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Resonant optical patterns in sodium vapor in a magnetic field
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We study two-dimensional optical pattern formation in sodium vapor with a single-feedback mirror in a
magnetic field. Complex transverse patterns sustained by resonant interactions arise under conditions when
wave and static composite modes are excited simultanedi1950-294{©9)05201-4

PACS numbdps): 42.65—k

I. INTRODUCTION More recently, Logvinet al. [11] have demonstrated nu-
merically the existence of a new kind of nonstationary hex-
Experiments in nonlinear optical feedback devices re-agonal structure formed due to resonant interaction between
vealed a variety of transverse patterns including rollswave (Hopf) and static(Turing) modes. This pattern has
squares, hexagons, various flowerlike multipetal structuredeen named “winking hexagons” since the brightness of the
and quasicrystalline patterrisee[1,2] for review). One of individual constituents creating the hexagonal lattice oscil-
the most interesting feedback systems employs as the noftes with time(see Fig. 3 of Ref[11]). The recently re-
linear medium sodium vapor in a buffer gas atmosphere irportedl triadic Hopf-static patter&?2], visualized as drifting
radiated by circularly polarized liglig]. Here, unlike a usual SPOts in a rhomboidal arrangement, apparently, also belong
Kerr medium, transverse structures originate in polarizatiof©® @ class of structures formed by the resonant interaction

instabilities that are absent in the standard scalar moddietween Hopf and static modes. _ _
of D’'Alessandro and Firtf4]. The analysis of patterns sustained by resonant interactions

In alkali metal vapor the Symmetry of the generated pat_under conditions when wave and static modes are excited

terns depends crucially on the polarization of the input light Simultaneously has been recently carried out in a more gen-
For linearly polarized input fields, roll and square patternseral context by Rubinstein and Pismiei8,14. They showed
are formed, whereas the preferred patterns are hexagons féat the excited patterns may be saturated by the action of
circular polarization. Moreover, unlike a Kerr medium where quadratiathree-wavginteractions only, and may exhibit pe-
the hexagons observed are of a single type, alkali meta/d0dic amplitude modulation on a slow time scale. It is the
show transitions between both positive and negative hexa3im Of this paper to analyze conditions of wave-static reso-
gons for a given polarization ellipticity of the input beam Nance and resulting dynamic quasicrystalline patterns for the
[5,6]. optical feedback system based on sodium vapor in magnetic

Motivated by the experiments carried out by Grynbergf'e|d- The paper is orga_nlze(_j as follows. After formulatlng
et al. [7] and later by Ackemann and Lang6], Scroggie the baSIC mate_rllal equations in Sec. Il, we reiterate in Sec. |l
and Firth[8] have studied theoretically the alkali metal vapor the linear stability analysis of the model equations outlined
systemwithout external magnetic field. Through a combina- IN Refs. [15,11, emphasizing simultaneous  bifurcation of
tion of linear and nonlinear analysis supported by numericavave and static composite modes. Weakly nonlinear analysis
simulations, they were able to predict the formation ofand derivation of amplitude equations will be given in Sec.
squares, rolls, rhomboids, and hexagons for suitably choselY, @nd the character of the emerging pattern will be inferred
parameters. Moreover, selection of quasicrystalline patterndy mapping the physical parameters of the system on the
in a single-feedback mirror device with rubidium atoms hasParameters of the amplitude equation.
been analytically predicted and numerically observed by
Leducet al. [9]. , , , , IIl. MATERIAL EQUATIONS

Simulation of two-dimensional optical pattern formation
in sodium vapor with external magnetic field was carried out The experimental system used by Lange and his co-
by Logvin et al. [10]. It was shown that hexagonal patterns workers consisted of a cell of lengtfiilled by sodium vapor
can be unstable against spatial harmonics or subharmoniesting as a nonlinear medium, and a single-feedback mirror
with hexagonal symmetry, which results in the formation ofseparated by a distana@kfrom the nonlinear materialsee
ultrahexagons or subhexagons. This instability is due to inFig. 1 of Ref.[15] for the experimental schemeThis system
teraction with a secondary solution branch with a wave numis subject to an external magnetic figddand illuminated by
ber nearly resonant to the harmonics of the primary hexaa circularly polarized light beam with the amplituésg .
gons. Amplitude equations were derived based on symmetry We shall use a thin optical medium approximation ne-
consideration, to explain the mechanism of the formation ofglecting diffraction within the nonlinear material. Then the
the hexagons. electric field of the light beam transmitted through the cell is
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given by E,;=Eye ko'X2 wherey is the response function Ws
of the nonlinear material to the circularly polarized light 1
field, andk, is the wave number of the incident light. Taking
into account diffraction in free space, we can write an ex- ©0-8
pression for the reflected light by formally integrating the
paraxial wave equation to give 0.6

E, = Jﬁe—idvzlkoEt. (2.1) 0.4

HereR is the reflection coefficient of the mirror.

The main origin of nonlinearity of the medium is the
population difference between sublevels of the sodium 50 100 150 200
ground state with different spin orientation induced by opti-
cal pumping. Neglecting interference effects and diffraction
in the medium, the optical pump rate is given by

I

FIG. 1. Steady state orientatiavny versus pump intensity, for
parametersA = —8.889, ),/27=—264 kHz, Q,/27=32 kHz, y
=6 Hz, N=10° m 3, T,/27=1.8 GHz, andu,=1.72<10"2°
5 Cm. The dimensionless parameters arec¥m-2.9, 6,/27=5.33
P=— Mez (IEo|2+|E, |2, 2.2 X 10%, and 6,127 =44x 103

44T ,(A“+1)

NuZ  A+i
2hegl’s A2+ 1

where . is the electric dipole moment of the sodium vapor X= (1-w)=xo(l-w), (2.6
in its ground statel’, denotes the relaxation rate of the op-
tical coherence, and is the detuning between the incident
field and the atomic transition, normalizedlfg [16]. Using

Eq. (2.1), we can rewrite Eq(2.2) as

whereN is the sodium particle density.

It is expedient to reformulate the problem in a dimension-
less form. To this end, let us define the following parameters:
’ k=Kol xo,5°=Dlvy,z=dlky,0=Q/y,P=Ply, and I
}_ (2.3  =!/y. We also setR~1. After rescaling, Egqs(2.5 and
(2.3 take the following form:

P=1|1+R

d .
ex;{ —|—V2)exp(—|k0IX/2)
Ko

Herel =[ u2/4h°T »(A%+ 1)]|Eo|? represents the pump rates gm=[ 82V2—P(Z,w)— 1Jm+ OX m+ P(Z,w)e,,

of the circularly polarized incident plane wave. (2.7
The dynamics of the material variables is based on the
semiclassical Liouville equation describing the time evolu- P(I,W):Z[l_l_|@(Z)e—ik(l—w)/2l2], 2.9

tion of the sodium vapor spin density matiixin the pres-

ence of electric and magnetic interactions, whereD(z) = exp(—izV?) describes propagation and diffrac-

tion of the beam in the empty part of the cavity obtained by
=[Ho+Hg+Hg,pl, (2.4  formal integration of the paraxial wave equation. Take note

thatD(z) = exp(zk’) when it operates upon a pure mode with

o . a transverse wave numbler
where Hy denotes the Hamiltonian of the atomic system

without external fields, antig and Hg represent the inter-
action of the atoms with the static magnetic fi@ldand the IlI. LINEAR ANALYSIS

light field E, respectively. The components of the Bloch vec-  The standard procedure of linear analysis involves testing
tor m=(u,v,w) are expressed through the density marix  stapility to arbitrary infinitesimal perturbations, usually plane

asu=pipt po1,0 =i(p12—p21), ANAW=p11—pyp. The first  \aves. Equation2.7) and(2.8) admit a stationary homoge-
two components are related to the expectation values of thgeous solution implicitly given by

spin components and the third one to the population conver-

. dp
Iﬁa

sion. The spatiotemporal evolution of the Bloch veatois [P(Z,wWg) + 1]ms= &(P(Z,Ws)) X M+ P(Z,W,)e, .
given by[17] s S s S s 3.0)
gm=—(y—DV?+P)m+QxXm+ Péz. (2.5 A characteristic feature of the basic solution is a nonmono-

tonic dependence of thecomponentvg of mg on the exter-
Here y is the collision-induced relaxation coefficient of the nal pumpZ [15] caused by the dependence Qf on the
Bloch vector,D is the diffusivity, andQ=(Q,,0Q,—AP) external pumping intensity that introduces a destabilizing
is an effective Larmor frequency vector whaseomponent positive feedback. This is shown in Fig. 1 whevgis ploted
is modified by the light intensity dependent tet®. Physi-  against the external pump rafe[see Eq(3) and Fig. 2a) of
cally, this term can be interpreted as a light shift effect on theRef. [5] ].
ground state Zeeman sublevels. The pump Paitegiven by The next step in our analysis is to consider stability of the
Eq. (2.3, with response functioyy defined agsee Eq(A28) basic solution parametrized by, against superposition of
of Ref.[17]] plane waves. Proceeding in the standard way, we da&fine
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FIG. 2. Neutral stability curves in theZ(q) space, correspond-

ing to a wave modéw) and a static mod€éT) at D= 5=0 (a) and

D=1 cn?/s, or §=0.004(b). The values of other parameters are

ko=27/589.6 nm!, |=15 mm,A=—8.889, R=0.915, Q,/27
=-264 kHz, Q,/2r=32 kHz, y=6 Hz, d=150 mm, N
=10 m™3, T',/2r=1.8 GHz, andu,=1.72<10"?° Cm. The
dimensionless parameters are dm—2.9, 6=0, 6,/27=5.33
X 10°, and 6,/27=44x 10°.

=mg+ em; with e<1 and linearize systert2.7) and (2.8);
we get the following eigenvalue problem:
LMy =[d,— 8°V2+ Py(D) +1]my+THz)Wyms— X my

+ 0,(2) X Wymg—Z7(z) W, &,=0. (3.2

Here 6,= (w,), Ps(Z)=P(Z,ws), andW, is the z compo-
nent of the Bloch vector deviatiom; .
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T(z) = eM<1-WI[ Rexsin(zV?) — Imkcog zV?)],
(3.3

and 6,(z) = (0,0AZ7(z)). Presenting the linear term, as
the sum of A/ bifurcating modes with wave vectors(i
=1,2,... \),
N
my= >, aVexpigj-x+ot)+c.c., (3.9
=1

and substituting into Eq.3.2) we find that the basic solution
loses stability on the marginal curve defined ]

o+ Pei 0,— AP (Us—Av )T
AP—0, o+ P (vs+Aug)7+ 60, | =0,
0 — 0Oy o+ Peii— (1 —wy)

3.5

whereP4= 1+ Py(Z) + 6°q? and the spectrum of the opera-
tor ?(z) in the plane wave basis is given by

T(zf) = — MW Rexsin(z?) + Imkcog zP) .
(3.6

Here g is the perturbation wave vector andis the corre-
sponding eigenvalue. The curve REZ,q) =0 defines in the
(Z,q) parameter space the marginal stability curve. If
Im o(Z,q) vanishes at values afwhere the real part of is
minimal, then the instability is called static instability.

The neutral stability curves for static and Hopf instabili-
ties, defined implicitly by Eq(3.5), are plotted in Fig. 2 for
zero and nonzero values of diffusivity and other parameters
fitting the experimental conditions of Reff5,15]. For &
=0 [Fig. 2(@)], there are additional instability zones located
in the region of larger wave numbers which are not shown.
With increasing diffusion, the instability domains shrink, and
only one static instability zone is found at realistic values of
diffusivity, as seen in Fig. ®).

Interaction between wave and static instabilities has for-
merly been detected in this system by Logwhal. [11],
who attributed to it the phenomenon of “winking hexagons”
observed in their overlap range. Unlike the case studied in
[11] where the instability regions overlapped in a wide range
of pump intensities, we were able to find a set of parameters
where the two instability thresholds are close to one another,
so that the bifurcations are almost degenerate, as seen in Fig.
2. This allows us to treat the instabilities perturbatively, and
to derive an amplitude equation governing the dynamics of
slow amplitude modulation as in Refd.3,14]. Moreover, in
the absence of diffusion, we observe two static zdieg.
2(a)] in resonance with one wave mode, and the situation is
close to a codimension 3 bifurcation.

IV. WEAKLY NONLINEAR ANALYSIS

Following a standard method of multiple scale bifurcation
expansion, we introduce a hierarchy of time scatgs
=t, t;=et, ... with

ol ot= ol o+ €dl oty + €?al gty + - - -, 4.1
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and expand in a power series the Bloch vector and the bifuwhereas, B, are the eigenvectors of the linear problem cor-

cation parameter responding to static and wave modes, respectively, and the
) resonance conditiog—k=Q is satisfied. In order to derive
m=mg+ em; + e2my+ - - -, (4.2 dynamic equations for the amplitudasb, andc, one has to

substitute Eq(4.9) in the right hand side of Eq4.4), and
then to project on the eigenfunctions of the adjoint problem.
Keeping resonant terms only, we arrive after some algebra at
the following system of amplitude equations which coincides
with that obtained for optical cavities with rotated beam and

I=Ty+ €I+ €*Tp+ - - -. 4.3

Since the basic solutiomg depends on the bifurcation pa-
rameter via Eq(3.1) we expand it in a power series

M= Mg+ Mgy + €My + - - - two-component feedback optical syst¢hB,14):
Using the above expansions in systéth7) and (2.8) we a=uqa+vbc*,
recover in the first order i the linear eigenvalue problem
(3.2. In the next order we arrive at the following nonlinear b= wyb+ vyac, 4.9

inhomogeneous problem:

- . C= u,C+ vya*h.
Lmy= =y My —[LoT(2) W1+ Ps(Z1) My — ZoT(2) Wimg;

Here ug,u,, depend on the deviation from the bifurcation

+ F(2) W1Mgo— 83 (2) X Wymg; — 8,(2) X Wymgg point while vg,v,, are computed at the bifurcation point;
- A N and v4 are real, whileu,, and v,, are complex. The expres-
—05(2) XM+ H(2)W, &, (44 sions for the coefficients are given in the Appendix.

where/, is defined in Eq(3.2) andW; is thez component of

m. Here 8,(2W,=(00AF(2W,) and 8(2) V- AMPLITUDE DYNAMICS

=A(O,0,ZO§'(Z)W1+7?S(11)). The operatorg(z) and j:(z) The three complex equatioii$.9) can be reduced to four
are defined by real equations for real amplitudes using the polar representa-
tion of the complex amplitudes,
- 1 . . :
S(z)= 7m0 [ (Imx)®— (Rex)*]cog 2V ?) a=p,ei%, b=pyel®, c=p.el. (5.
—2Re<|m;<sin(zV2)}, (4.5 The relevant variables are the three real amplitydeand
the composite phasé=6,+ 6.— 6,. These equations can
F(2)W, = (T, — ImkZowey ) T2) Wy + ToS(2) W2 be further rescaled to a form containing two real parameters

only. The imaginary part ofw,, can be absorbed in fre-
1 2 Imic(1—weg) | ) quency, and three more real parameters are eliminated by
+ ZIO|K| e [ D(2) W, (4.6 rescaling the amplitudes and time. It can be shown that the
condition u¢<0 is necessary to prevent runaway to large
The amplitude equations are obtained as solvability conamplitudes (which may be further arrested by third and
ditions of Eq.(4.4), i.e., conditions of the orthogonality of higher order termjs Assuming this condition holds, we res-
the inhomogeneity to all eigenfunctions of the adjoint linearcale time by|us and denotew=pu,,/|us]. The resulting
problem, with respect to the scalar product equations are

S pa=— Pa+ PppPcCOY,

<¢| l,ll)ZjZl f (ﬁik lﬂjdzx. Pa Pa™ PbPc
Pb= MPpTt PapcCOY - a),

A nontrivial solvability condition is obtained when the (5.2)
guadratic term{a product of two eigenfunctions, sa and
¢,) is in resonancewith another eigenmode, sag,. This
requires that the frequencies and wave vectors of the three
modes involved satisfy the resonance conditions 0=

Pc= MPcT PappCOS O+ @),

PoPc
— —SlI

no— L2220 04 a) — P2P%in 0 @),
Pa Pc Pb

ki+ko=ky, wi+wr=wg. 4, .
Lo Lo @D where we have set,=ve '“.
A resonance triplet may involve therefore either three static The bifurcation diagram of E5.2) has been constructed
modes or two wave modes from the same fan(ilg., with ~ in Ref. [14]. At u>0, the trivial state is unstable and the
identical frequencigsand one static mode. dynamics saturates at small amplitudes. In different paramet-
A possible resonant structure consists of two wave modeHC doma!ns, the system may relgx to a stationary state, either
with a given wave numbek and one static mode with the Symmetric p,=p¢) or asymmetric f,# p.) with respect to
wave numberQ. This simplest resonant planform is ex- the two wave modes, to a periodic orbit that corresponds to a
pressed as slow modulation of the basic pattern on an extended time

_ _ _ _ scale of Eq.(4.9), or to a chaotic attractor on the same ex-
m=aae'Q*+e B, (bed*+ceék ) +c.c., (4.8  tended scale.
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the bifurcation diagram, and passes through the region of
chaotic solutions in the vicinity of the separatrice shown by

the dashed diagonal line in this figure. Such chaotic behavior
was observed experimentally by Ackemagtral.in Fig. 4(b)

of Ref. [5].

The variation of wave numbers within this range corre-
sponds to the angle between the two wave modes in the
resonant triangle varying from about 57° to 99°. Fer
=7/n wheren is an integer, one can envisage a composite
structure formed by 2 wave andn static modes that would
usually correspond to a dynamical quasicrystalline pattern.
Owing to the fact that no analogous structure was reported
experimentally in a sodium vapor system in magnetic field,
one might expect to see them in the future. These quasicrys-
tals include perfect nonstationary hexagons with /3, in

FIG. 3. Dependence of the parameteon Q andg, for model ~ agreement with the recently reported “winking hexagons”
parameters used in Fig(a. obtained in Ref[11], and dynamical square patterfmot yet

found in experimenfswith ¢ = 7/2. Note that several kinds

Employing the expressions for the coefficients from theOf pgtterns have b_een p_redict_ed by our bifurcatiqn analysis.
Appendix allows us to identify the dynamics correspondingarticularly, the bifurcation diagrartFig. 4 contains sta-
to the actual parameters used in Figb)2 Since only the tionary hexagonsstatlonaryssolut_lons) observed in experi-
ratio of the parameters dependent on the deviation from th@€nts by Lange and co-workers in Ref5,15]. The dynam-
bifurcation point is dynamically relevant, only a single point ICS; @ssuming the amplitudes of all static modes to be equal,
can be obtainedin the frame of Fig. #assuming an exact and those of wave modes, pairwise equal, is defined by .the
codimension 2 bifurcation with extrema of the wave andS@me EQ(4.9) or (5.2). In t2he case of hexagons, an addi-
static neutral curves lying on the same level of pump intenfional term proportional tg; has to be included to account
sity. One can see, however, that both extrema in Fig. &e for the static-static resonant term. The selgctlon of_ a pattern
rather flat, so that quite a long range of wave numbers fall§ased on a single resonant triangle or their combination, as
into a narrowO(e) interval of Z. Keeping in mind that the Well as selection among propagating or standing wave
wave number may be constrained by geometry, we Camode_s,.should. be decided by relatively weak nonresonant
choose any wave numbers falling in this range, providediuartic interactions.
they satisfy the resonance condition, and use the correspond-
ing values in the formulas from the Appenc{Bee whfare Fhe ACKNOWLEDGMENTS
dependence of the paramegeron Q andq is shown in Fig.

3). The parameter is constant, since it is uniquely deter-  The authors are grateful to W. Lange, A. Nepomnyash-
mined by the position of the bifurcation point. The range ofchy, and B. Rubinstein for helpful discussions.

possible regimes corresponding to a 1% variationZos
shown by the dashed vertical line in Fig. 4. This line crosses
the domains of periodic and symmetric periodic solutions in

APPENDIX

The coefficientsug, u,, ,vs, andv,, appearing in the am-

0.5 plitude equation$4.9) are given by
0-4r v | :Uvs:ngf§1+Peff0x771+(GZ_APS)2§1+0x(02_A7Ds)§1.
0.3f |
1 | ve=Pagba+ Peithmat (0,~ AP)?éx+ 6,(6,— AP L,
0.2} - s
7
7~ I 2
0.1 e P | szpgﬁfl+Peﬁ0xgl+(gz_A7)s) fl+ ex(ez_APs)hly
rd d A
0.1 0.2 0.3 0.4 0.5 Yw= efff2+73eff9x92+(az_Aps)zf2+ex(az_APs)hza

FIG. 4. Bifurcation diagram of Eq5.2) in the parametric plane The functlonsgj 777:4,81.95.0; Wlth =1 depef‘d on
(a,u). LettersSandA denote the regions of stable stationary sym- the dev!atl_onIl from a degenerat_e_ blfurcathn point, and
metric and asymmetric solution®, stands for a pair of periodic 0S€ Withj=2 are fixed. The explicit expressions are writ-
solutions, andU for a symmetric periodic solution or other sym- te€n below:
metric dynamic attractor. The dashed line shows an approximate
location of the saddle-loop bifurcation. The dynamics correspond- £1=Py(T1) agst+ azd ToWg; — (Wep+ 1)
ing to the actual parameters used in Fi¢b)2is indicated by the
dashed vertical line. X (T, — IMkZowe ) | T(zQP),
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£0=2T0| Baw|*T(20?) — 2Zy| Bau| *(Weo + 1)| S(zQP)
| |2

KL imc(1-wgy)
NS

1= Ps(Z1) (a1t Aays) + agd Zovs1 + AZiUg

— (I~ IMkZoWe;) (V50— AUgy) ] 712 QP),
72= 2R B3, Bawt A B1w) 1ZoT(2F) — 2Zg| Bawl *(vso
| | ~
—Aug)| S(zQH) + TelmK(l Wso) |,
1=Po(Zy) (a5~ Aaye) + az Toug — T1Avg

— (1~ IMkZoWe;) (Usp+ Av ) ] 712 QP),

{2=2Rd B35 Brw— ABow) 1ZoT(2P) — 2Zy| Baw| *(Uso

2
+Avso)( S(zQ@)+ %e'mﬂlwso)) ,

f1=B3wPs(Z1) + Bawl ZoWs1 — (Wgp+ 1)
X (I~ ImkZowg;) 1 (2 GP),

fo=ToassBanl N2 Q%) + T(2¢P) ]~ 2Tpa3sBaw(Wsp+ 1)

|«[?

x| S(ze)+ Te'mK(l‘Wso)COE{Z(Qz—qz)]),
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01=P(Z1)(Brwt ABow) T Bawl Zovsi T AL Ug
— (I~ IMkZoWey) (vo— AUg) 172,
02=Toaas( Bow+ A Brw) T2 Q) + Lo Ban( s

+ A1) TzF) — 2a3sBanTo(vso— Auso)( S(zaf)

|«]2 Imi(1—weg) 22
te ©'codz(Q°=a7)]/,

h1="Ps(Z1)(Brw—ABaw) + Bawl ZoUs1 —AZyv g
—(Z3—ImkZyWg; ) (Ugp+ Avso)]ﬂzqz),

hy=Toass( Bru— A Bow) T(ZQP) + ToBan( 15

—Aayg) T2QP) — 2azsBanTo(Uso+ AUs,o)( S(zq?)

|«[?

n KTe|mK(l*Wso)cos{z(Q2— qz)]

HereS(z?) denotes the spectrum of the operaifoz) in the
plane wave basis.
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