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Dark and gray strong dispersion-managed solitons
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Dark and gray solitons in communication systems with strong dispersion managgnare obtained.
These new modes are characterized by a decaying oscillatory background. Unlike the bright DM solitons in
which the oscillations are observed only on a logarithmic scale, here the oscillations are dominant on a linear
scale and become very strong for moderate map strength.
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In recent years researchers have developed an importarithmic scale, here the oscillations are dominant on a linear
technology referred to as dispersion manageni@eit). DM scale and become very strong even for moderate map
means that optical fibers with sharply different dispersionstrength. The propagation of an optical pulses in dispersion
characteristics, anomalous and normal, are combined tdnanaged fibers is described by the NLSE:
gether in subsections of the fiber and then this substructure is 5
repeated periodically to make up the entire fiber length. The if7_U_ iz) (7_U+ (2)|u[2u=0 1)
relevant fundamental equation governing the dynamics is the a9z 2 ot? 9 e
nonlinear Schrdinger equationNLSE) [1,2]. But now the
dispersion is a function of distance along the fibBr, whereu is related to the slowly varying envelope of the
=D(z), which is composed of an average term plus a largeelectric field,z to the propagation distance, atdo the re-
rapidly varying (periodig function. This equation admits tarded time. All dimensionless quantitiest, andu are re-
soliton type solutions, called DM solitori8,4]. Such modes lated to the actual physical variabl¢$,2]. The functions
are less susceptible to Gordon-Haus jittér6] and in the D(z) andg(z) describe the local group velocity dispersion
WDM context have substantially reduced FWM componentf the fiber and the variation of power due to loss and
than their classical counterparts. As demonstrated in recefimped amplifications, respectively. Both functions are taken
transmission experimen(3,8], DM solitons are amongst the to be periodic with periodz,, which measures the dimen-
transmission formats being actively considered for the nexsionless distance between amplifiers. In this paper we will
generation optical communications systems. consider the losslesgi=1, and lossy case for whict(z)

To date, all strong DM soliton research has focused on=g, exd —2['(z—nz)]| for nz,<z<(n+1)z,, where gg
“bright” solitons; a bright soliton being one that vanishes =2I"z,/[1—exp(—2I'z,)] andT" is the dimensionless loss
well away from its peakcentej point, e.g., a sech profile. coefficient. When the dispersion coefficient is large and
However in the classical case, it is also well known that inchanges rapidly witre,, Eqg. (1) is reduced to a nonlocal
the normal regime, dark and gray solitons ex&tL0]. The integral equation which admits a bright soliton solut{a@h.
intensity of these dark and gray solitons tends to a nontriviaHowever, so far the question, how to obtain strong DM dark
background state away from its center point. Indeed for thend gray solitons, is still open. Here, we present such solu-
dark and gray classical solitons, the “center” point is locatedtions and the essential analysis. We consider the case in
at the minimum in amplitude, unlike the bright case, wherewhich the dispersion is a large periodic function with period
the center point is a maximum. There has been substantial and varies rapidly, i.eD(z) = 8,+ (1/z,) A(z/z,), where
research, both analytical and experimental, investigating, is the average dispersion amd is periodic inz, with
such dark and gray “classical” solitonfd1]. It is natural, average zero. We look for a solution of the form
therefore, to consider dark and gray strong DM solitons. We
also note that in theveakDM case, it is straightforward to _ Y K
show that the dynamics of dark solitons reduces to the clas- u=lu_.+ U(z,t)]exp(m fog(z )dz ) @
sical casd12].

In this paper, we show how to obtain dark and gray strongvith u—u.,, (rea) ast— = andU(z,t) is a complex am-
DM solitons and investigate their properties. By consideringplitude. Here,)\2=u2_oc=u?Ho is the propagation constant.
the perturbed NLSE with loss and lumped amplification, weSubstituting Eq(2) into Eq. (1) we find
derive in the limit of strong dispersion management, an av-
eraged equation governing the slow dynamics of the optical sU D(z) 4?U

field's amplitude. Stationary dark and traveling gray solitons 15, =5~ — 5 +N\%g(U+U*)+gu_..(2|U[*+U?)
are obtained by using asymptotic analysis and direct averag-
ing procedures. The DM dark and gray modes are found to +g|UJ2uU=0. 3

be very different from the classical ones. The most important

distinction is that they are characterized by a decaying oscilOur approach to solve E@3) is based on Fourier transform
latory background. Unlike the corresponding bright DM soli- methodg4,13,14. However, sinceJ does not vanish at in-
tons in which the oscillations are observed only on a logafinity, we cannot apply the Fourier transform directly on Eq.
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(3). To overcome this difficulty, we take the time derivative where () and(Ry,) depend on the shape of the disper-

of Eq. (3) and get the following: sion map under consideration and are given by
2 1 .
(VD@ TNV i (UVEVU* UV K(w)sf dZ g(Dex] —iw?C()],
0z 2 2 0

2 2\ /% 2 %\ 1
HOZUVHUR vV =a. @ (Ra)(@)= | e ARG eI -i0?C(012). O
with V=9U/dt. It is evident that for a dark solitory/ van-
ishes at the boundaries, i.e., it forms a localized functionwe call Eq. (8) the dispersion managed nonlinear Sehro
Since in this case, Eq4) contains both slowly and rapidly dinger equation for a nonzero background which governs the
varying terms, we introduce new fast and slow scaleg as averaged evolutiofin Fourier spaceof an optical beam in
=2z/z, andZ=z, respectively and exparid andV in powers  the regime of strong dispersion. The above results hold for
of z,, i.e, U=UO+zUD ... v=vOizvBy. .. any periodic dispersion map. However, the analysis simpli-
Substituting the above expansion together with the disperffies significantly in the special case of a two-step dispersion
sion map into Eq(4) we find that the leading order equation map for which two fiber segments with different dispersion
in 1/z, is J(V(¥)=0 and the order 1 equation V)= coefficients are fused in every period. In this case we have
—R, where J(A)=idAld{—(A({)2)*Algt? and R=R.  A({)=A, for 0<|{|<6/2 and A, in the region 6/2<|{]|
+ Ry With R and Ry, being the linear and nonlinear in- <1/2, wheref is the fraction of the map with dispersidry.

homogeneous parts, respectively given by For the lossless cade({)=1] the kernelX(w) takes the
simple form of Kjpegiess= SiNSw?)/(sw?), with s=[ A, — (1
_ov(© ) (0) 4 \/(O)* 5, 32V — 60)A,]/4 which provides a measure of the normalized map
Ri=1—7=+Ag(O(VT+HVIT ) == PrRL strength. Next, we look for @ independent solution to Eq.

(8) in the form ¢ (w,Z) = ¢(w) (real and eveyy which when
inserted into Eq(8) leads to

<RNL>(€U)
N2+ N2 () + Syw?l2

R =29( §)u_w(V(0)U(°)* + U@\ 4 U O\/(0)y

+9()(2JU@2VO 4 y @2y, (5) bs(w)=— =M[ ¢s(w)]. (10)

To solve at order ¥, we use the Fourier transform i
Note that whers—0 (K— 1), the problem reduces to find-

R s _ ing “classical” dark solitons. More general solutions that
f(w)E}‘(f):f dt e '“t(t), depend onZ are also possible and describe “breathing”
o modes. To find the mode shape, we employ a modified Neu-
mann iteration scheme and write E4O) in the form

—-1,% 1 e jwt?
fy=7 l”)zﬁffwd“’e ). © B (w) = (s, 15 M[ B (w)], m=0,  (11)

The solution is thus given in the Fourier representation bywith the convergence factors = [|¢{™(w)|? dw and sg
VO = g(w,2)exdiw®C(0)/2], where C(2)=[§A(2)d’. =S (w)M dw. To implement the above algorithm, we
The amplituded(w,Z) is an arbitrary function whose dy- start with an initial guess fokp(w) which is even e.g.,
namical evolution is determined by a secularity conditiong ()™ =a/coshpw) and directly obtain the solution
associated with the order 1 equation. In other words, thgyo) By applying the inverse Fourier transform on

condition of the orthogonality oR to all eigenfunctions of ) . (0) . )
S 4 ; : - Vi (w), we obtain the mod&/+4.,(t) in physical space.
th tl | hich, wh tt the F initial o initial .
e adjoint linear problem which, when written in the OUNeT rhen the initial guess for the solutidd(©)(t), taking U(®

domain, takes the form - . . 0)
(—»)=0, follows by integration oveW,i(t). Once the
1 values of both initial guesses are obtained, the evaluation of
f d¢FA(R)exd —iw?C(¢)/2]=0. (7) the nonlinear ternRy, follows from Eq.(5). The last step is
0 to take the Fourier transform @&y, and perform the integral
R in Eq.(9). In Figs. 1 and 2 we show typical examples of dark
Substituting the expression ft®=F"1(V() into R and  soliton solutions obtained for the lossless case with,=
performing the integration in conditiof) yields the follow-  —u,_ =—1, \?=1 and for different values of map strength.
ing nonlinear evolution equation: Importantly, unlike the bright DM case in which the beam’s
core profile is close to a Gaussian shape, here, the center of

(o) 5 S,0°) . 5 . . the dark DM mode is close to the classical case. Remarkably,
I—5— T M+ = (o) +A K(w)[¢(—w)] we find that the dark DM mode exhibits strong oscillations
on a linear scale even for map strengtt¥1. This is in
+{(Rn ) (w)=0, (8) distinction with the bright DM case in which the oscillations
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FIG. 3. ¢(w) for s=1 (a) ands=1.5(b) as well as the leading
order solutionV©(t)=F~1(V®), in the time domain computed
atz=0 for s=1 (c) ands=1.5(d). Parameters are the same as in
Fig. 1

FIG. 1. Amplitude of the DM dark solitorisolid line) at zero
chirp point obtained for the lossless case with,=—u,.,.=—1,
\2=1, §,=1, andz,=0.1. (@ A;=—A,=4, s=1; (b) A,bf=
—A,=6, s=1.5. The dotted line shows the classical dark soliton.

) o havior of (w). Next we compare our results with Rg15].
are noticeable only on a logarithmic scéler the same value |, Ref. [15], an approximate form for a DM dark soliton was
of s). Moreover, we find that for moderate values of mapgptained adUpark oml~|1—exp(=2t3)|. One way to under-

strengths ¢=2) the oscillations become very large. To un- stand such an approximation is as follows. For the classical
derstand the origin of these oscillations, we note thaiysrk soliton we know that|Upark c|2=1—secR(t) =1

|K(w)[<1 in which case Eq(10) takes the form — |Ugright.c|?. If one extends this idea to the DM case then
o ) n Ugright,c— Ugright,om - YWe know, however, that for a moder-
b(@)=— (R ) (@) (—1)" A K(w) ate value of map strengtls a good approximation for
S N2+ 80?2 1=0 N2+ 8,022 Ugright,pMm 1S exp(t?) and hence the approximation above
(12 for dark DM follows. However, this approximation fails for
. . _ large map strength, where oscillations on the tails begin to
To leading order inC(w), the above equation reads grow. In fact, as indicated in our analysis for the dark DM
. R ) N K(w (a)
bu(w)~— (Ra(w) | (@) R
N2+ 8,022 N2+ 5,022

Scrutinizing Eq.(13) we conclude that the origin of the os-
cillatory behavior of the dark soliton is the presence of the
term KC(w). For the classical cas&(w)—1 and therefore,
the oscillations disappear. However for moderate map
strength, the oscillations become significant due to the be-

-20 0t 20

FIG. 4. Intensity of a DM gray soliton modsolid line) at zero
chirp point obtained for the lossless case with,=—-u,.,=—1,
FIG. 2. Stationary evolution of the DM dark soliton computed at\2=1, §,=1, z;=0.1, «=0.25. (@) A;=—A,=4,s=1; (b) A,
the end of each dispersion map for the parameters depicted in Figs —A,=6, s=1.5. The dotted line depicts the classical gray soli-
1(a). ton solution.
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case, the oscillations grow more rapidly than the bright caseomplex valued amplitude. The solution is supplemented
as a function of (see Fig. 3. with the following boundary conditions: R&)—28 as ¢

We next compare our results with direct averaging meth-— +«, Re(U)—0 asé— —o, Im(U)—0 asé— o with
ods cf.[16] applied on Eq(4) for the lossless case. Initially, |ux|?=1. The intensity of the beam far away from the center
we start from a guess, say,=sechf) and Up,=1 s uj and as a result the propagation constant is given by
+tanh() with fixed energy&o=J/*7|Vo|® dt. Over one pe- \2=u2. Substituting Eq.14) into Eq. (1), and taking the
riod, this initial ansatz will evolve intd/, which in general derivative of the resulting equation with respecttwe find
will have a chirp. Next, we define the average be¥h
= (Vo+|V4|)/2 with energyy . ThenV,= Vg (Ey/Ey) Y2 will

be the new initial guess. At each step, the functldnis N 9V BZaV 5 -
obtained byU=["_V(7)dr. The above procedure is re-  1——+UsD(2) Iaﬂ&_§_7(9_§2 +upg(V+pu V)
peated until we converge to the exact solution. Note that for

small value ofz,, the asymptotic analysis is in good agree- +N(U,V)=0, (15)

ment with the direct averaging methgthe difference is of
order 102, not noticeable in Fig. )1 We also obtained

modes for the lossy casg#1); it will be reported else- \yhere V=9U/9¢ and N(U,V)=u2g[2u* UV+2u(U*V

where. . _ , . +UV*)+2|U|2V+U?v*]. Following the same procedure

~Next, we mention briefly how to obtain gray DM solitons gescriped before, we obtain averaged equations governing

in which the minimum intensity does not vanish. The mainhe eyolution of the beam amplitude in Fourier space. Figure

idea is to look for solutions of the form 4 shows typical gray solitons obtained by this procedure for
the lossless case. Notice that apart from the oscillatory char-

, (14  acteristic, gray DM modes have higher minimum intensity
than their classical counterpart.

u(z,t)=uO[U(g,z)vL,u]ex;{i)\zfzg(z’)dz’
0

whereé=uyB[t+ugafjD(z')dz'] with uﬁ being the inten- M.J.A. is partially supported by the NSF under Grant
sity far from the beam center. Herg,=ia— B andU is a  Nos. ECS-9800152 and DMS-0070792.
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