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Dynamic quasicrystalline patterns: Wave-mode–Turing-mode resonance
with Turing-mode self-interaction
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We study perturbatively the effect of resonant Turing-mode interactions on the slow time evolution of
quasicrystalline patterns sustained by resonant interaction between wave and static composite modes. We find
that stabilization of quasicrystalline patterns by quadratic wave-mode–Turing-mode interactions is possible
even under the action of weakdestabilizingTuring-mode self-interactions.

PACS number~s!: 05.45.2a, 42.65.Sf
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I. INTRODUCTION

A quasicrystalline pattern is a fascinating but rather e
sive form ofcomplex order. Constructing such patterns ma
seem easy: in two dimensions they can be formed just
superposing four or more noncollinear modes@1#. Near a
symmetry-breaking transition from a homogeneous to a
terned or crystalline state~in both equilibrium and nonequi
librium systems! these modes appear formally as degene
neutrally stable eigenmodes of linearized macroscopic eq
tions, and may admit, in various contexts, different physi
interpretations, e.g., density waves in equilibrium theory@2#.
In practice, however, it has turned out rather difficult to fi
conditions that allow selection of a quasicrystalline patt
by nonlinear interactions. A possible source of quasicrys
line patterns is a superposition of two resonant triplets
Turing modes@3#. This pattern can be stabilized, howeve
only by quadratic interactions, which strongly inhibit mult
mode patterns, since interaction between the modes dire
at small angles tends to be mutually damping. Quasicrys
line patterns of Turing type were, however, observed in
periments with parametric excitation of surface waves~Far-
aday instability! @4,5#. Conditions suitable for formation o
quasicrystalline Turing patterns were detected by the an
sis of model equations@6# as well as of the amplitude equa
tions of the Faraday instability@7#. Patterns formed by two
resonant triplets were shown to be one of the possible st
of Marangoni convection in a layer with a deformable inte
face@8#. A sure recipe for creating a quasicrystal isrotation
of the optical field in a nonlinear cavity@9–14#. The number
of modes is dictated then by the rotation angle. If it is co
mensurate with 2p, so thatD52pn/N ~wheren andN are
integers that do not have common factors!, the basic plan-
form is a rotationally invariant combination ofN or N/2
plane waves~respectively, forN odd or even!, which yields a
quasicrystalline pattern atN55, 7, or more.

Recently, Pismen and Rubinstein@14–16# suggested reso
nant interaction among Turing modes and wave modes
a degenerate bifurcation point as a powerful mechanism
formation of quasicrystalline patterns. Patterns involvi
resonant interactions are likely to exhibit complex dynam
PRE 621063-651X/2000/62~1!/389~8!/$15.00
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of amplitude modulation on a slow time scale due to int
mittent phase locking. It has indeed been shown that re
nant quasicrystalline patterns often appear asdynamicpat-
terns with ever changing appearance but a perman
composition of the Fourier spectrum. A degenerate bifur
tion of modes with different wavelengths can be arrang
most readily in nonlinear optical systems, as demonstrate
experiments by Arrecchi and co-workers@12,13#, as well as
theoretical and modeling studies@14–19#. An interesting fea-
ture of the wave-mode–Turing-mode resonance is the po
bility of preventing unlimited growth of the amplitudes b
the action of quadratic~three-wave! interactions only. The
small-amplitude solutions in the vicinity of this degenera
bifurcation can be either stationary, periodic, or chaotic@16#.
The analysis of Pismen and Rubinstein did not include re
nant three-wave interactions between Turing modes, h
ever, which generically leads to a subcritical bifurcation to
hexagonal pattern. These interactions are alwaysdestabiliz-
ing, so that nonuniversal~and generically weaker! cubic
~four-wave! interaction has to be introduced in order to pr
vent the runaway.

The question we shall investigate here is whether stab
zation by quadratic wave-mode–Turing-mode interactio
only is possible also when interactions between Tur
modes are present. The set of amplitude equations inclu
interactions between Turing modes, which will be form
lated in Sec. II and analyzed in Sec. III, turns out to
substantially more complicated than a system lacking th
interactions, due to the presence of an additional dyna
phase. We shall show in the Appendix that the required c
ditions for wave-mode–Turing-mode resonance can
achieved in a three-component reaction-diffusion system
is much simpler than nonlinear optical systems considere
earlier studies.

We shall see in Sec. III that the stability region of statio
ary states is reduced but not eliminated when Turing-m
self-interactions are present. Oscillatory states will be stud
in Sec. IV in the limit of weak Turing-mode–Turing-mod
coupling when a modified scaling can be applied to obtai
stable limit cycle at intermediate amplitudes.
389 ©2000 The American Physical Society
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390 PRE 62ZIAD H. MUSSLIMANI AND LEN M. PISMEN
II. AMPLITUDE EQUATIONS

Our starting point is a set of amplitude equations in
vicinity of a degenerate wave-mode–Turing-mode bifur
tion. We suppose that the underlying system~homogeneous
and isotropic in two space dimensions! possesses a
codimension-2 bifurcation manifold where a Turing and
wave mode are neutrally stable, and consider a point on
manifold where the wave numbers of the Turing and wa
modes are, respectively,Q andk. The directions of the cor-
responding wave vectors are arbitrary, and the numbe
excited modes cannot be determineda priori.

The amplitude equations are obtained using the stan
methods of bifurcation expansion in a dummy small para
eter e. In the leading order, the amplitudes of the excit
modes, the deviation from the bifurcation manifold, and
inverse slow time scale of the amplitude evolution are all
O(e). The amplitude equation of some mode~denoted, say,
by the index zero! contains a quadratic term contributed b
interactions between two other modes~indexed, say, 1 and 2!
if and only if the wave vectorski and frequenciesv i of the

FIG. 1. The planform~2.2! with N53 ~nine modes!. A snapshot
of a real space~near field! pattern~a! and the corresponding struc
ture in Fourier space~far field! ~b!. The inner~outer! circles corre-
spond to wave~Turing! modes. Complex conjugate modes are d
noted by gray circles. One of the wave-mode–Turing-mo
resonant triangles is shown, and the participating Turing mod
indicated by the dashed line.
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three modes satisfy the resonance conditions

k11k25k0 , v11v25v0. ~2.1!

A resonant triplet may involve therefore either three sta
~Turing! modes (v50) with wave vectors at the anglep/3
or two wave modes with identical frequenciesv i and one
static mode. In the latter case, the vertex angle of the is
celes resonant triangle depends on the ratio of wave num
of the Turing and wave modes, which must not exceed 2
possible first-order resonant structure is built ofN Turing
modes with the amplitudesaj and 2N wave modes with the
amplitudesbj andcj :

u15Re(
j 51

N

$ajVs exp~ iQj•r!1eivt0@bj exp~ iqj•r!

1cj exp~ ikj•r!#Vw%, ~2.2!

whereVs and Vw are the eigenvectors corresponding to t
Turing and Hopf modes, respectively, and the resona
conditionqj2kj5Qj is satisfied. The validity of Eq.~2.2! is
a nontrivial issue, i.e., if the wave vectors do not lie on
regular lattice then at high orders wave vectors arbitra
close to the neutral curve can be excited. However, the p
lem of high-order wave vectors close to the neutral curve
important forstationaryquasipatterns but not for oscillator
patterns, since even in the case where the high-order w
vectors are close to the neutral curve, the correspond
high-order frequency is very high and strongly different fro
v. The minimal structure including also Turing-mode
Turing-mode resonance is obtained atN53. An example of
a quasicrystalline planform~transverse pattern! correspond-
ing to such a nine-mode structure is shown in Fig. 1. T
lowest-order amplitude equations including all possible tr
let interactions are

ȧ j52msaj1lsaj 11* aj 21* 1nsbjcj* ,

ḃ j5mwbj1nwajcj , ~2.3!

ċ j5mwcj1nwaj* bj .

We exclude nongeneric cases when the angle between
wave modes in the resonant triangle is a multiple ofp/6. All
the coefficients appearing in the above amplitude equat
can be expressed through the parameters of the under
problem under study. The coefficientsms andmw depend on
the deviation from the bifurcation manifold, whilens ,nw ,
andls are computed at the bifurcation point itself;ms , ns ,
andls are real, whilemw andnw are complex. A dynamica
system similar to Eq.~2.3! but lacking the Turing-mode self
interaction term~i.e., with ls50) has been obtained for op
tical cavities with rotated beam@14#, a two-component feed
back optical system@15#, and an optical cavity with sodium
vapor in a magnetic field@19#. In the Appendix we analyze a
simpler example of a three-component reaction-diffus
system and apply the method of multiple-scale bifurcat
expansion to derive Eqs.~2.3!.
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III. SMALL-AMPLITUDE DYNAMICS

In what follows, we shall study the influence of th
Turing-mode–Turing-mode interaction on the dynamics
the resonant transverse patterns. We assume that the com
amplitudes of the three static modes are equal, and thos
the wave modes fall into two groups of three equal am
tudes. When only resonant Turing modes are present,
equal-amplitude planform is typically chosen in the vicin
of the bifurcation manifold, while higher-order interaction
are still negligible, which leads to a common hexagonal p
tern @20#. The system~2.3!, generally, does not possess gr
dient structure and cannot be assigned energy~Lyapunov
functional!. Nevertheless, the choice of an equal-amplitu
state is natural, and is necessary to make the problem
table. Further on, this requirement will be relaxed by requ
ing only the moduli, but not the phases, of the amplitudes
be equal.

The system~2.3! reduces now to three complex equatio
which can be further reduced to five real equations for r
amplitudes and phases using the polar representation o
complex amplitudes,

aj5raeiua, bj5rbeiub, cj5rce
iuc. ~3.1!

The relevant variables are the three real amplitudesr j and
the composite phasesu5ua1uc2ub andf53ua . The am-
plitude equations can be further rescaled to a form contain
three real parameters only. The imaginary part ofmw can be
absorbed in the frequency, and three more real parame
are eliminated by rescaling the amplitudes and time. It can
shown that the conditionms.0 is necessary to prevent run
away to large amplitudes~which may be further arrested b
third- and higher-order terms!. Assuming this condition
holds, we rescale time byms and denotem5mw /ms . The
resulting equations are

ṙa52ra1rbrc cosu1kra
2 cosf,

ṙb5mrb1rarc cos~u2a!,

ṙc5mrc1rarb cos~u1a!,

~3.2!

u̇52rbrcra
21sinu2rarbrc

21 sin~u1a!

2rarcrb
21sin~u2a!2kra sinf,

ḟ523kra sinf23rbrcra
21 sinu,

where we have setnw5unwue2 ia; k5ls /unwu and unwu, ns
have been absorbed by rescaling the amplitudes. In w
follows, we reiterate the case withk50. In this case, the
equation forf decouples. The remaining system of fo
equations admits a stationary symmetric solution~with equal
wave amplitudes!

u50, ra52m/cosa, rb5rc5A2m/cosa,
~3.3!

and a stationary asymmetric solution with different wa
amplitudes andu5u0, where
f
lex
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cos2u05sin2a/~112m!. ~3.4!

In the symmetric case,f is an arbitrary constant. This de
generacy corresponds to the translational symmetry of
pattern. On the other hand, the asymmetric solution ge
ates a dynamic state of the full five-dimensional system w
f5f02Vt whereV53rbrc sinu0 /ra .

The stability of the symmetric and asymmetric states
been analyzed in@15#, where a bifurcation diagram in th
(m,a) parametric plane was constructed. In various param
ric domains, the system may relax to either a symmetric
an asymmetric stationary state, to a periodic orbit that co
sponds to slow modulation of the basic pattern on an
tended time scale of Eq.~2.3!, or to a chaotic attractor on th
same extended scale. ForkÞ0, the degeneracy of the sym
metric solution is broken, andf has to be fixed in the sta
tionary state at either 0 orp; it is easy to see that only
solutions withf50 are stable. This gives rise to two st
tionary symmetric solutions. One of them,

u50; ra52m/cosa, rb5rc5Ara~12kra!,
~3.5!

reduces to Eq.~3.3! at k→0. On the contrary, the secon
solution,

u5p, ra52m/cosa, rb5rc5Ara~kra21!,
~3.6!

is subject to the conditionsm cosa,0, ra.1/k and disap-
pears atk<kc52cosa/m, so that it has no counterpart i
the absence of Turing-mode–Turing-mode interaction.

Applying the Routh-Hurwitz stability criterion, one ca
obtain the stability boundaries of both states. The numer
results for different values ofk are shown in Fig. 2. The
stability region of the stateu50 retreats ask increases in the

FIG. 2. Bifurcation diagram of Eq.~3.2! in the (m,a) parameter
space form.0 and cosa,0. LettersS1 andSdenote the regions o
stable stationary symmetric solutions withu5f50 and u5p,f
50, respectively. InS1, the solid line corresponds tok50, the
dotted line tok50.01, and the dashed line tok50.1. In theS
region, the dashed line corresponds tok50.5.
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392 PRE 62ZIAD H. MUSSLIMANI AND LEN M. PISMEN
interior of the stability region of the symmetric solution
k50. The two stability boundaries atk50, which corre-
spond to the Hopf~straight line in Fig. 2! and pitchfork bi-
furcations~solid curve in the same figure!, turn atkÞ0 into
a single smooth curve, which corresponds to the Hopf bif
cation over its entire length. For the stateu5p, which does
not exist atk50, the stability region is smaller than th
previous one, and shrinks on increasingk until it disappears
at k'0.8. The region outside the stability boundaries may
general include periodic and chaotic dynamic states. On
such states~at k!1) is a perturbation of the above me
tioned asymmetric dynamic solution.

IV. INTERMEDIATE-AMPLITUDE DYNAMICS

We have seen that any nonzero value ofk, however
small, introduces a singular perturbation that causes a q
tative change of the character of behavior, adding a n
family of solutions which goes to zero and disappears ak
<kc . In the following, we shall concentrate upon dynam
at k!1, and apply the powerful technique of multiple-sca
analysis to elucidate the dynamics of the magnified am
tudes. To ensure consistent scaling, we shall assume tha
k!1, the real part ofnw is of O(k) and writenw52kn
1 ih; thus, we restrict ourselves to the case cosa5O(k) ~cf.
Fig. 2!. The real amplitudes on the new branch of solutio
diverge atk→0 with different powers; thus we have to re
cale the amplitudesaj , bj , andcj asaj5Aj /k, bj5Bj /Ak,
and cj5Cj /Ak. Recalling that the amplitude equations d
scribe small-amplitude dynamics,a,b5O(e), we have to
require thatk, though small, satisfy the inequalitye!k. We
shall therefore consider the dynamics at ‘‘intermediate’’ a
plitudes. The rescaled Eq.~2.3! takes the form

Ȧj52Aj1Aj 11* Aj 21* 1BjCj* ,

Ḃj5mBj2~n2 ih/k!AjCj , ~4.1!

Ċj5mCj2~n2 ih/k!Aj* Bj .

Notice that atk!1 and, respectively, cosa'2kn, the solu-
tions ~3.5! and~3.6! have the same scaling asAj ,Bj ,Cj and,
indeed, are stationary solutions of Eq.~4.1!. When rewritten
in the rescaled variables, Eq.~3.5! becomesuAu5m/n, and

uBu5uCu5AuAu~12uAu!, arg~AC/B!50, ~4.2!

while the solution~3.6! takes the form

uBu5uCu5AuAu~ uAu21!, arg~AC/B!5p. ~4.3!

Next, we apply the multiple-scale perturbation expansio
and introduce a hierarchy of time scales,

]/]t5k21]/]t01]/]t1•••,

and then expand the amplitudeAj[(Aj ,Bj ,Cj ) in a Taylor
series ink:

Aj5Aj
01kAj

11 . . . .
r-

n
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w
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s

Using the above expansions in the system~4.1!, we find in
the leading orderO(k21) that the Turing amplitudesAj

0 de-
pend on the slow time scalet1 only. The zero-order equa
tions are

]Aj
0

]t1
52

]Aj
1

]t0
2Aj

01Aj 11
0* Aj 21

0* 1Bj
0Cj

0* ,

~4.4!

]Bj
0

]t0
5 ihAj

0Cj
0 ,

]Cj
0

]t0
5 ihAj

0* Bj
0 .

The solution to the last two equations of the system~4.4! is
given by

Bj
05Bj

1~t1!eihz1Bj
2~t1!e2 ihz,

~4.5!

Cj
05Cj

1~t1!eihz1Cj
2~t1!e2 ihz,

where Bj
15Cj

1eiw j , Bj
252Cj

2eiw j , and we define z
[r0t0 andAj

05r0eiw j .
To obtain evolution on the slow scale, we define the line

operator F̂j5]2/]t0
21h2uAj

0u2. Then the first-order equa
tions are written as

F̂jBj
15]Sj /]t01 ihAj

0Tj ,

~4.6!

F̂jCj
15]Tj /]t01 ihAj

0* Sj ,

whereSj andTj are defined by

Sj52]Bj
0/]t11mBj

02nAj
0Cj

01 ihCj
0Aj

1 ,

~4.7!

Tj52]Cj
0/]t11mCj

02nAj
0* Bj

01 ihBj
0Aj

1* .

We assume that the moduli of the amplitudes of all sta
modes are equal and those of wave modes fall into
groups of three equal moduli. In contrast with the preced
section, we make this assumption regarding moduli on
while the phases of all modes are allowed to be differe
Averaging the first equation in the system~4.4! over the fast
time scale yields

]Aj
0

]t1
52Aj

01Aj 11
0* Aj 21

0* 1^Bj
0Cj

0* &t0
,

~4.8!

]Aj
1

]t0
5Bj

0Cj
0* 2^Bj

0Cj
0* &t0

,

where the average over the fast time scale is defined by

^F&t0
5 lim

T→`

1

TE0

T

F~t0!dt0 . ~4.9!

Substituting the solution~4.5! into the first equation of the
system~4.8! and computing the average, we find
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ṙ052r01r0
2 cosw1uBj

1u22uBj
2u2,

~4.10!

ẇ523r0 sinw,

where the overdot denotes the time derivative with respec
t1, and w5w11w21w3. It is clear that the total phase a
ways relaxes to zero, while the phases of the wave mode
not affect the evolution of the Turing mode. To derive t
dynamic equations for the slowly varying amplitudesBj

6 ,
one has to substitute the solution~4.5! into the second equa
tion of ~4.8! and integrate it to obtainAj

1 . Next, we substitute
Aj

1 and Eq.~4.5! in Eq. ~4.6! and eliminate secular term
contributed by the real part of the right hand side of t

system~4.6!. In polar representation,Bj
65r6eiu j

6

, the equa-
tions take the form

ṙ052r01r0
21r1

2 2r2
2 ,

ṙ15S m1
r2

2

2r0
2nr0D r1 , ~4.11!

ṙ25S m2
r1

2

2r0
1nr0D r2 .

The equation for the phasesu j
6 is similar to the equation

of w; thus, all phases decay to zero, and are irrelevant. T
we find that the three complex equations~2.3! are reduced to
three real amplitude equations. Next, we investigate the
namics of the above system. To prevent runaway to infin
~which might be further arrested by adding higher-ord
terms!, we exclude the casem.0, n,0. The fixed points of
the system~4.11! correspond toperiodic orbitsof Eq. ~4.1!.
The stationary solution with all three amplitudes differin
from zero is

r05124m, r65A2r0~nr06m!, ~4.12!

subject to the conditions2nr0,m,nr0. Applying the
Routh-Hurwitz stability criterion we find that this stationa
solution is linearly unstable forany m andn. Other station-
ary solutions of Eq.~4.11! lie on the invariant manifolds
r150 andr250, which we denote asM 6, respectively.
On M 2 the reduced dynamics is given by

ṙ052r01r0
21r1

2 ,

~4.13!

ṙ15~m2nr0!r1 .

The nontrivial fixed point is given byr05m/n and r1

5Ar0(12r0). For the positiveness of the amplitude we r
quiremn.0 andr0,1. Linearizing system~4.13! about the
above stationary solution shows that it is stable ifn.0 and
0,m,n/2. The stability of the invariant manifoldM 2 re-
quiresm,n/(114n). Both stability conditions are shown i
Fig. 3.

The bifurcation linen52m, shown by the dashed line i
Fig. 3, corresponds to a degeneratevertical Hopf bifurcation
@21#. Above this line, all trajectories run away to infinity. Fo
to

do

s,

y-
y
r

-

each point on the linen52m, we find analytically a continu-
ous family of periodic orbits, which correspond totori of
Eqs. ~4.1!. Indeed, rewriting the system~4.13! as a single
ordinary differential equation,

dr1

dr0
5

m~122r0!r1

r1
2 1r0

22r0

, ~4.14!

and integrating Eq.~4.14! yields

@~112m!~r02r0
2!2r1

2 #r1
1/m5E, ~4.15!

where 0<E<Emax[22(m11)/mm. The largest closed trajec
tory corresponding toE50 consists of the parabolic segme

r1
2 5~112m!~r02r0

2!, r0.0, ~4.16!

and the axisr050. The orbits withE.0 lie within this orbit
~see Fig. 4!. All orbits are neutrally stable with respect t
perturbations restricted to the invariant manifoldM 2. The
stability of the periodic orbits with respect to perturbatio
orthogonal to the invariant manifoldM 2 is checked by in-
tegrating the last equation in the system~4.11!:

r2~t1!5r2~0!expS E
0

t1
G„r0~j!,r1~j!…dj D ,

~4.17!

where we define

G~r0 ,r1!5m2
r1

2

2r0
12mr0 . ~4.18!

The periodic orbits are stable if

E
0

T

G„r0~t1!,r1~t1!…dt1,0, ~4.19!

with T5T(m) being the period of the oscillations. In wha
follows, we provide a sufficient condition for the trajectorie

FIG. 3. Stability boundaries of the fixed point in the (m,n)
parameter space. The dashed line corresponds to a Hopf insta
and the solid line to excitations on the invariant manifoldM 2.
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394 PRE 62ZIAD H. MUSSLIMANI AND LEN M. PISMEN
to beunstable. Notice that Eq.~4.15! is invariant under the
transformationr0→12r0. This implies that the sufficien
condition for instability with respect to perturbations o
thogonal to the invariant manifoldM 2 can be presented a

G~r0 ,r1!1G~12r0 ,r1!.0, ~4.20!

which, upon substituting the expression forG @Eq. ~4.18!#
takes the form

r1
2 .8mr0~12r0!. ~4.21!

The periodic orbits are unstable if the largest periodic o
defined by Eq.~4.16! lies completely inside this instability
boundary. This happens at 112m,8m, i.e., m.1/6. This
means that the stability boundary, if it exists, should be c
tained in the interval 0,m,1/6. We have numerically inte
grated Eq.~4.13! for different values ofm,1/6, and found
that condition~4.19! is satisfied form,mc wheremc51/8.
All the orbits, including the fixed point, have the same cr
cal value ofmc . In the interval 1/6.m.1/8 small-amplitude
~large-energy! orbits are stable, while large-amplitud
~small-energy! orbits are not. The dynamics on theM 1 in-
variant manifold is less interesting. OnM 1 the dynamics is
governed by

ṙ052r01r0
22r2

2 ,

~4.22!

ṙ25~m1nr0!r2 .

When bothm andn are positive, the Turing moder0 relaxes
to zero, whereasr2 becomes unbounded. On the contra
when bothm andn are negative,r2 relaxes to zero, wherea
r0 becomes unbounded. In the casem.0 and n,0 the
manifoldM 1 is unstable to orthogonal perturbations. In t
case m,0 and n.0, there is a stationary solutionr0

5umu/n and r25Ar0(r021). Linearizing the system

FIG. 4. Closed orbits obtained from Eq.~4.15! for m50.12 and
E50 ~solid line!, 1.731024 ~dotted line!, and 1024 ~dashed line!.
it

-

,

around this solution we find that it is always unstable. T
trajectories either run away to infinity or are attracted to
trivial stater05r250.

V. CONCLUSION

The results of the above analysis turned out to be far fr
straightforward. It is reasonable to expect that resonant in
action between Turing modes, which are always destab
ing at a nondegenerate Turing bifurcation, would restrict
parameter region where the amplitudes remain finite in
absence of higher-order~cubic! terms. This is, indeed, con
firmed by the results of Sec. IV. The stabilization by qu
dratic terms only remains possible in a reduced param
domain shrinking ask increases, and the stability boundari
at k!1 can be obtained by regular perturbation expansi
A surprising fact, however, is the appearance of anot
branch of stable dynamic solutions which disappears ak
<kc , and can be constructed using asingular perturbation
technique only. Thus, the character of the finite amplitu
solutions changes in a qualitative way when the Turin
mode–Turing-mode resonance is present.
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APPENDIX: A MODEL SYSTEM

In this Appendix we derive the required conditions f
wave-mode–Turing-mode resonance to occur and com
coefficients of amplitude equations for a model syste
which is much simpler than the nonlinear optical syste
considered in earlier studies. Consider the following thr
component reaction-diffusion system:

ut5¹2u1u2u21v1w,

v t5d¹2v2gv2hu, ~A1!

05b¹2w2nu2w.

Linearizing Eq.~A1! around its trivial zero solution we ge
the eigenvalue problemLu50, where the linear operatorL
is defined by

L5S ] t2¹221 21 21

h ] t2d¹21g 0

n 0 2b¹211
D .

Presenting the linear termu5(u,v,w) as the sum ofN bi-
furcation modes with wave vectorsqj ( j 51,2, . . . ,N) and
frequencys,

u5(
j 51

N

ûj exp~ iq•x1st !1c.c., ~A2!

and substituting into the eigenvalue equationLu50, we ar-
rive at the following dispersion relation:
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s21 f ~q2!s1h~q2!50, ~A3!

where the coefficientsf (q2) andh(q2) are given by

f ~q2!5~d11!q21
n

bq211
1g21,

~A4!

h~q2!5~dq21g!S q21
n

bq211
21D 1h.

Stability of the trivial solution against zero-mode (q50)
perturbations impliesn.12h/g and g1n21.0. How-
ever, this solution may lose stability as a result of diffusio
driven instability (qÞ0). The resulting instability may be
static ~Turing! or oscillatory~Hopf or wave!. In the follow-
ing, we are interested in the conditions when wave-mod
Turing-mode resonance occurs. The condition of Turing
stability is h(q2)50, f (q2).0, and the condition of wave
instability is f (q2)50, h(q2).0. The location of the wave
mode–Turing-mode resonance in the (d,n) parametric space
is shown in Fig. 5. A typical example of the dispersion re
tion in the case of wave-mode–Turing-mode resonanc
shown in Fig. 6~a!, as contrasted to an off-resonance disp
sion relation in Fig. 6~b!.

For the purpose of weakly nonlinear analysis of the s
tem ~A1!, we follow the standard method of multiple-sca
bifurcation expansion. We introduce a hierarchy of tim
scalest05t,t15et, . . . with

]/]t5]/]t01e]/]t11e2]/]t21•••, ~A5!

and expand in a power series the field variableu and the
bifurcation parameters denoted as an arrayp5$d,g,h,b,n%:

u5eu11e2u21•••, ~A6!

p5p01ep11e2p21•••. ~A7!

Using the above expansions in system~A1!, we recover in
the first order ine the corresponding linear eigenvalue pro
lem. In the next order we arrive at the following nonline
inhomogeneous problem:

Lu252Ju12u1
2ê1 , ~A8!

FIG. 5. Locus of the wave-mode–Turing-mode resonant bif
cation in the (d,n) space forg50.334, andb56 ~solid line!, b
57 ~dashed line!.
-

–
-

-
is
-

-

whereu1 is the first component ofu1 and ê15(1,0,0). The
linear operatorJ is defined by

J5S ] t1 0 0

h1 ] t1
2d1¹21g1 0

n1 0 2b1¹2
D . ~A9!

The amplitude equations are obtained as solvability con
tions of Eq.~A8!, i.e., conditions of the orthogonality of th
inhomogeneity to all eigenfunctions of the adjoint line
problem, with respect to the scalar product defined by

^fuc&5(
j 51

3 E f j* c jd
2x.

A possible resonant structure consists of two wave mo
with wave numberk and one Turing mode with wave num
ber Q. Such a resonant structure has the form~2.2!, and
satisfies the resonance conditionq2k5Q. The eigenvectors
of the linear eigenvalue problem are given by

Us5S 21,
h

dQ21g
,

n

bQ211
D ,

~A10!

Vw5S 21,
h

iv1dq21g
,

n

bq211
D ,

wherev is the Hopf frequency given by

-

FIG. 6. Dispersion relation corresponding to Hopf~dashed line!
and Turing~solid line! instabilities. The values of the paramete
are ~a! d50.831, n50.774 and~b! d50.95, n50.8. The other
parameters areg50.334,h50.25, andb56.
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v5A~dq21g!~q221!1n
dq21g

bq211
1h.

Projecting the right-hand side of Eq.~A8! on the eigenvec-
tors of the adjoint linear problem given by

Us
†5S 1,

1

dQ21g
,

1

bQ211
D ,
y,

ev

,

et

ch

d

~A11!

Vw
† 5S 1,

1

2 iv1dq21g
,

1

bq211
D ,

we arrive at the system of amplitude equations~2.3!, where
ms ,mw depend on the deviation from the bifurcation poi
while ns ,nw , andls are computed at the bifurcation poin
ms , ns , andls are real, whilemw andnw are complex. The
expressions for the coefficients are
ms5
h1~d0Q21g0!2h0~d1Q21g1!

~d0Q21g0!22h0

1
@n1~b0Q211!2n0b1Q2#~d0Q21g0!2

@~d0Q21g0!22h0#~b0Q211!2
,

mw5
h1~ iv1d0q21g0!2h0~d1q21g1!

~ iv1d0q21g0!22h0

1
@n1~b0q211!2n0b1q2#~ iv1d0q21g0!2

@~ iv1d0q21g0!22h0#~b0q211!2
,

ns5
2~d0Q21g0!2

~d0Q21g0!22h0

, nw5
2~ iv1d0q21g0!2

~ iv1d0q21g0!22h0

,

ls5
2~d0Q21g0!2

~d0Q21g0!22h0

.

ys.

ac-

ev.

tt.

ype,
on.
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