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Resonant optical patterns in sodium vapor in a magnetic field
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We study two-dimensional optical pattern formation in sodium vapor with a single-feedback mirror in a
magnetic field. Complex transverse patterns sustained by resonant interactions arise under conditions when
wave and static composite modes are excited simultaneously.@S1050-2947~99!05201-4#

PACS number~s!: 42.65.2k
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I. INTRODUCTION

Experiments in nonlinear optical feedback devices
vealed a variety of transverse patterns including ro
squares, hexagons, various flowerlike multipetal structu
and quasicrystalline patterns~see@1,2# for review!. One of
the most interesting feedback systems employs as the
linear medium sodium vapor in a buffer gas atmosphere
radiated by circularly polarized light@3#. Here, unlike a usua
Kerr medium, transverse structures originate in polarizat
instabilities that are absent in the standard scalar mo
of D’Alessandro and Firth@4#.

In alkali metal vapor the symmetry of the generated p
terns depends crucially on the polarization of the input lig
For linearly polarized input fields, roll and square patte
are formed, whereas the preferred patterns are hexagon
circular polarization. Moreover, unlike a Kerr medium whe
the hexagons observed are of a single type, alkali me
show transitions between both positive and negative he
gons for a given polarization ellipticity of the input bea
@5,6#.

Motivated by the experiments carried out by Grynbe
et al. @7# and later by Ackemann and Lange@6#, Scroggie
and Firth@8# have studied theoretically the alkali metal vap
systemwithout external magnetic field. Through a combin
tion of linear and nonlinear analysis supported by numer
simulations, they were able to predict the formation
squares, rolls, rhomboids, and hexagons for suitably cho
parameters. Moreover, selection of quasicrystalline patte
in a single-feedback mirror device with rubidium atoms h
been analytically predicted and numerically observed
Leducet al. @9#.

Simulation of two-dimensional optical pattern formatio
in sodium vapor with external magnetic field was carried
by Logvin et al. @10#. It was shown that hexagonal patter
can be unstable against spatial harmonics or subharmo
with hexagonal symmetry, which results in the formation
ultrahexagons or subhexagons. This instability is due to
teraction with a secondary solution branch with a wave nu
ber nearly resonant to the harmonics of the primary he
gons. Amplitude equations were derived based on symm
consideration, to explain the mechanism of the formation
the hexagons.
PRA 591050-2947/99/59~2!/1571~6!/$15.00
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More recently, Logvinet al. @11# have demonstrated nu
merically the existence of a new kind of nonstationary he
agonal structure formed due to resonant interaction betw
wave ~Hopf! and static~Turing! modes. This pattern ha
been named ‘‘winking hexagons’’ since the brightness of
individual constituents creating the hexagonal lattice os
lates with time~see Fig. 3 of Ref.@11#!. The recently re-
ported triadic Hopf-static patterns@12#, visualized as drifting
spots in a rhomboidal arrangement, apparently, also be
to a class of structures formed by the resonant interac
between Hopf and static modes.

The analysis of patterns sustained by resonant interact
under conditions when wave and static modes are exc
simultaneously has been recently carried out in a more g
eral context by Rubinstein and Pismen@13,14#. They showed
that the excited patterns may be saturated by the actio
quadratic~three-wave! interactions only, and may exhibit pe
riodic amplitude modulation on a slow time scale. It is t
aim of this paper to analyze conditions of wave-static re
nance and resulting dynamic quasicrystalline patterns for
optical feedback system based on sodium vapor in magn
field. The paper is organized as follows. After formulatin
the basic material equations in Sec. II, we reiterate in Sec
the linear stability analysis of the model equations outlin
in Refs. @15,11#, emphasizing simultaneous bifurcation
wave and static composite modes. Weakly nonlinear anal
and derivation of amplitude equations will be given in Se
IV, and the character of the emerging pattern will be inferr
by mapping the physical parameters of the system on
parameters of the amplitude equation.

II. MATERIAL EQUATIONS

The experimental system used by Lange and his
workers consisted of a cell of lengthl filled by sodium vapor
acting as a nonlinear medium, and a single-feedback mi
separated by a distanced from the nonlinear material~see
Fig. 1 of Ref.@15# for the experimental scheme!. This system
is subject to an external magnetic fieldB, and illuminated by
a circularly polarized light beam with the amplitudeE0 .

We shall use a thin optical medium approximation n
glecting diffraction within the nonlinear material. Then th
electric field of the light beam transmitted through the cel
1571 ©1999 The American Physical Society



ht
g
x

he

e
um
ti

io

or
p-
nt

s

th
lu

m
-

c

t
ve

e

th

n-
rs:

-
by
ote
th

ting
ne
-

no-

ing

he
f
e

1572 PRA 59ZIAD H. MUSSLIMANI AND LEN M. PISMEN
given by Et5E0e2 ik0lx/2, wherex is the response function
of the nonlinear material to the circularly polarized lig
field, andk0 is the wave number of the incident light. Takin
into account diffraction in free space, we can write an e
pression for the reflected light by formally integrating t
paraxial wave equation to give

Er5ARe2 id¹2/k0Et . ~2.1!

HereR is the reflection coefficient of the mirror.
The main origin of nonlinearity of the medium is th

population difference between sublevels of the sodi
ground state with different spin orientation induced by op
cal pumping. Neglecting interference effects and diffract
in the medium, the optical pump rate is given by

P5
me

2

4\2G2~D211!
~ uE0u21uEr u2!, ~2.2!

whereme is the electric dipole moment of the sodium vap
in its ground state,G2 denotes the relaxation rate of the o
tical coherence, andD is the detuning between the incide
field and the atomic transition, normalized toG2 @16#. Using
Eq. ~2.1!, we can rewrite Eq.~2.2! as

P5I F11RUexpS 2 i
d

k0
¹2Dexp~2 ik0lx/2!U2G . ~2.3!

HereI 5@me
2/4\2G2(D211)#uE0u2 represents the pump rate

of the circularly polarized incident plane wave.
The dynamics of the material variables is based on

semiclassical Liouville equation describing the time evo
tion of the sodium vapor spin density matrixr in the pres-
ence of electric and magnetic interactions,

i\
dr

dt
5@H01HB1HE ,r#, ~2.4!

where H0 denotes the Hamiltonian of the atomic syste
without external fields, andHB and HE represent the inter
action of the atoms with the static magnetic fieldB and the
light field E, respectively. The components of the Bloch ve
tor m5(u,v,w) are expressed through the density matrixr
asu5r121r21,v5 i (r122r21), andw5r112r22. The first
two components are related to the expectation values of
spin components and the third one to the population con
sion. The spatiotemporal evolution of the Bloch vectorm is
given by @17#

] tm52~g2D¹21P!m1V3m1Pêz . ~2.5!

Here g is the collision-induced relaxation coefficient of th
Bloch vector,D is the diffusivity, andV5(Vx,0,Vz2DP)
is an effective Larmor frequency vector whosez component
is modified by the light intensity dependent termDP. Physi-
cally, this term can be interpreted as a light shift effect on
ground state Zeeman sublevels. The pump rateP is given by
Eq. ~2.3!, with response functionx defined as†see Eq.~A28!
of Ref. @17# ‡
-
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x52
Nme

2

2\e0G2

D1 i

D211
~12w![x0~12w!, ~2.6!

whereN is the sodium particle density.
It is expedient to reformulate the problem in a dimensio

less form. To this end, let us define the following paramete
k5k0lx0 ,d25D/g,z5d/k0 ,u5V/g,P5P/g, and I
5I /g. We also setR'1. After rescaling, Eqs.~2.5! and
~2.3! take the following form:

] tm5@d2¹22P~I,w!21#m1u3m1P~I,w!êz ,
~2.7!

P~I,w!5I@11uD̂~z!e2 ik~12w!/2u2#, ~2.8!

whereD̂(z)5exp(2iz¹2) describes propagation and diffrac
tion of the beam in the empty part of the cavity obtained
formal integration of the paraxial wave equation. Take n
thatD̂(z)5exp(izk2) when it operates upon a pure mode wi
a transverse wave numberk.

III. LINEAR ANALYSIS

The standard procedure of linear analysis involves tes
stability to arbitrary infinitesimal perturbations, usually pla
waves. Equations~2.7! and~2.8! admit a stationary homoge
neous solution implicitly given by

@P~I,ws!11#ms5u„P~I,ws!…3ms1P~I,ws!êz .
~3.1!

A characteristic feature of the basic solution is a nonmo
tonic dependence of thez componentws of ms on the exter-
nal pumpI @15# caused by the dependence ofV on the
external pumping intensity that introduces a destabiliz
positive feedback. This is shown in Fig. 1 wherews is ploted
against the external pump rateI †see Eq.~3! and Fig. 2~a! of
Ref. @5# ‡.

The next step in our analysis is to consider stability of t
basic solution parametrized byws against superposition o
plane waves. Proceeding in the standard way, we definm

FIG. 1. Steady state orientationws versus pump intensityI, for
parametersD528.889, Vz/2p52264 kHz, Vx/2p532 kHz, g
56 Hz, N51020 m23, G2/2p51.8 GHz, andme51.72310229

C m. The dimensionless parameters are Imk522.9, ux/2p55.33
3103, anduz/2p5443103.



-

If

li-

ters

d
n.

nd
of

or-

’’
in

ge
ters
her,
Fig.

nd
of

is

on

-

re
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5ms1em1 with e!1 and linearize system~2.7! and ~2.8!;
we get the following eigenvalue problem:

Lm1[@] t2d2¹21Ps~I!11#m11IT̂~z!W1ms2us3m1

1û1~z!3W1ms2IT̂~z!W1êz50. ~3.2!

Here us5u(ws),Ps(I)5P(I,ws), and W1 is the z compo-
nent of the Bloch vector deviationm1 .

FIG. 2. Neutral stability curves in the (I,q) space, correspond
ing to a wave mode~w! and a static mode~T! at D5d50 ~a! and
D51 cm2/s, or d50.004~b!. The values of other parameters a
k052p/589.6 nm21, l 515 mm, D528.889, R50.915, Vz/2p
52264 kHz, Vx/2p532 kHz, g56 Hz, d5150 mm, N
51020 m23, G2/2p51.8 GHz, andme51.72310229 C m. The
dimensionless parameters are Imk522.9, d50, ux/2p55.33
3103, anduz/2p5443103.
T̂~z!5eImk~12ws!@Reksin~z¹2!2Imkcos~z¹2!#,
~3.3!

and û1(z)5„0,0,DIT̂(z)…. Presenting the linear termm1 as
the sum ofN bifurcating modes with wave vectorsqi( i
51,2, . . . ,N),

m15(
j 51

N

aj
~1!exp~ iqj•x1st !1c.c., ~3.4!

and substituting into Eq.~3.2! we find that the basic solution
loses stability on the marginal curve defined by@15#

U s1Peff uz2DPs ~us2Dvs!T
DPs2uz s1Peff ~vs1Dus!T1ux

0 2ux s1Peff2~12ws!T
U50,

~3.5!

wherePeff511Ps(I)1d2q2 and the spectrum of the opera
tor T̂(z) in the plane wave basis is given by

T~zq2!52eImk~12ws!@Reksin~zq2!1Imkcos~zq2!#.
~3.6!

Here q is the perturbation wave vector ands is the corre-
sponding eigenvalue. The curve Res(I,q)50 defines in the
(I,q) parameter space the marginal stability curve.
Im s(I,q) vanishes at values ofq where the real part ofs is
minimal, then the instability is called static instability.

The neutral stability curves for static and Hopf instabi
ties, defined implicitly by Eq.~3.5!, are plotted in Fig. 2 for
zero and nonzero values of diffusivity and other parame
fitting the experimental conditions of Refs.@5,15#. For d
50 @Fig. 2~a!#, there are additional instability zones locate
in the region of larger wave numbers which are not show
With increasing diffusion, the instability domains shrink, a
only one static instability zone is found at realistic values
diffusivity, as seen in Fig. 2~b!.

Interaction between wave and static instabilities has f
merly been detected in this system by Logvinet al. @11#,
who attributed to it the phenomenon of ‘‘winking hexagons
observed in their overlap range. Unlike the case studied
@11# where the instability regions overlapped in a wide ran
of pump intensities, we were able to find a set of parame
where the two instability thresholds are close to one anot
so that the bifurcations are almost degenerate, as seen in
2. This allows us to treat the instabilities perturbatively, a
to derive an amplitude equation governing the dynamics
slow amplitude modulation as in Refs.@13,14#. Moreover, in
the absence of diffusion, we observe two static zones@Fig.
2~a!# in resonance with one wave mode, and the situation
close to a codimension 3 bifurcation.

IV. WEAKLY NONLINEAR ANALYSIS

Following a standard method of multiple scale bifurcati
expansion, we introduce a hierarchy of time scalest0
5t, t15et, . . . with

]/]t5]/]t01e]/]t11e2]/]t21•••, ~4.1!
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1574 PRA 59ZIAD H. MUSSLIMANI AND LEN M. PISMEN
and expand in a power series the Bloch vector and the b
cation parameter

m5ms1em11e2m21•••, ~4.2!

I5I01eI11e2I21•••. ~4.3!

Since the basic solutionms depends on the bifurcation pa
rameter via Eq.~3.1! we expand it in a power series

ms5ms01ems11e2ms21•••.

Using the above expansions in system~2.7! and ~2.8! we
recover in the first order ine the linear eigenvalue problem
~3.2!. In the next order we arrive at the following nonline
inhomogeneous problem:

Lm252] t1
m12@I0T̂~z!W11Ps~I1!#m12I0T̂~z!W1ms1

1F̂~z!W1ms02û1~z!3W1ms12û2~z!3W1ms0

2û3~z!3m11F̂~z!W1êz , ~4.4!

whereL is defined in Eq.~3.2! andW1 is thez component of
m1 . Here û2(z)W15„0,0,DF̂(z)W1… and û3(z)
5D„0,0,I0T̂(z)W11Ps(I1)…. The operatorsŜ(z) and F̂(z)
are defined by

Ŝ~z!5
1

4
eImk~12ws0!$@~ Imk!22~Rek!2#cos~z¹2!

22RekImksin~z¹2!%, ~4.5!

F̂~z!W15~I12ImkI0ws1!T̂~z!W11I0Ŝ~z!W1
2

1
1

4
I 0uku2eImk~12ws0!uD̂~z!W1u2. ~4.6!

The amplitude equations are obtained as solvability c
ditions of Eq.~4.4!, i.e., conditions of the orthogonality o
the inhomogeneity to all eigenfunctions of the adjoint line
problem, with respect to the scalar product

^fuc&5(
j 51

3 E f j* c jd
2x.

A nontrivial solvability condition is obtained when th
quadratic term~a product of two eigenfunctions, sayf1 and
f2) is in resonancewith another eigenmode, say,f0 . This
requires that the frequencies and wave vectors of the t
modes involved satisfy the resonance conditions

k11k25k0 , v11v25v0. ~4.7!

A resonance triplet may involve therefore either three st
modes or two wave modes from the same family~i.e., with
identical frequencies! and one static mode.

A possible resonant structure consists of two wave mo
with a given wave numberk and one static mode with th
wave numberQ. This simplest resonant planform is e
pressed as

m15aase
iQ•x1eivtbw~beiq•x1ceik•x!1c.c., ~4.8!
r-

-

r

ee

ic

s

whereas ,bw are the eigenvectors of the linear problem co
responding to static and wave modes, respectively, and
resonance conditionq2k5Q is satisfied. In order to derive
dynamic equations for the amplitudesa, b, andc, one has to
substitute Eq.~4.8! in the right hand side of Eq.~4.4!, and
then to project on the eigenfunctions of the adjoint proble
Keeping resonant terms only, we arrive after some algebr
the following system of amplitude equations which coincid
with that obtained for optical cavities with rotated beam a
two-component feedback optical system@13,14#:

ȧ5msa1nsbc* ,

ḃ5mwb1nwac, ~4.9!

ċ5mwc1nwa* b.

Here ms ,mw depend on the deviation from the bifurcatio
point while ns ,nw are computed at the bifurcation point;ms
andns are real, whilemw andnw are complex. The expres
sions for the coefficients are given in the Appendix.

V. AMPLITUDE DYNAMICS

The three complex equations~4.9! can be reduced to fou
real equations for real amplitudes using the polar represe
tion of the complex amplitudes,

a5raeiua, b5rbeiub, c5rce
iuc. ~5.1!

The relevant variables are the three real amplitudesr j and
the composite phaseu5ua1uc2ub . These equations ca
be further rescaled to a form containing two real parame
only. The imaginary part ofmw can be absorbed in fre
quency, and three more real parameters are eliminated
rescaling the amplitudes and time. It can be shown that
condition ms,0 is necessary to prevent runaway to lar
amplitudes ~which may be further arrested by third an
higher order terms!. Assuming this condition holds, we res
cale time by umsu and denotem5mw /umsu. The resulting
equations are

ṙa52ra1rbrccosu,

ṙb5mrb1rarccos~u2a!,
~5.2!

ṙc5mrc1rarbcos~u1a!,

u̇52
rbrc

ra
sinu2

rarb

rc
sin~u1a!2

rarc

rb
sin~u2a!,

where we have setnw5ne2 ia.
The bifurcation diagram of Eq.~5.2! has been constructe

in Ref. @14#. At m.0, the trivial state is unstable and th
dynamics saturates at small amplitudes. In different param
ric domains, the system may relax to a stationary state, ei
symmetric (rb5rc) or asymmetric (rbÞrc) with respect to
the two wave modes, to a periodic orbit that corresponds
slow modulation of the basic pattern on an extended ti
scale of Eq.~4.9!, or to a chaotic attractor on the same e
tended scale.
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Employing the expressions for the coefficients from t
Appendix allows us to identify the dynamics correspond
to the actual parameters used in Fig. 2~b!. Since only the
ratio of the parameters dependent on the deviation from
bifurcation point is dynamically relevant, only a single poi
can be obtained~in the frame of Fig. 4! assuming an exac
codimension 2 bifurcation with extrema of the wave a
static neutral curves lying on the same level of pump int
sity. One can see, however, that both extrema in Fig. 2~b! are
rather flat, so that quite a long range of wave numbers f
into a narrowO(e) interval of I. Keeping in mind that the
wave number may be constrained by geometry, we
choose any wave numbers falling in this range, provid
they satisfy the resonance condition, and use the corresp
ing values in the formulas from the Appendix~see where the
dependence of the parameterm on Q andq is shown in Fig.
3!. The parametera is constant, since it is uniquely dete
mined by the position of the bifurcation point. The range
possible regimes corresponding to a 1% variation ofI is
shown by the dashed vertical line in Fig. 4. This line cros
the domains of periodic and symmetric periodic solutions

FIG. 3. Dependence of the parameterm on Q andq, for model
parameters used in Fig. 2~a!.

FIG. 4. Bifurcation diagram of Eq.~5.2! in the parametric plane
(a,m). LettersSandA denote the regions of stable stationary sy
metric and asymmetric solutions;P stands for a pair of periodic
solutions, andU for a symmetric periodic solution or other sym
metric dynamic attractor. The dashed line shows an approxim
location of the saddle-loop bifurcation. The dynamics correspo
ing to the actual parameters used in Fig. 2~b! is indicated by the
dashed vertical line.
e

-

ls

n
d
d-

f

s
n

the bifurcation diagram, and passes through the region
chaotic solutions in the vicinity of the separatrice shown
the dashed diagonal line in this figure. Such chaotic beha
was observed experimentally by Ackemannet al. in Fig. 4~b!
of Ref. @5#.

The variation of wave numbers within this range corr
sponds to the anglew between the two wave modes in th
resonant triangle varying from about 57° to 99°. Forw
5p/n wheren is an integer, one can envisage a compos
structure formed by 2n wave andn static modes that would
usually correspond to a dynamical quasicrystalline patte
Owing to the fact that no analogous structure was repo
experimentally in a sodium vapor system in magnetic fie
one might expect to see them in the future. These quasic
tals include perfect nonstationary hexagons withw5p/3, in
agreement with the recently reported ‘‘winking hexagon
obtained in Ref.@11#, and dynamical square patterns~not yet
found in experiments! with w5p/2. Note that several kinds
of patterns have been predicted by our bifurcation analy
Particularly, the bifurcation diagram~Fig. 4! contains sta-
tionary hexagons~stationarySsolutions! observed in experi-
ments by Lange and co-workers in Refs.@5,15#. The dynam-
ics, assuming the amplitudes of all static modes to be eq
and those of wave modes, pairwise equal, is defined by
same Eq.~4.9! or ~5.2!. In the case of hexagons, an add
tional term proportional tora

2 has to be included to accoun
for the static-static resonant term. The selection of a pat
based on a single resonant triangle or their combination
well as selection among propagating or standing wa
modes, should be decided by relatively weak nonreson
quartic interactions.
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APPENDIX

The coefficientsms ,mw ,ns , andnw appearing in the am-
plitude equations~4.9! are given by

ms5Peff
2 j11Peffuxh11~uz2DPs!

2j11ux~uz2DPs!z1 ,

ns5Peff
2 j21Peffuxh21~uz2DPs!

2j21ux~uz2DPs!z2 ,

mw5Peff
2 f 11Peffuxg11~uz2DPs!

2f 11ux~uz2DPs!h1,

nw5Peff
2 f 21Peffuxg21~uz2DPs!

2f 21ux~uz2DPs!h2,

The functionsj j ,h j ,z j , f j ,gj ,hj with j 51 depend on
the deviationI1 from a degenerate bifurcation point, an
those withj 52 are fixed. The explicit expressions are wr
ten below:

j15Ps~I1!a3s1a3s@I0ws12~ws011!

3~I12ImkI0ws1!#T~zQ2!,

-

te
-
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j252I0ub3wu2T~zq2!22I0ub3wu2~ws011!FS~zQ2!

1
uku2

4
eImk~12ws0!G ,

h15Ps~I1!~a1s1Da2s!1a3s@I0vs11DI1us1

2~I12ImkI0ws1!~vs02Dus0!#T~zQ2!,

h252Re@b3w* ~b2w1Db1w!#I0T~zq2!22I0ub3wu2~vs0

2Dus0!S S~zQ2!1
uku2

4
eImk~12ws0!D ,

z15Ps~I1!~a1s2Da2s!1a3s@I0us12I1Dvs1

2~I12ImkI0ws1!~us01Dvs0!#T~zQ2!,

z252Re@b3w* ~b1w2Db2w!#I0T~zq2!22I0ub3wu2~us0

1Dvs0!S S~zQ2!1
uku2

4
eImk~12ws0!D ,

f 15b3wPs~I1!1b3w@I0ws12~ws011!

3~I12ImkI0ws1!#T~zq2!,

f 25I0a3sb3w@T~zQ2!1T~zq2!#22I0a3sb3w~ws011!

3S S~zq2!1
uku2

4
eImk~12ws0!cos@z~Q22q2!# D ,
um

s.

ett

ev
g15Ps~I1!~b1w1Db2w!1b3w@I0vs11DI1us1

2~I12ImkI0ws1!~vs02Dus0!#T~zq2!,

g25I0a3s~b2w1Db1w!T~zQ2!1I0b3w~a2s

1Da1s!T~zq2!22a3sb3wI0~vs02Dus0!S S~zq2!

1
uku2

4
eImk~12ws0!cos@z~Q22q2!# D ,

h15Ps~I1!~b1w2Db2w!1b3w@I0us12DI1vs1

2~I12ImkI0ws1!~us01Dvs0!#T~zq2!,

h25I0a3s~b1w2Db2w!T~zQ2!1I0b3w~a1s

2Da2s!T~zq2!22a3sb3wI0~us01Dvs0!S S~zq2!

1
uku2

4
eImk~12ws0!cos@z~Q22q2!# D .

HereS(zq2) denotes the spectrum of the operatorŜ(z) in the
plane wave basis.
tt.

-
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