
PHYSICAL REVIEW E, VOLUME 65, 026602
Methods for discrete solitons in nonlinear lattices

Mark J. Ablowitz and Ziad H. Musslimani
Department of Applied Mathematics, University of Colorado, Campus Box 526, Boulder, Colorado 80309-0526

Gino Biondini
Department of Engineering Sciences and Applied Mathematics, Northwestern University, 2165 Sheridan Road,

Evanston, Illinois 60208-3125
~Received 28 February 2001; published 9 January 2002!

A method to find discrete solitons in nonlinear lattices is introduced. Using nonlinear optical waveguide
arrays as a prototype application, both stationary and traveling-wave solitons are investigated. In the limit of
small wave velocity, a fully discrete perturbative analysis yields formulas for the mode shapes and velocity.
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In recent years, there has been considerable interest in
study of discrete spatial solitons in nonlinear media~cf. @1#!.
Such solitons are intrinsic highly localized modes of nonl
ear lattices@2#. In a coupled optical waveguide, they for
when a beam of high intensity locally changes the nonlin
refractive index of the waveguide via the Kerr effect a
decouples them from the remaining waveguides. In this c
discrete diffraction is balanced by nonlinearity.

Discrete solitons have been demonstrated to exist i
wide range of physical systems, e.g., atomic chains@3,4#
~discrete lattices! with on-site cubic nonlinearities, molecula
crystals@5#, biophysical systems@6#, electrical lattices@7#,
and recently in arrays of coupled nonlinear optical wa
guides@8,9#. In all of the above cases, the localized mod
are solutions of the well-known discrete nonlinear Sch¨-
dinger~DNLS! equation. The DNLS as a model of nonline
optical waveguide arrays was first suggested by Christod
ides and Joseph@2# and later various applications of discre
solitons were explored, e.g., storage and steering of disc
solitons in waveguide array@10#.

The first experimental observation of discrete solitons
optical waveguide arrays was reported in@8#. When a low-
intensity beam was injected to one waveguide, the propa
ing field spreads over the adjacent waveguides, hence e
riencing discrete diffraction. However, for sufficiently hig
power, the beam was self trapped in the central wavegu
Subsequently, the dynamical behavior of discrete solit
was experimentally observed@9#.

In this paper, we introduce a method to obtain both s
tionary and moving solitons in nonlinear lattices. The e
sence of the method is to transform the DNLS equation g
erning the solitary wave into Fourier space, where the w
function is smooth, and then deal with a nonlinear nonlo
integral equation for which we employ a rapidly converge
numerical scheme to find solutions. A key advantage of
method is to transform a differential-delay equation into
integral equation for which computational methods are eff
tive ~see also Refs.@11,12#!. Importantly, the technique al
lows us to explore physical phenomena such as discrete
tons in a nonlinear waveguide array with varying diffracti
@13#. This relates to the recent experimental observation
diffraction management in optical waveguides@14#. Math-
ematically, the method also provides a foundation up
which an analytic theory describing solitons in nonlinear l
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tices can be constructed. Applying this method to the DN
model, shows that traveling solitons possess a nontrivial n
linear ‘‘chirp.’’ Moreover, our results~both numerical and
analytical! indicate that, unlike the integrable case@15#, a
continuous traveling-wave solution may not exist@16#. In the
limit of small velocity, we develop a fully discrete perturba
tion theory and show that slowly moving discrete solitons
indeed ‘‘chirped.’’

Consider an infinite array of one-dimensional identic
waveguides with equal separation. The equation, which m
els the evolution of the slowly varying envelope of the ele
tric field, is the well-known DNLS equation,

i
]fn

]z
1

1

h2 ~fn111fn2122fn!1ufnu2fn50, ~1!

wherefn is the on-site wave function,h is the lattice spac-
ing, and z is the propagation distance. Another importa
model for discrete solitons is the integrable DNLS equat
~IDNLS! @15# in which the nonlinearity takes the averag
form ufnu2(fn111fn21)/2. We look for traveling localized
modes in the form

fn~z!5u~j!e2 icn, ~2!

with j5nh2Vz andcn5bnh2vz whereV andv are the
soliton velocity and wave-number shift, respectively. Assu
ing u is complex, i.e.,u(j)5F(j)1 iG(j) ~with F,G being
real!, then Eq.~1! takes the form

VG81D1F1D2G1~F21G2!F5vF,
~3!

2VF81D1G2D2F1~F21G2!G5vG,

where prime denotes derivative with respect toj and

D1F5
1

h2 @cos~bh!~E11E2!F22F#,

~4!

D2G5
sin~bh!

h2 ~E12E2!G,

with E6X(j)[X(j6h). To solve system~3!, i.e., to find the
mode shapes and the velocity dependence onb, we use dis-
crete Fourier analysis. The advantage is that the differen
©2002 The American Physical Society02-1
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delay Eq.~3! is transformed into a nonlinear nonlocal int
gral equation in which the derivatives in Eq.~3! are replaced
by polynomials. Having transformed the equation into
integral equation, the soliton is then viewed as a fixed po
of a nonlinear functional.

Stationary solitons. Stationary solutions are obtained b
solving Eq.~3! for V5b50, v5vs , andG50. We intro-
duce the discrete Fourier transform

F̂~q!5 (
m52`

1`

F~mh!e2 iqmh,

~5!

F~mh!5
h

2p E
2p/h

p/h

F̂~q!eiqmh dq.

Note the difference from the continuous Fourier transfo
where the sum is replaced by an integral andh→0 in the
inverse transform. Then, Eq.~3! transforms into the follow-
ing nonlinear integral equation:

F̂~q!5
h2

4p2V~q!
~ F̂* F̂* F̂ !~q![Kvs

@ F̂~q!#,

~6!

F̂* F̂* F̂5E dq1 dq2F̂~q1!F̂~q2!F̂~q2q12q2!,

and V(q)5vs12@12cos(hq)#/h2 is the frequency of the
linear excitations. Equation~6! bears the following importan
conclusion: solitons can be viewed as being a fixed poin
an infinite-dimensional nonlinear integral equation. To n
merically find the fixed point, we employ a modified Ne
mann iteration scheme~cf. @11,12#! and write Eq.~6! in the
form

F̂n11~q!5S a~ F̂n!

b~ F̂n!
D 3/2

Kvs
@ F̂n~q!#, n>0,

~7!

a5E F̂n
2~q!dq; b5E F̂n~q!Kvs

@ F̂n~q!#dq.

The factor 3/2 is chosen to make the right hand side
Eq. ~7! of degree zero, which yields convergence of t
scheme@11,12#. When F(mh) is real and even, it implies
that F̂(q) is also real. Clearly whenF̂n(q)→F̂s(q) as n

→`, thena/b→1 and in turnF̂s(q) will be the solution to
Eq. ~6!. The factorsa and b are introduced to stabilize a
otherwise divergent simple Neumann iteration scheme. N
that when we apply the continuous Fourier transform on E
~3! ~to find stationary solution!, then the numerical schem
based on Eq.~7! does not converge, which indicates that
continuousstationary solution to the DNLS may not exis
As we will see later, this will have a direct impact on th
traveling-wave problem. Figure 1 shows a typical solution
Eq. ~6! both in the Fourier domain@Fig. 1~a!# and in physical
space@Fig. 1~b!# for different values of lattice spacingh.
Importantly, with suitable modification of Eq.~7!, this
method yields breathing localized modes: ‘‘discrete diffra
tion managed solitons’’@13#.
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Traveling solitons. Unlike the IDNLS in which traveling
solitons are exact and continuous solutions, there are
known explicit solutions for DNLS solitons. Previous studi
of traveling waves employed various techniques@17,18# and
ansatz based on stationary solutions and perturbation
IDNLS @19#. Our analysis, which is based on the discre
Fourier methods, reveals another fundamental distinc
from the IDNLS traveling solitons: they are ‘‘multimode
discrete solitons, i.e., a single mode~sech-like shape! does
not propagate without significant radiation. Important
when we apply thecontinuousFourier transform on Eqs.~3!,
we find that the numerical scheme based on Eqs.~7! and~8!
with p/h→` does not converge to a solution. This is
strong indication that, as opposed to the integrable cas
true continuousstationary or traveling-wave solutions to th
DNLS model does not exist. By continuous solution, w
mean a solution that can be defined off the lattice poin
which is necessarywhen discussing traveling waves on la
tices. In fact, the perturbation analysis presented below s
ports this observation as itfails to give consistent results of
the grid points. Similarly, it was shown in@20# that the NLS
equation with a positive fourth-order correction~which is
obtained from the DNLS by taking the limith→0! lacks
exact soliton solutions. These results differ from those
@21# in which a ‘‘continuous’’ traveling solitary waves wer
reported using Fourier series expansions with finite perioL
while assuming convergenceas L→`. To find the mode
shapes and soliton velocity, we proceed as before by tak
the discrete Fourier transform of Eqs.~3!, which yields the
following iteration scheme:

F̂n11~q!5
V2~q!

V1~q!
G̃n~q!1S a1

b1
D 3/2

Q1@ F̂n ,G̃n#,

~8!

G̃n11~q!5
V2~q!

V1~q!
F̂n~q!1S a2

b2
D 3/2

Q2@ F̂n ,G̃n#,

whereF̂(q) andĜ(q)[2 iG̃(q) are the Fourier transform
of F(j) andG(j), respectively; and

FIG. 1. Mode profiles obtained withvs51 in Fourier space~a!,
for h50.5 ~solid!, h51 ~dashed!, andh51 ~dashed dotted! for the
integrable case.~b! Soliton shape in physical space forh50.5
~solid!, h51 ~dashed!, and for the integrable case ath51 ~dashed
dotted!.
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Q1@ F̂,Ĝ#5
h2

4p2V1~q!
~ F̂* F̂* F̂2G̃* G̃* F̂ !,

~9!

Q2@ F̂,G̃#5
h2

4p2V1~q!
~ F̂* F̂* G̃2G̃* G̃* G̃!.

The convergence factorsa j andb j , j 51,2 are given by

a15E F̂n~q!S F̂n~q!2
V2~q!

V1~q!
G̃n~q! Ddq

~10!

b15E F̂n~q!Q1 dq, b25E G̃n~q!Q2 dq,

and a2 is obtained froma1 by interchangingF̂ and Ĝ.
Here, V1(q)5v12/h2@12cos(hq)cos(bh)# and V2(q)
52/h2 sin(hq)sin(bh)1Vq. For a given set of parametersh,
v andb.0, the mode shapes and soliton velocity are fou
by iterating Eqs.~8! with an initial guess, e.g.,F̂0(q)
5sech(q), G̃0(q)5sech(q)tanh(q) andV5V* ,0. The itera-
tions are carried out until the conditionuEj u[ua j2b j u,e,
( j 51,2) is satisfied withe.0 being a prescribed toleranc
However, unlike the stationary case, here, the soliton ve
ity is still to be determined. For any choice ofV* ,0 if
uEj u²e, we seek a different value ofV* at whichEj changes
sign. Then, we use the bisection method to changeV* in
order to locate the correct velocityV and modesF̂,G̃ for
eachv, b, andh. Typical soliton modes are shown in Fig.

Although Eqs.~8! can be solved numerically with hig
accuracy, the resulting solutions are only obtained at the
crete locationsj5nh, while all real values ofj are called
upon in a traveling-wave solution. So the question we w
to ask is: What happens to the modes found above when
propagate across the array? To answer this question
simulated Eq.~1! usingfn(z50)5u(nh)e2 ibnh as an initial
condition with u(nh)5FTW(nh)1 iGTW(nh) being the so-
lutions obtained from Eq.~8!. When a moderately localize
mode @22# is launched, the beam moved across
waveguides undistorted~Fig. 3! over 100 normalizedz units.
This corresponds, according to the experimental data
ported in@8#, to 120 mm~recall that the wave guides used
@8# were 6 mm in length!. On the other hand, strongly loca

FIG. 2. Mode shapes in physical space forv51 andb50.5.
Solid line corresponds toh50.5 and velocityV520.25 whereas
dashed line forh51 andV520.155.
02660
d

c-

s-

t
ey
we

e

e-

ized modes travel essentially undistorted for shorter d
tances~around 20 normalizedz units, see Fig. 4! which cor-
responds to 24 mm. Noticeably, during propagation, th
was a change of 0.0133%/mm~0.245%/mm! in the soliton
velocity for moderately~strongly! localized modes, in which
case strongly localized mode slows down and eventually
laxes to a stationary state. This behavior depends cruciall
the initial amplitude: Higher-amplitude solitons are le
‘‘mobile’’ than lower-amplitude beams. The discrete Fouri
transform yields a useful, but nonuniform traveling-wave s
lution. We term this a ‘‘stroboscopic’’ traveling wave.

Perturbation theory. To analytically explore the multi-
mode nature of the DNLS traveling solitons, we consider
case in which the solitons move slowly and develop a fu
discrete perturbation theory for finite amplitude. It is impo
tant to note that our perturbative approach is fundament
different than the perturbation methods based on inve
scattering theory~cf. @19,23#!.

FIG. 3. Evolution of a moderately localized soliton in physic
domain forb50.5, V520.25, v51, andh50.5 obtained by di-
rect numerical simulation.

FIG. 4. Evolution of a strongly localized soliton in physic
domain forb50.5,V520.2,v52, andh50.5 obtained by direct
numerical simulation.
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Next, we takeb5eb11O(e2), e!1, and expand the
soliton velocity, frequency, and the wave functions in
power series ine. Keeping terms up toO(e3) we have

V5eV11e2V2 , v5vs1ev11e2v2 ,
~11!

F5F01eF11e2F2 , G5eG11e2G2 .

Substituting Eqs.~11! into ~3!, we find F0 satisfies the sta
tionary equation and is even inj and to ordere

L1F15v1F0~j!,
~12!

L2G15V1F08~j!1b1~E12E2!F0~j!/h,

and to ordere2,

L1F25v1F11v2F02V1G18~j!2F0G1
223F0F1

2

1b1
2~E11E2!F0/22b1~E12E2!G1 /h,

~13!

L2G25v1G11V1F18~j!1V2F08~j!22F0F1G1

1b1~E12E2!F1 , ~14!

where LjX52vsX1(E11E222)X1 l jF0
2X, j 51,2 and

l 153, l 251. Solutions to system~12! are given by

F15v1]F0 /]vs1b]F0 /]j,
~15!

G15V1A1b1jF01cF0 ,

where b and c are arbitrary constants andL2A5]F0 /]j,
which can be solved by Fourier transform method. The
locity V1(b1) and frequency shiftv1 , are determined by a
. E

J

Y

t.

02660
-

solvability condition at ordere2 which is the discrete analog
of Green’s identity. Forj restricted to the grid points, i.e.
j5j l[ lh ~which is consistent with the discrete Fouri
transform!, we find thatv150 and V152g(h)b1 ; g(h)
[a1(h)/a2(h) where

a15(
l PZ

F08~j l !@2j lF0
3~j l !1 1

h ~E12E2!F0~j l !#,

~16!

a25(
l PZ

2F08~j l !A~j l !F0
2~j l !1F08

2~j l !.

We compared these semianalytical results with direct
merical simulation for the fully discrete case and found e
cellent agreement. Moreover, in the limith→0, we retrieve
the known resultV1522b1 andG1(j)→0.

In conclusion, we have proposed a method, based on
crete Fourier transforms, to compute stationary and trave
soliton in nonlinear lattices. This method can be applied t
wide variety of problems in nonlinear dynamics of discre
systems. It also provides a foundation for a rigorous the
in which fixed point theorems can be developed. Applyi
this method to the DNLS model, shows that traveling so
tons have ‘‘multimode’’ structure. Our findings agree wi
direct numerical simulations and are consistent with per
bation theory, which yields explicit formulas for the solito
modes and velocity.
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