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Dark and gray strong dispersion-managed solitons
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Dark and gray solitons in communication systems with strong dispersion management~DM! are obtained.
These new modes are characterized by a decaying oscillatory background. Unlike the bright DM solitons in
which the oscillations are observed only on a logarithmic scale, here the oscillations are dominant on a linear
scale and become very strong for moderate map strength.
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In recent years researchers have developed an impo
technology referred to as dispersion management~DM!. DM
means that optical fibers with sharply different dispers
characteristics, anomalous and normal, are combined
gether in subsections of the fiber and then this substructu
repeated periodically to make up the entire fiber length. T
relevant fundamental equation governing the dynamics is
nonlinear Schro¨dinger equation~NLSE! @1,2#. But now the
dispersion is a function of distance along the fiber,D
5D(z), which is composed of an average term plus a la
rapidly varying ~periodic! function. This equation admits
soliton type solutions, called DM solitons@3,4#. Such modes
are less susceptible to Gordon-Haus jitter@5,6# and in the
WDM context have substantially reduced FWM compone
than their classical counterparts. As demonstrated in re
transmission experiments@7,8#, DM solitons are amongst th
transmission formats being actively considered for the n
generation optical communications systems.

To date, all strong DM soliton research has focused
‘‘bright’’ solitons; a bright soliton being one that vanishe
well away from its peak~center! point, e.g., a sech profile
However in the classical case, it is also well known that
the normal regime, dark and gray solitons exist@9,10#. The
intensity of these dark and gray solitons tends to a nontri
background state away from its center point. Indeed for
dark and gray classical solitons, the ‘‘center’’ point is locat
at the minimum in amplitude, unlike the bright case, whe
the center point is a maximum. There has been substa
research, both analytical and experimental, investiga
such dark and gray ‘‘classical’’ solitons@11#. It is natural,
therefore, to consider dark and gray strong DM solitons.
also note that in theweakDM case, it is straightforward to
show that the dynamics of dark solitons reduces to the c
sical case@12#.

In this paper, we show how to obtain dark and gray stro
DM solitons and investigate their properties. By consider
the perturbed NLSE with loss and lumped amplification,
derive in the limit of strong dispersion management, an
eraged equation governing the slow dynamics of the opt
field’s amplitude. Stationary dark and traveling gray solito
are obtained by using asymptotic analysis and direct ave
ing procedures. The DM dark and gray modes are found
be very different from the classical ones. The most import
distinction is that they are characterized by a decaying os
latory background. Unlike the corresponding bright DM so
tons in which the oscillations are observed only on a lo
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rithmic scale, here the oscillations are dominant on a lin
scale and become very strong even for moderate m
strength. The propagation of an optical pulses in dispers
managed fibers is described by the NLSE:

i
]u

]z
2

D~z!

2

]2u

]t2
1g~z!uuu2u50, ~1!

where u is related to the slowly varying envelope of th
electric field,z to the propagation distance, andt to the re-
tarded time. All dimensionless quantitiesz, t, andu are re-
lated to the actual physical variables@1,2#. The functions
D(z) and g(z) describe the local group velocity dispersio
of the fiber and the variation of power due to loss a
lumped amplifications, respectively. Both functions are tak
to be periodic with periodza , which measures the dimen
sionless distance between amplifiers. In this paper we
consider the lossless:g51, and lossy case for whichg(z)
5g0 exp@22G(z2nza)# for nza<z<(n11)za , where g0
52Gza /@12exp(22Gza)# and G is the dimensionless los
coefficient. When the dispersion coefficient is large a
changes rapidly withza , Eq. ~1! is reduced to a nonloca
integral equation which admits a bright soliton solution@4#.
However, so far the question, how to obtain strong DM da
and gray solitons, is still open. Here, we present such s
tions and the essential analysis. We consider the cas
which the dispersion is a large periodic function with peri
za and varies rapidly, i.e.,D(z)5da1(1/za)D(z/za), where
da is the average dispersion andD is periodic in za with
average zero. We look for a solution of the form

u5@u2`1U~z,t !#expS il2E
0

z

g~z8!dz8D ~2!

with u→u6` ~real! ast→6` andU(z,t) is a complex am-
plitude. Here,l25u2`

2 5u1`
2 is the propagation constan

Substituting Eq.~2! into Eq. ~1! we find

i
]U

]z
2

D~z!

2

]2U

]t2
1l2g~U1U* !1gu2`~2uUu21U2!

1guUu2U50. ~3!

Our approach to solve Eq.~3! is based on Fourier transform
methods@4,13,14#. However, sinceU does not vanish at in-
finity, we cannot apply the Fourier transform directly on E
©2003 The American Physical Society01-1
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~3!. To overcome this difficulty, we take the time derivativ
of Eq. ~3! and get the following:

i
]V

]z
2

D~z!

2

]2V

]t2
12gu2`~UV1VU* 1UV* !

1g~2uUu2V1U2V* !1l2g~V1V* !50, ~4!

with V[]U/]t. It is evident that for a dark soliton,V van-
ishes at the boundaries, i.e., it forms a localized functi
Since in this case, Eq.~4! contains both slowly and rapidly
varying terms, we introduce new fast and slow scales az
5z/za andZ5z, respectively and expandU andV in powers
of za , i.e., U5U (0)1zaU (1)1•••, V5V(0)1zaV(1)1•••.
Substituting the above expansion together with the disp
sion map into Eq.~4! we find that the leading order equatio
in 1/za is J(V(0))50 and the order 1 equation isJ(V(1))5
2R, whereJ(A)[ i ]A/]z2(D(z)/2)]2A/]t2 and R[RL
1RNL with RL andRNL being the linear and nonlinear in
homogeneous parts, respectively given by

RL5 i
]V(0)

]Z
1l2g~z!~V(0)1V(0)* !2

da

2

]2V(0)

]t2
,

RNL52g~z!u2`~V(0)U (0)* 1U (0)V(0)* 1U (0)V(0)!

1g~z!~2uU (0)u2V(0)1U (0)2V(0)* !. ~5!

To solve at order 1/za , we use the Fourier transform

f̂ ~v![F~ f !5E
2`

1`

dt e2 ivt f ~ t !,

f ~ t ![F 21~ f̂ !5
1

2pE2`

1`

dv eivt f̂ ~v!. ~6!

The solution is thus given in the Fourier representation
V̂(0)5f̂(v,Z)exp@iv2C(z)/2#, where C(z)5*0

zD(z8)dz8.

The amplitudef̂(v,Z) is an arbitrary function whose dy
namical evolution is determined by a secularity conditi
associated with the order 1 equation. In other words,
condition of the orthogonality ofR to all eigenfunctions of
the adjoint linear problem which, when written in the Four
domain, takes the form

E
0

1

dzF~R!exp@2 iv2C~z!/2#50. ~7!

Substituting the expression forV(0)5F 21(V̂(0)) into R and
performing the integration in condition~7! yields the follow-
ing nonlinear evolution equation:

i
]f̂~v!

]Z
1S l21

dav2

2 D f̂~v!1l2K~v!@f̂~2v!#*

1^RNL&~v!50, ~8!
02560
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whereK(v) and ^RNL& depend on the shape of the dispe
sion map under consideration and are given by

K~v![E
0

1

dz g~z!exp@2 iv2C~z!#,

^RNL&~v![E
0

1

dz F~RNL!exp@2 iv2C~z!/2#. ~9!

We call Eq. ~8! the dispersion managed nonlinear Sch¨-
dinger equation for a nonzero background which governs
averaged evolution~in Fourier space! of an optical beam in
the regime of strong dispersion. The above results hold
any periodic dispersion map. However, the analysis sim
fies significantly in the special case of a two-step dispers
map for which two fiber segments with different dispersi
coefficients are fused in every period. In this case we h
D(z)5D1 for 0<uzu,u/2 and D2 in the regionu/2,uzu
,1/2, whereu is the fraction of the map with dispersionD1.
For the lossless case@g(z)51# the kernelK(v) takes the
simple form of Klossless5sin(sv2)/(sv2), with s5@uD12(1
2u)D2#/4 which provides a measure of the normalized m
strength. Next, we look for aZ independent solution to Eq
~8! in the formf̂(v,Z)5f̂s(v) ~real and even!, which when
inserted into Eq.~8! leads to

f̂s~v!52
^RNL&~v!

l21l2K~v!1dav2/2
[M@f̂s~v!#. ~10!

Note that whens→0 (K→1), the problem reduces to find
ing ‘‘classical’’ dark solitons. More general solutions th
depend onZ are also possible and describe ‘‘breathin
modes. To find the mode shape, we employ a modified N
mann iteration scheme and write Eq.~10! in the form

f̂s
(m11)~v!5~sL /sR!2M@f̂s

(m)~v!#, m>0, ~11!

with the convergence factorssL5* uf̂s
(m)(v)u2 dv and sR

5*f̂s
(m)(v)M dv. To implement the above algorithm, w

start with an initial guess forf̂s(v) which is even e.g.,
f̂s(v) initial5a/cosh(bv) and directly obtain the solution
V̂(0). By applying the inverse Fourier transform o
V̂initial

(0) (v), we obtain the modeVinitial
(0) (t) in physical space.

Then the initial guess for the solutionU (0)(t), taking U (0)

(2`)50, follows by integration overVinitial
(0) (t). Once the

values of both initial guesses are obtained, the evaluatio
the nonlinear termRNL follows from Eq.~5!. The last step is
to take the Fourier transform ofRNL and perform the integra
in Eq. ~9!. In Figs. 1 and 2 we show typical examples of da
soliton solutions obtained for the lossless case withu2`5
2u1`521, l251 and for different values of map strengt
Importantly, unlike the bright DM case in which the beam
core profile is close to a Gaussian shape, here, the cent
the dark DM mode is close to the classical case. Remarka
we find that the dark DM mode exhibits strong oscillatio
on a linear scale even for map strengths'1. This is in
distinction with the bright DM case in which the oscillation
1-2
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are noticeable only on a logarithmic scale~for the same value
of s). Moreover, we find that for moderate values of m
strengths (s*2) the oscillations become very large. To u
derstand the origin of these oscillations, we note t
uK(v)u,1 in which case Eq.~10! takes the form

f̂s~v!52
^RNL&~v!

l21dav2/2
(
n50

`

~21!nS l2K~v!

l21dav2/2
D n

.

~12!

To leading order inK(v), the above equation reads

f̂s~v!'2
^RNL&~v!

l21dav2/2
F12

l2K~v!

l21dav2/2
G . ~13!

Scrutinizing Eq.~13! we conclude that the origin of the os
cillatory behavior of the dark soliton is the presence of
term K(v). For the classical case,K(v)→1 and therefore,
the oscillations disappear. However for moderate m
strength, the oscillations become significant due to the

FIG. 1. Amplitude of the DM dark soliton~solid line! at zero
chirp point obtained for the lossless case withu2`52u1`521,
l251, da51, andza50.1. ~a! D152D254, s51; ~b! D1b f5
2D256, s51.5. The dotted line shows the classical dark solito

FIG. 2. Stationary evolution of the DM dark soliton computed
the end of each dispersion map for the parameters depicted in
1~a!.
02560
t

e
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havior ofK(v). Next we compare our results with Ref.@15#.
In Ref. @15#, an approximate form for a DM dark soliton wa
obtained asuuDark,DMu'u12exp(22t2)u. One way to under-
stand such an approximation is as follows. For the class
dark soliton we know thatuuDark,Cu2512sech2(t)51
2uuBright,Cu2. If one extends this idea to the DM case th
uBright,C→uBright,DM . We know, however, that for a mode
ate value of map strengths a good approximation for
uBright,DM is exp(2t2) and hence the approximation abov
for dark DM follows. However, this approximation fails fo
large map strength, where oscillations on the tails begin
grow. In fact, as indicated in our analysis for the dark D

.

FIG. 3. f̂s(v) for s51 ~a! ands51.5 ~b! as well as the leading

order solution,V(0)(t)5F 21(V̂(0)), in the time domain computed
at z50 for s51 ~c! ands51.5 ~d!. Parameters are the same as
Fig. 1.

FIG. 4. Intensity of a DM gray soliton mode~solid line! at zero
chirp point obtained for the lossless case withu2`52u1`521,
l251, da51, za50.1, a50.25. ~a! D152D254, s51; ~b! D1

52D256, s51.5. The dotted line depicts the classical gray so
ton solution.
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case, the oscillations grow more rapidly than the bright c
as a function ofs ~see Fig. 3!.

We next compare our results with direct averaging me
ods cf.@16# applied on Eq.~4! for the lossless case. Initially
we start from a guess, say,V05sech(t) and U051
1tanh(t) with fixed energyE05*2`

1`uV0u2 dt. Over one pe-
riod, this initial ansatz will evolve intoV08 which in general
will have a chirp. Next, we define the average beamV09
5(V01uV08u)/2 with energyE09 . ThenV15V09(E0 /E09)

1/2 will
be the new initial guess. At each step, the functionU is
obtained byU5*2`

t V(t)dt. The above procedure is re
peated until we converge to the exact solution. Note that
small value ofza , the asymptotic analysis is in good agre
ment with the direct averaging method~the difference is of
order 1022, not noticeable in Fig. 1!. We also obtained
modes for the lossy case (gÞ1); it will be reported else-
where.

Next, we mention briefly how to obtain gray DM soliton
in which the minimum intensity does not vanish. The ma
idea is to look for solutions of the form

u~z,t !5u0@U~j,z!1m#expF il2E
0

z

g~z8!dz8G , ~14!

wherej5u0b@ t1u0a*0
zD(z8)dz8# with u0

2 being the inten-
sity far from the beam center. Here,m5 ia2b and U is a
nd

,
-

i,
a

02560
e

-

r
-

complex valued amplitude. The solution is supplemen
with the following boundary conditions: Re(U)→2b as j
→1`, Re(U)→0 asj→2`, Im(U)→0 asj→6` with
umu251. The intensity of the beam far away from the cen
is u0

2 and as a result the propagation constant is given
l25u0

2. Substituting Eq.~14! into Eq. ~1!, and taking the
derivative of the resulting equation with respect toj we find

i
]V

]z
1u0

2D~z!S iab
]V

]j
2

b2

2

]2V

]j2 D 1u0
2g~V1m2V* !

1N~U,V!50, ~15!

where V5]U/]j and N(U,V)5u0
2g@2m* UV12m(U* V

1UV* )12uUu2V1U2V* #. Following the same procedur
described before, we obtain averaged equations gover
the evolution of the beam amplitude in Fourier space. Fig
4 shows typical gray solitons obtained by this procedure
the lossless case. Notice that apart from the oscillatory c
acteristic, gray DM modes have higher minimum intens
than their classical counterpart.
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