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Fundamental and vortex solitons in a
two-dimensional optical lattice
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undamental and vortex solitons in a two-dimensional optically induced waveguide array are reported. In
he strong localization regime the fundamental soliton is largely confined to one lattice site, whereas the vortex
tate comprises four fundamental modes superimposed in a square configuration with a phase structure that
s topologically equivalent to the conventional vortex. However, in the weak localization regime, both the
undamental and the vortex solitons spread over many lattice sites. We further show that fundamental and
he vortex solitons are stable against small perturbations in the strong localization regime. © 2003 Optical
ociety of America
OCIS code: 190.0190.
Optical wave propagation in periodic lattices (such as
an array of optical waveguides) exhibit many new phe-
nomena that arise solely from the existence of allowed
bands and forbidden gaps in the linear spectrum. In
these periodic structures, wave dynamics is governed
by the interplay between optical tunneling to adjacent
sites (or waveguides) and nonlinearity. A balance be-
tween these two effects could result in self-localized
structures known as lattice solitons.1

Lattice solitons in waveguide arrays were f irst
predicted to exist as solutions to the discrete nonlinear
Schrödinger equation2 and later observed in AlGaAs
waveguide arrays.3 This experimental observation
stimulated much new research, such as studies of soli-
tons in two-dimensional (2D) photorefractive optical
lattices in which localization phenomena have been
observed.4 – 6

In this Letter, fundamental and vortex solitons in
a 2D optical lattice are reported, and their stability is
analyzed. In the strong localization regime, the fun-
damental soliton is confined largely to one lattice site
with a uniform phase. The vortex soliton comprises
four fundamental modes located at the bottoms of the
optical potential in a square configuration with a phase
structure that is topologically equivalent to a conven-
tional vortex. By winding around the zero intensity
position along any simple closed curve, the phase of
the vortex state acquires a 2p increment. We call this
structure a vortex cell. When the localization is weak,
both fundamental solitons and vortex cells spread over
many lattice sites. In the strong localization regime,
we show that the fundamental soliton as well as the
vortex cell is stable under weak- perturbations.

We begin with the 2D nonlinear Schrödinger
equation
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where V � V0�cos2 X 1 cos2 Y � is the optical lattice
potential and V0 is its intensity. We can obtain
such a potential by optically interfering two pairs of
laser beams.6 Here, we consider the focusing Kerr
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nonlinearity, which is different from the saturable
nonlinearity in recent experiments with 2D photore-
fractive lattice solitons.4 – 6 However, our results can
be readily extended to the saturable case and directly
applied to the Bose–Einstein condensation in 2D opti-
cal lattices. If the potential parameter V0 , 0, one can
use a transformation X ! X 1 p�2, Y ! Y 1 p�2,
and c ! c exp�22iV0z� to convert it to the V0 . 0
case. Thus we assume that V0 . 0 in this Letter
without any loss of generality. Without the lattice
potential, solitons would collapse under small pertur-
bations.7 However, as we show here, optical lattices
can suppress the collapse of fundamental solitons
and vortex cells. Equation (1) conserves two quan-
tities; the power, P �
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2` jcj2 dX dY , and the
energy, E:

E �
Z `

2`

Z `

2`

Ω
j=cj2 2

1
2

jcj4 1 V jcj2
æ

dX dY . (2)

We look for stationary solutions of the form
c�X,Y , z� � exp�2imz�u�X,Y �, where m is the
propagation constant of the soliton. Then u�X,Y �
satisfies

≠2u
≠X2 1

≠2u
≠Y 2 2 Vu 1 juj2u � 2mu . (3)

A fundamental soliton of Eq. (3) has a single main
hump sitting at the bottom of the potential, say,
�X,Y � � �p�2,p�2�. Two examples corresponding to
propagation constants m � 0 and 0.88 with V0 � 1
are displayed in Figs. 1(c) and 1(d). One can see that
for small m [Fig. 1(c)], the beam is largely conf ined
to one lattice site, whereas at higher m [Fig. 1(d)],
it spreads over many lattice sites. Similar solutions
in different physical contexts (photonic crystals and
Bose–Einstein condensation) are known to exist,
too,8 – 10 even though the mathematical models or
physics are quite different. To quantify these fun-
damental solitons, we calculate the dependence of
normalized power P on propagation constant m for
V0 � 1, as displayed in Fig. 1(a). When m ! 2`,
P approaches a constant 11.70. This is apparently
© 2003 Optical Society of America
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Fig. 1. (a) Normalized power P (for V0 � 1, 1.5) and
energy E (for V0 � 1) of fundamental solitons versus m.
(b) Unstable eigenvalues s of these solitons. (c) and (d)
Profiles of fundamental solitons at m � 0 and m � 0.88
�V0 � 1�, respectively.

because in this limit the fundamental soliton is
highly localized; thus it approaches the lattice-free
fundamental-soliton state, which has critical power
Pc � 11.70. As m reaches a cutoff value of approx-
imately 0.95, P appears to go to infinity. In this
limit the fundamental state becomes uniformly dis-
tributed in space. Thus, this cutoff value should
be the boundary of the bandgap in the linear-wave
spectrum. When m � 0.72, dP�dm changes sign.
The Vakhitov–Kolokolov (VK) theorem suggests
that at this m value the stability of these solitons
must change.11 We have confirmed this prediction
by numerically simulating the linearized version of
Eq. (1) around the soliton described above. When
m . 0.72, a purely real unstable eigenvalue indeed
exists and is shown in Fig. 1(b). When m , 0.72,
unstable eigenvalues do not exist, and hence these
solitons are linearly stable.

For the 2D self-focusing case, collapse is an impor-
tant issue. The linear stability analysis described
above does not guarantee that the fundamental soliton
will not collapse under small perturbations. In the
study of collapse the energy, E, plays an important
role. In the absence of the lattice potential or when
the potential is harmonic,12 the soliton collapses if its
energy is negative. In case the energy is positive,
however, the soliton collapses only if it is strongly per-
turbed. For the optical lattice, we have calculated the
energy, E, of fundamental solitons at various values
of m and plotted the results in Fig. 1(a). The energy
is found to be always positive. Thus we can expect
that this state is able to withstand small perturba-
tions without collapse. To confirm this expectation,
we numerically study the nonlinear evolution of the
fundamental soliton under small perturbations by
directly simulating Eq. (1) with initial condition

c�X,Y , z � 0� � u�X,Y � �1 1 ´up�X,Y �� , (4)

where ´ ,, 1, and up�X,Y � is the initial perturbation.
We first take up to be white noise. A large number of
simulations with small ´ and various realizations of
random-noise perturbations have been performed, and
we have found that for V0 � 1, if m , 0.72, the fun-
damental soliton is indeed stable against white-noise
perturbations; when m . 0.72, the soliton is unstable.
To study the nonlinear evolution process, we now take
up � 1. For V0 � 1, m � 0, and ´ � 60.01, non-
linear evolutions are plotted in Fig. 2(a). We see that
the perturbed soliton oscillates only weakly around the
fundamental-soliton state, meaning that the soliton
is both linearly and nonlinearly stable. On the other
hand, at V0 � 1 and m � 0.88 (where the soliton is
linearly unstable), the dynamics is different, as two
situations are identified: (i) at higher input power
�´ . 0� the perturbed state relaxes into a z-periodic
bound state [Figs. 2(b) and 2(c)], and (ii) at lower input
power �´ , 0� the perturbed state decays into linear
Bloch waves [Figs. 2(b) and 2(d)]. Similar situations
can be found in Ref. 13 for a different system.

In addition to the fundamental solitons, we have nu-
merically found vortex solitons. Two examples with
V0 � 1, m � 0, and 0.82 are shown in Figs. 3(b)–3(d).
At m � 0 (strong localization regime), the vortex state
comprises four fundamental solitons superimposed
in a square configuration with a phase structure
that is topologically equivalent to a conventional
vortex [see Figs. 3(b) and 3(c)]. By winding around
the center along any closed curve, the phase of the
vortex acquires a 2p increment and thus we name
it a vortex cell. At m � 0.82 (weak localization
regime), the vortex cell spreads out to more lattice
sites and becomes more intricate, as can be seen
from Fig. 3(d). But its phase structure is almost the
same as with m � 0. We should point out that these
vortex cells are different from conventional vortices
without an optical lattice in a major aspect: The
vortex cells’ intensities and phase depend on both r
and u. These vortex cells (especially in the strong
localization regime) might be related to the lattice
vortices reported in Ref. 14. Normalized power and

Fig. 2. Nonlinear evolution of fundamental solitons under
perturbations [Eq. (4)] for (a) V0 � 1, ´ � 60.01, up � 1,
and m � 0 and (b) m � 0.88. Snapshots of the soliton in-
tensity corresponding to the dynamics depicted in (b) for
(c) ´ � 0.01, z � 80 and (d) ´ � 20.01, z � 60.
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Fig. 3. (a) Normalized power P (for V0 � 1, 1.5) and en-
ergy E (for V0 � 1) of vortex cells versus m. (b), (d) Inten-
sity plots of vortex cells with V0 � 1, m � 0 and m � 0.82,
respectively. (c) Phase plot of the vortex cell in (b).

Fig. 4. (a) Unstable eigenvalues of vortex cells for V0 � 1.
(b)–(d) Instability development of the vortex with
V0 � 1 and m � 0 [see Figs. 3(b) and 3(c)] when it is
initially amplif ied by 1%; intensity plots at z values of 50,
51.5, and 52 are shown in (b), (c), and (d), respectively.

energy diagrams versus the propagation constant of
these vortex cells at V0 � 1 are shown in Fig. 3(a).
Unstable eigenvalues s of vortex cells are determined
by simulation of linearized equation (1) around vortex
cells. The results are shown in Fig. 4(a) for V0 � 1.
One can see that the vortex cells experience oscillatory
instability at m . 27.8 and become stable at m , 27.8.
These vortex cells also suffer VK instability in the
region m . 0.73, where dP�dm . 0 [see Fig. 3(a)].
However, the oscillatory instability is much stronger,
as it occurs over a wider region and has a higher
growth rate.

Figure 3(a) shows that vortex cells also have posi-
tive energy. Thus, if a vortex cell is linearly stable, it
should be able to resist collapse under small perturba-
tions.12 However, if the vortex cell suffers the linear
oscillatory instability discussed above, this instability
could result in power exchange from one part of the
cell to another so that the intensity at some small
spots becomes high, triggering local collapse. We have
observed this situation numerically. An example is
shown in Figs. 4(b)–4(d), which display the develop-
ment of a vortex cell with m � 0 and V0 � 1 when it is
amplified by 1% initially.

We next discuss the effect of varying potential
strength V0 on the formation and stability of fun-
damental and vortex solitons. For this purpose, we
have chosen V0 � 1.5 and repeated most of the calcu-
lations presented above. The results are displayed
in Figs. 1(a), 1(b), 3(a), and 4(a). One can see that
(i) at higher potential, both the fundamental and the
vortex solitons exist at wider ranges of m values,
and their minimal powers decrease; and (ii) the
VK instability of fundamental solitons remains simi-
lar, but the oscillatory instability of vortex cells is
strongly reduced. Thus we conclude that higher
lattice potential stabilizes vortex cells.

In conclusion, we have studied new types of funda-
mental and vortex solitons in a 2D optical lattice po-
tential and shown that both solitons are stable in the
strong localization regime.
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