schrödinger-like equation:

i
�U

�z
+ �2U − V�x�U + N��U�2�U = 0, �1�

where U is the envelope proportional to the electric
field, z is the propagation direction, N is a nonlinear-
ity that depends on intensity, V�x� models an optical
lattice, x= �x ,y�, and �2=�2 /�x2+�2 /�y2. A special
class of soliton solution can be constructed by assum-
ing that U�x ,z�=u�x ;��exp�i�z�, where � is the
propagation constant or the soliton eigenvalue. Sub-
stituting the above ansatz into Eq. (1), we get

− �u + �2u − V�x�u + N��u�2�u = 0. �2�

This is a nonlinear eigenvalue problem for u and �
that is supplemented with the boundary condition u
→0 as �r�→ +�, where r2=x2+y2. The scheme is
based on Fourier analysis, which transforms Eq. (2)
into a nonlocal equation that will then be solved us-
ing a convergent iteration. Define the Fourier trans-

form F by
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û�k� = F�u�x�� = �
−�

+� �
−�

+�

u�x�exp�i�kxx + kyy��dx,

�3�

where dx=dxdy. First, consider the case with no op-
tical potential or external defect �V=0�, for which �
�0. Applying the Fourier transform to Eq. (2) leads
to

û�k� =
F�N��u�2�u�

� + �k�2
. �4�

The idea is to construct a condition that limits the
amplitude under iteration from either growing with-
out bound or tending to zero. This is accomplished
by introducing of a new field variable, u�x�
=�w�x� , û�k�=�ŵ�k�, where ��0 is a constant to be
determined. Then the function ŵ satisfies

ŵ�k� =
F�N����2�w�2�w�

� + �k�2
� Q��ŵ�k��. �5�

Multiplying Eq. (5) by ŵ*�k� and integrating over
the entire k space, we find the relation

G��� � �
−�

+�

�ŵ�k��2dk − �
−�

+�

ŵ*�k�Q��ŵ�k��dk = 0, �6�

providing an algebraic condition on the constant �.
Finally, the desired solution is obtained by iterating
Eq. (5):

ŵm+1�k� =
F�N���m�2�wm�2�wm�

� + �k�2
�7�

for m�1; �m denotes the solution to G��m�=0 at it-
eration m. Other variants of Eq. (6) are possible. But
what is crucial is to solve Eq. (7) coupled to an
algebraic-type equation that is obtained from Eq. (5)
by imposing an integral identity such as Eq. (6). We
name this method spectral renormalization. It is
straightforward to implement Eq. (7): Initially we
guess a function w1�x� [e.g., a Gaussian or sech-like
profile], which from Eq. (6) yields �1 that satisfies
G��1�=0. Then, from Eq. (7), we obtain ŵ2�k�, which
from the inverse, Fourier transform leads to w2�x�.
The iteration continues until convergence is
achieved. The procedure described above reproduces
the results presented elsewhere.12 Knowing the
weakly nonlinear limit is very useful in this regard.
Before presenting specific examples, we explain how
to construct localized solutions in the presence of an
external defect �V�0�. In this case, ��0���−����.
But dividing by the expression ���− �k�2 leads to a sin-
gularity. To avoid this, we add to and subtract from
Eq. (2) the term ru�x�, where r is a positive constant,
and then take the Fourier transform. This leads to

û�k� =
�r + ����û

r + �k�2
−

F�Vu� − F�N��u�2�u�

r + �k�2
� R�û�k��. �8�

Following the change of variable u�x�=�w�x� the it-
ˆ ˆ
eration scheme takes the form wm+1�k�=R��mwm�k��,
with �m given by the relation

�
−�

+�

�ŵm�k��2dk − �
−�

+�

ŵm
* �k�R��mŵm�k��dk = 0. �9�

To illustrate the method in a prototypical problem
we consider photorefractive lattice solitons in self-
focusing saturable nonlinearity, for which V�x�
=I0�cos2�x�+cos2�y�� and N��u�2�=−1/ �1+ �u�2�. These
photorefractive solitons were observed experimen-
tally for the first time by Segev’s group.15 The lattice
modes were originally found using the self-
consistency method.16 The reason for our showing
this example is to delineate a situation in which the
nonlinearity does not have a well-defined homogene-
ity. For the fully saturable case, the iteration scheme
reads as

ŵm+1�k� =
�r + ����

r + �k�2
ŵm −

F�Vwm�

r + �k�2

+
1

r + �k�2
F� wm

1 + ��m�2�wm�2	 , �10�

where �m are obtained from iterating Eq. (9) by using
standard nonlinear algebraic equation solvers, e.g.,
the Newton method. A typical example of a funda-
mental discrete soliton that corresponds to the pa-
rameters I0=1 and �=0.8 is shown in Fig. 1. We have
verified the stationarity of the mode by using direct
numerical simulation in Eq. (1). We can readily gen-
eralize the above method to include more than one
field. In that case, Eq. (2) is replaced by M coupled
stationary nonlinear Schrödinger-like equations that
are solvable using the same idea outlined above.

Another interesting case that arises in many appli-
cations is that of second-harmonic generation. The
system of equations governing stationary soliton
states17–21 is

− �A + W�x�A + �2A + AB = 0, �11�

− 4�B + 4W�x�B + �2B +
A2

2
= 0, �12�

Fig. 1. Fundamental lattice soliton obtained by iterating

Eq. (10) for I0=1 and ���=0.8.
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where ��0 is the soliton propagation constant and
the lattice potential is given by W�x�
=W0 cos�2x�cos�2y�. Following a similar procedure,
we adopt the change of variables A=�1� , B=�2	. In
this case the iteration scheme takes the form

�̂m+1 =
F�W�m� + �2mF��m	m�

� + �k�2
, �13�

	̂m+1 =
4F�W	m� + ��1m

2 /�2m�F��m
2 /2�

4� + �k�2
. �14�

The convergence factors �1m and �2m satisfy the
coupled system

�2m = −

�
−�

+�

dk†�� + �k�2���̂m�2 − �̂m
* F�W�m�‡

�
−�

+�

dk�̂m
* F��m	m�

,

�1m
2 =

�2m �
−�

+�

dk†�4� + �k�2��	̂m�2 − 4	̂m
* F�W	m�‡

�
−�

+�

dk	̂m
* F��m

2 /2�

.

Fig. 2. Fundamental harmonic �A� for W0=2 and �=2.

Fig. 3. Second harmonic �B� for W0=2 and �=2.
Typical examples of quadratic lattice solitons are
shown in Figs. 2 and 3.

In conclusion, we have developed a novel numeri-
cal scheme with which to compute self-localized
states of nonlinear waveguides that is flexible and
can be applied to many nonlinear systems. As proto-
typical examples, we considered photorefractive satu-
rable nonlinearity, which lacks the property of homo-
geneity and second-harmonic generation. We have
shown how to find lattice solitons by using this spec-
tral renormalization method.
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