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Destruction of photocount oscillations by thermal noise
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We show that oscillations in photocount statistics will be destroyed by a sufficient admixture of
thermal noise. In particular, we derive a “diffusion” equation evolving in temperature (rather than
time) that describes the response of the photocount distribution to the admixture of such noise. We
also derive an analytic condition for the temperature to guarantee the existence of these oscillations.

PACS number(s): 42.50.Ar, 42.50.Dv

I. INTRODUCTION

One of the most interesting properties of squeezed
states is the oscillation in their number distribution
[1,2].  Interference in phase space between a nar-
row annular band—the number state—and a Gaussian
Wigner function—a squeezed state—is responsible for
this anomalous nonclassical behavior of squeezed states
[1]. The regions of overlap between these two Wigner
functions identify two well defined zones in phase space
that contribute to the probability amplitude. The to-
tal probability amplitude is then equal to the sum of
these contributions weighted with an appropriate phase.
The presence of noise [2—6] or losses [7] can diminish the
squeezing and hence destroy the oscillations. One form of
noise in particular has been extensively studied: thermal
noise [2-6,8].

In this paper we will give a general formalism that
describes the destruction of these photocount oscillations,
for an arbitrary state, due to the admixture of thermal
noise. By “admixture of thermal noise” we shall mean
specifically the semigroup mapping of a fiducial state go
into

oo = [ LB oxp(—18 /%) D(8)pe D' (8) |

- (1.1)

A
where ﬁ(ﬂ) is the standard displacement operator and
7 is the mean number of thermal photons “added.”
This formula is a direct generalization of those given by
Refs. [2,9,10]. The physical meaning of this mapping is
determined in Sec. IV. We will see that for this type of
thermalization we are able to obtain a simple intuitive
picture of how the photocount oscillations are destroyed.
Further, we obtain not only a simple picture but also a
powerful calculational tool to study the destruction of
these oscillations.

We begin in Sec. II by recalling the oscillatory behav-
ior of the photocount distribution of a displaced squeezed
state, first noted by Schleich and Wheeler [1], and then
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introduce, in Sec. III, thermal squeezed states [8], which
may be considered as the admixture of thermal noise to a
squeezed state. Our more general approach to this ques-
tion of the effect of thermal noise on the photocount dis-
tribution is studied in Sec. IV, where we derive a general
“diffusion” equation that evolves in temperature (rather
than time) and applies to an arbitrary initial state—mnot
just squeezed states. We see that as the temperature
of the thermal noise increases the photocount distribu-
tion becomes flatter, thus destroying the oscillations. In
Sec. V we extend the interference-in-phase-space results
to finite temperature (in the sense of admixture with
thermal noise) to determine the range of temperatures
in which the oscillations of the number distribution per-
sist. The result shows that in the case of finite temper-
ature, the two contributing amplitudes differ from each
other, unlike the case at zero temperature in which the
two amplitudes are identical, leading to dephasing.

II. SQUEEZED STATES

Squeezed states of the electromagnetic radiation [11]
are important from both theoretical and experimental
points of view. Because, among other things, the re-
duction of fluctuations in one quadrature may be used
to produce a better signal-to-noise ratio in interferomet-
ric measurements [12,13]. Many different but equivalent
definitions of squeezed states exist. In this paper we will
describe pure squeezed displaced states by the density
operator

ﬁO = |Ol,£><a,€i s (21)

where
o, &) = $(£)D(a)[0)

is the squeezed displaced state obtained by displacing the
vacuum state followed by the squeezing operation. Here

(2.2)

D(a) = exp(aat — a*a) (2.3)
is the usual displacement operator and
§(€) = expl3(£"a* — £a™?)] (2.4)
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is the squeezing operator, with the squeezing parameter
¢ = re'® (throughout this paper we will take ¢ = 0) [14].
The squeezing operator defines a Bogoliubov transforma-
tion of the annihilation and creation operators via

St(r)aS(r) = acoshr — a'sinhr,

St(r)atS(r) = @' coshr — asinhr . (2.5)

Choosing units where 2 = 1 and the quadrature opera-
tors £ and p are dimensionless, we have (Az)? = e~%"/2
and (Ap)? = €27 /2 for the squeezed displaced states of
Eq. (2.2). Since (Az)(Ap) = ; they are minimum un-
certainty states. The mean number of photons in these
squeezed displaced states of Eq. (2.2) is

(R) = |a|?e™?" 4 sinh?r (2.6)
and the photon number (photocount) distribution (at
zero temperature)

P (0) = |[(m]a, )|

has been calculated in Ref. [15]. Using our notation in
terms of r (¢ = 0) and real «, the result is

(2.7)

tanh™ r

2™mm!coshr

P (0) = exp (0 Y 2 (0
m B *P coshr ™\ Vsinh2r /)
(2.8)

Here H,,, denotes the Hermite polynomial of order m. In
particular, if we take r = 0, then Eq. (2.8) reduces to the
familiar Poisson distribution for the photocount statis-
tics associated with a coherent state. By contrast, for the
squeezed vacuum case with o = 0 we have P;,,41(0) =0
and Ps,,,(0) # 0, which is the case where the photocount
distribution has the tightest possible oscillations. We
plot the function P,,(0) [Eq. (2.8)] in Fig. 1 for values
of o = 7v/21 and 7 = In(21)/2 ~ 1.52 and find that this
function oscillates with respect to m. These numbers
were chosen to match the parameters defined by Schleich
et al. [1,14,16,17]. In the limit of strong squeezing the
photon number distribution P,,(0) shows rapid oscilla-
tions. Mathematically, the Hermite polynomials are the
origin of the oscillations. Moreover, Schleich and Wheeler
(1] show that these oscillations result from interference in
phase space. In addition, they gave a condition relating
the squeezing and coherent parameters, which ensure the
existence of oscillation. The condition in our notation is

[16]

9
e 2 —7T4—\/—2—ae_r ; (2.9)

for o = 7+/21 this gives r > 1.44 [if one scrutinizes his-
tograms of P,,(0), one sees that this condition is con-
servative and that oscillations still occur for somewhat
lower r]. We now study the effect of thermal noise on
these oscillations. It is our intuitive expectation that as
we raise the temperature the oscillations will disappear.
Motivated by this consideration, we study the influence of
thermal noise on the photocount distribution. We start,
however, with a discussion on thermal squeezed states.
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FIG. 1. Plot of the Schleich-Wheeler oscillations for a pure
squeezed displaced state (i.e., zero temperature): Histogram
of the photocount distribution P (7 = 0) of Eq. (2.8) for a
squeezed displaced vacuum with o = 7v/21 and r = In(21)/2.

III. THERMAL SQUEEZED STATES

In what way does thermal noise affect a quantum
state? Naturally the answer will depend on how this
noise is introduced. For instance, we might combine a
thermal state of light and our quantum state at the two
input ports of a beam splitter; by choosing the tempera-
ture of the thermal state and the parameters of the beam
splitter we can produce varying amounts of thermaliza-
tion. Alternately, we might use the fact that any individ-
ual mode in nondegenerate parametric down-conversion
looks thermal if the input to that mode is vacuum. This
produces thermalized vacuum. We could consider gen-
eralizing this by using some other quantum state as the
input to this mode in which case the output would, in
some sense, be the thermalized version of the input state.

If the quantum state is initially a squeezed state, then
essentially all methods of thermalization lead to Gaus-
sian Wigner functions and so can all be mapped into
each other under suitable choice of the parameters in-
volved. Rather than investigating this mapping here we
will use one of several mathematical definitions of a ther-
mal squeezed state (TSS) [2,18,19], which can itself be
mapped into one of several laboratory procedures. We
take the definition of Vourdas and Weiner [2] of a TSS
as one having a density matrix of the form

o= L8 exp(-182 /) D(B)lec,7) (1D (B) , (3.1)

where 7 is the mean number of thermal photons

o 1
"= exp(fw) — 1 (3.2)

at frequency w (recall # = 1) and inverse temperature
B = 1/kpT (with kp the Boltzmann constant). Intu-
itively, this formula smears out the state (in this case
a squeezed displaced state) according to the spread of
the Glauber-Sudarshan P function for the thermal state
exp(—|B[*/7) /mn.

The representation of thermalization by this formula
was first suggested by Glauber [9] when he used it to de-
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scribe thermalized vacuum (ordinary thermal states) and
later by Lachs [10] as a way of describing a thermalized
coherent state. Indeed, if we take the particular case in
which r = 0 and o = 0, then Eq. (3.1) is nothing but the
density matrix of the thermal state

/ EB 16217 ()] 0) (0| D (8)

T

- L (1fﬁ)mlm><m;. (3.9)

m=0

Another variation that may be used to make a ther-
mal squeezed state is to generate a displaced squeezed
thermal state. Such a state has been studied in detail by
Marian and Marian [3]. Because we wish to use the pho-
tocount statistics calculated by these authors we need to
give the mapping between a displaced squeezed thermal
state and the T'SS of Eq. (3.1); this is done in Appendix A
in terms of the characteristic functions

~

&
3
Il

0.01

0.08
Pr(R) 0.06
0.04
0.02

@ 7 = 0.06

0.08
0.04

0.02

40 50 60 70 80
m

FIG. 2. Histograms of the photocount distribution P,,(7)
at finite temperature. These plots show the Schleich-Wheeler
oscillations for the parameters used in Fig. 1 [i.e., a = 7+/21
and r = In(21)/2] for (a) & = 0.01, (b) # = 0.03, and (c)
7o = 0.06. ( These plots have been calculated using the ana-
lytic results of Ref. [3] [their Eq. (5.2)] and our Appendix A.)
Note that our condition (5.9) predicts in this case that oscil-
lations are guaranteed for 7 < 0.006.
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Xpss = (exp(Aal — A*a)) (3.4)
for these states.

We shall use the calculations of Marian and Marian as
a test-bed of our diffusion equation approach of Sec. IV.
Marian and Marian were able to calculate the photocount
distribution for an arbitrary Gaussian Wigner function.
By contrast, we are interested in a much more general
problem: that of studying the thermalization of a generic
state via the semi-group mapping of Eq. (1.1). We do this
in Sec. IV.

In Fig. 2 we plot P,,(f) using the calculations per-
formed by Marian and Marian [their Eq. (5.2)] and our
translation in Appendix A for (a) # = 0.01, (b) 2 = 0.03,
and (c) 7 = 0.06 for the case already studied in Fig. 1
li.e., @ = 7v/21 and r = In(21)/2]. We see that for suffi-
ciently small noise the distribution still has oscillations.
However, as we raise the temperature the distribution
goes flat. Therefore, the photon number distribution of
TSS is very sensitive to the thermal noise. One of our
aims is to find an analytic criterion on 7 that ensures the
existence of oscillations.

In Sec. V we will return to the T'SS and explain the loss
of oscillations in terms of the interference-in-phase-space
picture. To do that we shall need the Wigner function
corresponding to the density operator Eq. (3.1). This
is easily calculated by using the properties of Gaussian
convolutions to be

1
m/(2n + e27) (27 + e~ 2r)
x exp (__ (z — V2ae™T)? P2 ) .

27 + e~ 2"

Wrss(f) =

IV. THE DIFFUSION EQUATION

In this section we investigate state “thermalization” as
described by the formula of Eq. (1.1); as pointed out in
the Introduction, this represents a generalization of the
forms suggested by Refs. [2,9,10]. We will derive a phys-
ical model that yields this semigroup evolution on the
state and could be used in the laboratory as a way of
thermalizing states according to this specific formula. In
addition, we will obtain a diffusion-like equation describ-
ing the “evolution” of the photocount distribution as the
mean number 72 of thermal photons increases.

To this end we start by expanding p(7 + §7) to lowest
order in §7i. Changing variables so that 3 — V2 + énf3
and expanding the square root to first order we get

. d?B _g2 A (160 A o
p(’l—"L + 67_1) ~ / —TrEe lﬁlz.D (5 -ﬁﬁ) D(\/"_l,@)pg

- ~ (167

x DU (Vas)Dt [ = 2=
(vamD' (575
(here we used the fact that the extraneous phase factor
obtained by writing a displacement operator of a sum

(4.1)
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as a product of displacement operators cancels itself in
this symmetric form). Note that, although this equation
appears to be ill defined for 7 — 0, we will see shortly
that this limit gives a finite result. Next we expand the
displacement operators to first order in 67 to obtain

n R 1 6n d ,8 |mz
2+/n ™
x [8a" - B*a, D(V#p)po D! (VaB)] -

(4.2)
Now noting the identities
Be— 181 — _£e 181
O . .
a5 D@D (0) =~ [a,D(B)pD'B)]  (43)

and using them to integrate Eq. (4.2) by parts, we obtain
O Al
(7 + 87) = p(7) — 7[ La@)]] -

(4.4)

]—————a

Writing this as a differential equation for g = p(n) we
find

dp 1 (
dn 2

1

+= (4.5)

which may be compared with the standard single-photon
master equation

(Rr + 1) (2apa’ — a'ap — pata) , (4.6)
where v is the energy damping constant and 7nig is
the mean number of thermal reservoir photons. We
see that in the limit of high reservoir temperature
fip > max(1,7), the replacement dtyngp — df maps
Eq. (4.6) onto Eq. (4.5). This mapping thus gives a
laboratory implementation of the thermalization rule of
Eq. (1.1) in terms of an implementation of the real master
equation (4.6).

How could this master equation be implemented? We
will give one concrete model. Consider a single beam
splitter with evolution operator

U = expl6(ab’ — a'b)] ; (4.7)

then UaU' = acos@ + bsinf so sinf is the amplitude
reflection coefficient. Suppose we identify mode & with
our state p and mode b with a thermal state pr(fig) with

a mean number fip of thermal photons. Assuming that
the reflection coefficient is small (@ < 1), then expanding

U ppr(nr)UT to second order in 6, and tracing out mode
b yields exactly Eq. (4.6) if we take Aty = 62. Thus, as-
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suming figp > max(1,7), we retrieve Eq. (4.5) by taking
Rag = An, where R = 02 is exactly the energy reflection
coefficient for the beam splitter and A# is the number of
additional thermal photons added in this step of thermal-
ization. That is, we have described one step in iterating
Eq. (4.5) by taking

R=2". (4.8)

Iterating this procedure 7/A7 times yields the semi-
group evolution of Eq. (1.1). This procedure is illustrated
schematically in Fig. 3.

Having given Eq. (1.1) a simple form as a differential
equation, we now derive the effect of thermalization on
the photocount distribution. Taking the matrix element

Pr(n) = (m|p(n)|m) , (4.9)
we find
) — (1) P ()
—(2m +1)Pp(R) + mPm_1 (7). (4.10)

This differential equation for the photocount statistics
may be interpreted as a discrete diffusion equation. In-
deed, taking

OP,,

Pm_ m—1~= ([ om

(4.11)

as an approximation to a continuous derivative, we find
the diffusion equation

dP;n?_l(ﬁ) 2 (miP (n)) _

It is intuitively clear now that the thermalization de-

(4.12)

pr(fg) ——

v_
pr(RR) —>—§k~>——

pr(ng) ——N\g——

A(n)

FIG. 3. Schematic implemetation of Eq. (1.1). A fiducial
state po passes 7i/An stages. Each stage consists of a single
beam splitter with energy reflection coefficient R = An/ng,
which allows in some thermal fluctuations from a thermal
state pr(fr) having a mean number fig of thermal photons.
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scribed by Eq. (1.1) will destroy any oscillations in the
photocount distribution if the diffusion process is carried
along far enough, i.e., if the mean number of thermal
photons 7 is taken high enough.

Finally, in Fig. 4 we show the calculations of the ther-
malization of the squeezed displaced state with a = 7+/21
and 7 = In(21)/2, but now based on iterating Eq. (4.10).
We see that there is good agreement with the analytic
expressions for 7 = 0.01, but that a slight but noticable
discrepancy appears for larger temperatures. It is be-
lieved that these discrepancies are due to small numerical
inaccuracies in the iteration procedure.
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FIG. 4. Histograms of the photocount distribution P, (%)
at finite temperature. These plots show the Schleich-Wheeler
oscillations for the parameters used in Fig. 1 [i.e., @ = 7v/21
and » = In(21)/2] for (a) # = 0.01, (b) 7 = 0.03, and (c)
7. = 0.06. These plots, in contrast to Fig. 2, were calculated by
iterating Eq. (4.10) of our paper. We see that the agreement
with the analytic expressions is excellent for 4 = 0.01 and that
a slight but noticeable discrepancy appears as we continue to
iterate this equation.

V. THERMAL DESTRUCTION OF
INTERFERENCE IN PHASE SPACE

In this section we apply the principle of interference in
phase space to explain the oscillations exhibited by the
photon number distribution of a TSS. (We shall closely
follow the derivation of Ref. [17] and so we only present
a schematic of our calculation here.) In the phase space
picture, the number state m can be represented as a cir-
cular Bohr-Sommerfeld band of area of 2« (in units of
k) with inner radius v2m and outer radius V2(m+1).
The Bohr-Sommerfeld trajectory

(5.1)

N[

1 2 1.2
2Pm” + 3z =m+

runs in the middle of the band. This band intersects
the thermal squeezed states representative—the Gaus-
sian Wigner function—in two zones. The total ampli-
tude is the sum, with due regard to phase, of the two
amplitudes. In this approach the probability of finding
m photons in a thermal squeezed state is exactly

Po(R) = 27 / de / dp Wi (e, p) Wrss (@, pi ) ,
(5.2)

where Wrss denotes the Wigner function for a TSS and
W, represents the Wigner function for the harmonic os-
cillator in its mth state
m
Won(2,p) = (_._%)__3—22_1’2Lm(2m2 +2%);  (5.3)
here L,, is the mth Laguerre polynomial. The proba-
bility P,,(7) is thus given by the overlap in phase space
between the distribution Wrsg and W,,,. To find the area
of overlap we consider the case of strong squeezing. In
phase space, the Wigner function is represented by an el-
lipse with height 24/7 + €27 /2 and width 24/7 + e—2"/2
centered on the positive = axis at z = v/2ae™" (for real
a). We decompose the phase space integration into two
parts

P (n) = 2P1)(R) + P{P(R) , (5.4)

where these integrals are given by

oo oo
PB(n) = 27r/ dw/_ ( )dem(w,p)WTss(m,p; ),
—oo Pm (z

(5.5)
oo Pm ()

P,(nz)(ﬁ) = 27r/ d:c/ dp W, (z, p)Wrss(z, p; 1),
—o0 —Pm ()

(5.6)

here pm(z) = 4/3pm — 22 and pn, denotes the largest
zero of the mth Laguerre polynomials. The integration
of the two contributing integrals is carried out in Ap-
pendix B. The result for real o and in the limit of strong

squeezing is



4972

2
V2727 + e7) (m +  — a2e=?)

m+ 1 _ a28—2r
X [exp(—Z—mé-T

+ exp [—2(27‘; +e ) (m+ % - aze_z")}

P ()

X cos(2qu)j| , (5.7)

where ¢, is defined in Eq. (B8) as
Vem 4 1—atdz -

/m+ % _ a2e—2r

ae™ "

™
— =T,/ 1 20—2r _ 0
ae m+2 a“e 4

We conclude with a discussion on the condition for
the appearance of the oscillations (our discussion follows
that of Ref. [16] closely). The second term in large square
brackets in Eq. (5.7) will display oscillations as long as
the decay length 1/(47n + 2e2") is large compared to
the separation between the first maxima and the first

minima. Taking a™'e"y/m +  — a2e~2" < 1, we have

[16] that the separation is (97ae™")2/3/4. That is, the
condition to ensure that we see oscillations is

V2m+1

d’m =
\/Eae*"

=(m+ %) arctan

(5.8)

1 e~ %

- 5.9
(9mae—7)2/3 2’ (5.9)

nS

which is consistent with condition (2.9) when 2 = 0. For
a = 74/21 and r = In21/2 this condition tells us that
we are ensured of seeing oscillations if # < 0.006. In
fact, a look at Fig. 2 shows that this condition [like that
of Eq. (2.9)] is rather conservative and that somewhat
higher temperatures can be tolerated by the oscillations.

VI. CONCLUSIONS

We have studied one model for the addition of ther-
mal noise to quantum states. For states with Gaussian
Wigner functions we have argued that all such models
will be equivalent up to a suitable mapping of their pa-
rameters, since for these states the thermalized Wigner
function will still be a Gaussian. For our model of ther-
malization we have given several equivalent representa-
tions including a master equation representation, which
could in principle be implemented in a laboratory. We
found that this model leads to a very simple understand-
ing of the loss of photocount oscillations in squeezed
states of light under the addition of thermal noise. In par-
ticular, we have derived a diffusionlike equation that de-
scribes the “evolution” of the photocount statistics as the
“temperature is raised” (in fact, this “diffusion” equation
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applies to the thermalization of any state). Finally, we
have investigated the loss of these oscillations in terms
of the interference-in-phase-space picture. Using this ap-
proach we have derived an analytic bound on the temper-
ature which ensures that the oscillations will be visible.
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APPENDIX A

In this appendix we relate the TSS of Eq. (3.1) with
that of pfgs of Marian and Marian [3):

Prss = D(e/)5(=r")pip St (—r) D (o), (A1)
where §7. is a thermal state with 4’ mean photon number.

According to Ref. [3] the characteristic function of this
state is

X7ss = €Xp —(n' + %) cosh(2'r")|/\|2

+3(7' + 1)sinh(27) (A% + X*2) + o/* A — &/ A*

(A2)
Instead, from Eq. (3.1), using the identities
DY (a)D(B)D(a) = exp(Ba” — B*a)D(B)
§'(r)D(e)8(r) = D(acoshr + a*sinhr),  (A3)

we may calculate the characteristic function Eq. (3.4) as
d? _
XTss =/£3XP(“|:3|2/")
x (01D (e)§7(r) DY (B)D(N)D(B)S(r) D(a) 0)

= exp [ — (7 + 3 cosh 2r)|A|?

—3sinh(2r)(AZ + X2 + oA — e \*|,  (A4)

where
a, = acoshr — a*sinhr.

(A5)

Equating Egs. (A2) and (A4) in powers of A, we find the
relationship between them as being
sinh 2r = —2(7’ 4 3)sinh2r’ ,
A+ 3 cosh2r = (7’ + 1) cosh2r’

o = o, = acoshr — a*sinhr .

(A6)
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We can invert these relationships to yield

tanh 2r' = __—sinh2r
2(A + £ cosh2r)’
R +1)2= %(21’1 + ") (27 + e %) (A7)
these inverted relations make it clear that
A=0 <= @' =0. (A8)

As an example, the set of parameters 2 = 0, a = 7v/21,
and r = In(21)/2 corresponds to @' = 0, &' = 7, and
r’ = —1n(21)/2.

APPENDIX B

In this appendix we carry out the integrals in Egs. (5.5)
and (5.6). In the limit of strong squeezing and low tem-
perature (7 < e72") the narrow Gaussian in z behaves
like a 6 function

exp (———“-(x - ﬂae—ry)

27+ e 27

~ \/7(27 + e=2) §(z — V2ae™"), (B1)

so integration over the z variable will leave Eq. (5.5) in
the form

2-1)™ >

Pr(nl)(ﬁ) = 7 dpe==" 7
V(20 + €2) Jp,. (z) P
X L (222 + 2p?)
2
p
X exp( TR e2") (B2)
:c:\/iae“"
Using the result [see Eq. (D3) of Ref. [17] for m — oo]
[ dp e_“’2_1’2Lm(2:c2 +2p?) ~ (=)™
Pm () 24/2(m + % - %wz)

(B3)

and evaluating the slowly varying expomnential function
exp[—p?/(27 + €?")] at the Bohr-Sommerfeld trajectory
pZ, =2(m+ % — a?e™?") we obtain

( m + 1 _ a28——2r)
exp —_ 2 -

P(l)(’ﬁ) ~ 1 2n + ezr
i T V/27(20 + e?r) /m + 1 _q2e-2r
(B4)

Next, we turn to the calculation of P,(,,z)(ﬁ), ie.,
Eq. (5.6). We perform the integral in p by taking
exp[—p?/(27 + €2")] ~ 1 and using [Eq. (D6) of Ref. [17]]

Pm () 2 2
/ dpe™® ~P L,,(2z% + 2p?)

—Pm(x)

~ (—1)™ cos[25,,(z) — 7 /2] (B5)

2(m + 1 — 122)

where the phase
V2m+1
Sm(z) = / du p, (u) .

Finally, neglecting the slow variation in p,,(z) compared
to cos[2S5,,(x) — 7/2] we have

(BS6)

2

@y~ — 2 _
Fr(n) = 27 (20 + e?7)

. EXP [—2(2n + e 2)(m + i- aze‘z")]

\Jm+ 3 —aZem?r

x cos(2¢n,) , (B7)
where
V2ZmF1 -
b = f dupon () — 7 (BS)
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