PHYSICAL REVIEW E, VOLUME 65, 026602
Methods for discrete solitons in nonlinear lattices
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A method to find discrete solitons in nonlinear lattices is introduced. Using nonlinear optical waveguide
arrays as a prototype application, both stationary and traveling-wave solitons are investigated. In the limit of
small wave velocity, a fully discrete perturbative analysis yields formulas for the mode shapes and velocity.
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In recent years, there has been considerable interest in thiees can be constructed. Applying this method to the DNLS
study of discrete spatial solitons in nonlinear me@ia[1]). model, shows that traveling solitons possess a nontrivial non-
Such solitons are intrinsic highly localized modes of nonlin-linear “chirp.” Moreover, our resultgboth numerical and
ear lattices[2]. In a coupled optical waveguide, they form analytica) indicate that, unlike the integrable cagks], a
when a beam of high intensity locally changes the nonlineagontinuous traveling-wave solution may not ekid]. In the
refractive index of the waveguide via the Kerr effect andlimit of small velocity, we develop a fully discrete perturba-
decouples them from the remaining waveguides. In this casé',on theory _and show that slowly moving discrete solitons are
discrete diffraction is balanced by nonlinearity. indeed “chirped.” _ _ o

Discrete solitons have been demonstrated to exist in a Consider an infinite array of one-dimensional identical
wide range of physical systems, e.g., atomic chdBg] waveguides Wlth equal separatlon._The equation, which mod-
(discrete latticeswith on-site cubic nonlinearities, molecular €S the evolution of the slowly varying envelope of the elec-
crystals[5], biophysical system§6], electrical latticeg7],  Uic field, is the well-known DNLS equation,
and recently in arrays of coupled nonlinear optical wave 96
guides[8,9]. In all of the above cases, the localized modes j "
are solutions of the well-known discrete nonlinear Sehro 9z
dinger(DNLS) equation. The DNLS as a model of nonlinear
optical waveguide arrays was first suggested by Christodou
ides and Josepl2] and later various applications of discrete

solitons were explored, e.g., storage and steering of discre . > ; .
P g 9 9 DNLS) [15] in which the nonlinearity takes the average

solitons in waveguide arrajy10]. 5 . .
The first experimental observation of discrete solitons inform |¢!‘| (én+1F hn—1)/2. We look for traveling localized
modes in the form

optical waveguide arrays was reported[&. When a low-
intensity beam was injected to one waveguide, the propagat- bo(2)=u(£)e ¥ )

ing field spreads over the adjacent waveguides, hence expe- " ’

riencing discrete diffraction. However, for sufficiently high \ith ¢=nh—Vvz and ¢,= Bnh— wz whereV and w are the
power, the beam was self trapped in the central waveguidegjiton velocity and wave-number shift, respectively. Assum-
Subsequently, the dynamical behavior of discrete solitonghg  is complex, i.e.u(£)=F(£)+iG (&) (with F,G being

1
+F(¢n+l+¢n71_2¢n)+|¢n|2¢n207 (@]

Where ¢, is the on-site wave functior is the lattice spac-
Ing, andz is the propagation distance. Another important
odel for discrete solitons is the integrable DNLS equation

was experimentally observé@]. real, then Eq.(1) takes the form
In this paper, we introduce a method to obtain both sta-
tionary and moving solitons in nonlinear lattices. The es- VG’ +D;F+D,G+(F?+G?)F=wF,
sence of the method is to transform the DNLS equation gov- (3)
erning the solitary wave into Fourier space, where the wave —VF'+D;G—D,F +(F?+G?)G=wG,

function is smooth, and then deal with a nonlinear nonlocal _ o _
integral equation for which we employ a rapidly convergentwhere prime denotes derivative with respecgtand
numerical scheme to find solutions. A key advantage of the

method is to transform a differential-delay equation into an _ i _

integral equation for which computational methods are effec- DuF h? [cos Bh)(E.+E-)F—2F],

tive (see also Refd.11,12). Importantly, the technique al- (4)
lows us to explore physical phenomena such as discrete soli- sin(Bh)

tons in a nonlinear waveguide array with varying diffraction 2= h2 (E+—E)G,

[13]. This relates to the recent experimental observation of

diffraction management in optical waveguidglt]. Math-  with E.. X(&)=X(&xh). To solve systeni3), i.e., to find the
ematically, the method also provides a foundation upormode shapes and the velocity dependenc@,one use dis-
which an analytic theory describing solitons in nonlinear lat-crete Fourier analysis. The advantage is that the differential
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delay Eq.(3) is transformed into a nonlinear nonlocal inte- 45 2

gral equation in which the derivatives in E@) are replaced (a) /\ (b)
by polynomials. Having transformed the equation into an =

integral equation, the soliton is then viewed as a fixed point 3 i "\ F

of a nonlinear functional. A T

—_

Stationary solitons Stationary solutions are obtained by hF !'I \
solving Eq.(3) for V=8=0, o=w, andG=0. We intro- 15 A\

duce the discrete Fourier transform A 3

/,//. \\\
A =57 =

F(g)= > F(mhje ‘amh, % = 0, 2 ¢ % 8

m=—ow
5
h (ah . ) ©) FIG. 1. Mode profiles obtained withs=1 in Fourier spac¢a),
F(mh)= > f F(q)e'9mhdq. for h=0.5(solid), h=1 (dashef, andh=1 (dashed dottedfor the
—x/h

integrable case(b) Soliton shape in physical space for=0.5

Note the difference from the continuous Fourier transformffo“d)’ h=1 (dashed| and for the integrable case lat-1 (dashed
. . . otted.

where the sum is replaced by an integral dné 0 in the

inverse transform. Then, E¢R) transforms into the follow-

ing nonlinear integral equation: Traveling solitons Unlike the IDNLS in which traveling

solitons are exact and continuous solutions, there are no

. h?2 e A . known explicit solutions for DNLS solitons. Previous studies
F(a)= W(F* FxF)(aq)=K,[F(a)], of traveling waves employed various techniq{i&%,18 and

©) ansatz based on stationary solutions and perturbation of

. R R R IDNLS [19]. Our analysis, which is based on the discrete

Fx F*F=f dg; doxF(0,)F(g2)F(a—a,—02), Fourier methods, reveals another fundamental distinction
from the IDNLS traveling solitons: they are “multimode”

and Q(q) = ws+2[1—coshq))/h? is the frequency of the discrete solitons, i.e., a single modgech-like shapedoes
linear excitations. Equatiof6) bears the following important Not propagate without significant radiation. Importantly,
conclusion: solitons can be viewed as being a fixed point ofvhen we apply theontinuousFourier transform on Eqs3),
an infinite-dimensional nonlinear integral equation. To nu-We find that the numerical scheme based on Egjsand(8)
merically find the fixed point, we employ a modified Neu- With m/h— does not converge to a solution. This is a

mann iteration schemef. [11,17)) and write Eq.(6) in the ~ Strong indication that, as opposed to the integrable case, a
form true continuousstationary or traveling-wave solutions to the

. DNLS model does not exist. By continuous solution, we

. a(F,) ) mean a solution that can be defined off the lattice points,
Fri(q)= An ICwS[Fn(q)], n=0, which is necessaryhen discussing traveling waves on lat-
B(F.) tices. In fact, the perturbation analysis presented below sup-

(7) ports this observation asfiils to give consistent results off
~s ) - - the grid points. Similarly, it was shown {20] that the NLS
a:f Fa(a)da; B:f F”(Q)’Cws[':n(q)]dq' equation with a positive fourth-order correctigwhich is
) ) . obtained from the DNLS by taking the limh—0) lacks
The factor 3/2 is chosen to make the right hand side ofxact soliton solutions. These results differ from those of
Eq. (7) of degree zero, which yields convergence of the[21] in which a “continuous” traveling solitary waves were
scheme[11,12. WhenF(mh) is real and even, it implies reported using Fourier series expansions with finite petiod
that F(q) is also real. Clearly wherr,(q)—F¢(q) asn while assuming convergencas L—. To find the mode

— o0, thena/B—1 and in turnF¢(q) will be the solution to  shapes and soliton velocity, we proceed as before by taking
Eq. (6). The factorsa and 3 are introduced to stabilize an the discrete Fourier transform of Ed8), which yields the
otherwise divergent simple Neumann iteration scheme. Notollowing iteration scheme:

that when we apply the continuous Fourier transform on Egs.

(3) (to find stationary solution then the numerical scheme R Q,(q) ~ a\¥2

based on Eq(7) does not converge, which indicates that a Fr+(a)= Q—()Gn(Q)"' —) Q1[Fn,Gnl
continuousstationary solution to the DNLS may not exist. 19 P

As we will see later, this will have a direct impact on the ®
traveling-wave problem. Figure 1 shows a typical solution to ~ 05(9) . a\%?

Eq. (6) both in the Fourier domaifFig. 1(a)] and in physical Gn+1(Q)= Q—(q)Fn(Q)+ (ﬂ_) Q[Fn,Ghl,
space[Fig. 1(b)] for different values of lattice spacin. ! 2

Importantly, with suitable maodification of Eq(7), this R R _

method yields breathing localized modes: “discrete diffrac-whereF(q) andG(q)=—iG(q) are the Fourier transforms
tion managed solitons{13]. of F(¢) andG(¢), respectively; and
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FIG. 2. Mode shapes in physical space fo=1 and 3=0.5.
Solid line corresponds th=0.5 and velocityV= —0.25 whereas
dashed line foh=1 andV=—0.155.

Ql[ﬁ,é]zm%(ﬁ*ﬁ*ﬁ—é*é*ﬁ),
o o2 S €)
QlF.8l= gz (FrF*E-C+C+0).
The convergence factoeg; and 3;, j=1,2 are given by
w- | ﬁn(q>(ﬁn(q)—&Egién(q))dq
(10)

Blzj 'En(Q)Qldqv ,82=fén(q)Q2dq,

and a, is obtained froma; by interchangingF and G.
Here, Q,(q)=w+2h?1-coshgcosBh)] and Q,(q)
=2/h? sin(hg)sin(Bh)+Va. For a given set of parametehns
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FIG. 3. Evolution of a moderately localized soliton in physical
domain forB=0.5,V=-0.25, w=1, andh=0.5 obtained by di-
rect numerical simulation.

ized modes travel essentially undistorted for shorter dis-
tances(around 20 normalized units, see Fig. Awhich cor-
responds to 24 mm. Noticeably, during propagation, there
was a change of 0.0133%/m(0.245%/mm in the soliton
velocity for moderately(strongly localized modes, in which
case strongly localized mode slows down and eventually re-
laxes to a stationary state. This behavior depends crucially on
the initial amplitude: Higher-amplitude solitons are less
“mobile” than lower-amplitude beams. The discrete Fourier
transform yields a useful, but nonuniform traveling-wave so-
lution. We term this a Stroboscopit traveling wave.
Perturbation theory To analytically explore the multi-
mode nature of the DNLS traveling solitons, we consider the

o and >0, the mode shapes and soliton velocity are founccase in which the solitons move slowly and develop a fully

by iterating Egs.(8) with an initial guess, e.g.ﬁo(q)
=sech()), G,(q) =sech@tanh) andV=V, <0. The itera-
tions are carried out until the conditidd;|=|a;— Bj|<e,

discrete perturbation theory for finite amplitude. It is impor-
tant to note that our perturbative approach is fundamentally
different than the perturbation methods based on inverse

(j=1,2) is satisfied withe>0 being a prescribed tolerance. Scattering theorycf. [19,23).
However, unlike the stationary case, here, the soliton veloc-

ity is still to be determined. For any choice &, <O if
|€j| < e, we seek a different value o, at which&; changes
sign. Then, we use the bisection method to cha¥gein

order to locate the correct velocity and modes=,G for

eachw, B, andh. Typical soliton modes are shown in Fig. 2.
Although Egs.(8) can be solved numerically with high
accuracy, the resulting solutions are only obtained at the dis-

crete locationsg=nh, while all real values of are called
upon in a traveling-wave solution. So the question we want
to ask is: What happens to the modes found above when they
propagate across the array? To answer this question, we
simulated Eq(1) using¢,(z=0)=u(nh)e """ as an initial
condition with u(nh)=Fny(nh)+iGqy(nh) being the so-
lutions obtained from Eq8). When a moderately localized
mode [22] is launched, the beam moved across the
waveguides undistortedFig. 3) over 100 normalized units.

This corresponds, according to the experimental data re- FIG. 4. Evolution of a strongly localized soliton in physical
ported in[8], to 120 mm(recall that the wave guides used in domain for3=0.5,V=—0.2, w=2, andh=0.5 obtained by direct
[8] were 6 mm in length On the other hand, strongly local- numerical simulation.
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Next, we takeB=eB;+0O(€?), e<1, and expand the solvability condition at ordee? which is the discrete analog
soliton velocity, frequency, and the wave functions in aof Green’s identity. For¢ restricted to the grid points, i.e.,

power series ire. Keeping terms up t®(e) we have &=¢&=lh (which is consistent with the discrete Fourier
5 ) transform), we find thatw;=0 andV;=—y(h)B;; y(h)
V=€V +€eV,, w=wstewtew,, =a,(h)/a,(h) where
(11)

F=Fo+eF,+€’F,, G=€G;+€°G,. ,
a1= 2, Fo(&)[24F3(&) +#(E, —E )Fo(&)],
Substituting Egs(11) into (3), we find F satisfies the sta- leZ

tionary equation and is even #hand to ordere (16)
— ! 2 12
LiF1=w1Fo(&), 8,= 2, 2Fg(&)A&)FE(&)+Fe(&).
(12)
L,G1=V1Fo(€) + B1(E+ —E_)Fo(&)/h, We compared these semianalytical results with direct nu-
merical simulation for the fully discrete case and found ex-
and to ordere?, cellent agreement. Moreover, in the linit-0, we retrieve

_ , 2 2 the known resuly;=—-28,; andG,(£)—0.
L1F2= w1F 1t wpF o= V1G4 (£) —FoG1—3FoF] In conclusion, we have proposed a method, based on dis-
+BUE, +E_)Fol2— By(E, —E_)G, /h, crete Fourier transforms, to compute stationary and traveling
soliton in nonlinear lattices. This method can be applied to a
(13)  wide variety of problems in nonlinear dynamics of discrete
, , systems. It also provides a foundation for a rigorous theory
L£3G2= w161+ ViF1(§) +VaFo(€) —2FoF1Gy in which fixed point theorems can be developed. Applying
_ this method to the DNLS model, shows that traveling soli-
TAuE—EFy, 4 tons have “multimode” structure. Our findings agree with
where £;X= —wSX+(E++E,—2)X+IjFSX, j=1,2 and dire_ct numerical s_imul_ations anq are consistent with pertur-
1,=3,1,=1. Solutions to systerfil2) are given by bation theory, which yields explicit formulas for the soliton
modes and velocity.

F1=(1)1(?F0/(9(1)S+ b(?FQ/(Qg, .
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