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Dynamic quasicrystalline patterns: Wave-mode-Turing-mode resonance
with Turing-mode self-interaction
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We study perturbatively the effect of resonant Turing-mode interactions on the slow time evolution of
quasicrystalline patterns sustained by resonant interaction between wave and static composite modes. We find
that stabilization of quasicrystalline patterns by quadratic wave-mode—Turing-mode interactions is possible
even under the action of wealestabilizingTuring-mode self-interactions.

PACS numbd(s): 05.45—a, 42.65.Sf

[. INTRODUCTION of amplitude modulation on a slow time scale due to inter-
mittent phase locking. It has indeed been shown that reso-
A quasicrystalline pattern is a fascinating but rather elunant quasicrystalline patterns often appeardgasamicpat-
sive form ofcomplex order Constructing such patterns may terns with ever changing appearance but a permanent
seem easy: in two dimensions they can be formed just byomposition of the Fourier spectrum. A degenerate bifurca-
superposing four or more noncollinear modés. Near a  tion of modes with different wavelengths can be arranged
symmetry-breaking transition from a homogeneous to a patmost readily in nonlinear optical systems, as demonstrated in
terned or crystalline statén both equilibrium and nonequi- experiments by Arrecchi and co-workdik2,13, as well as
librium systemgthese modes appear formally as degeneratenqgretical and modeling studifB4—19. An interesting fea-
r)eutrally stable eige.nrr)odes. of linearized macroscopic €qUagre of the wave-mode—Turing-mode resonance is the possi-
tions, and_may admit, in various contexts, _d|f_ferent phys"Caloility of preventing unlimited growth of the amplitudes by
mterprefcatlorr]ls, €g., d_er;]sny waveds in equ;lllbrldqg thle[(ﬁjyf_ dthe action of quadrati¢three-wavg interactions only. The
practice, however, It has turned out rather difficult to fin small-amplitude solutions in the vicinity of this degenerate

conditions that allow selection of a quasicrystalline pattern . . . . y )
by nonlinear interactions. A possible source of quasicrystarlb'furcat'0n can be either stationary, periodic, or chakilis]

line patterns is a superposition of two resonant triplets Of'I'he analysis of Pismen and Rubinstein did not include reso-

Turing modes[3]. This pattern can be stabilized, however, 1@nt thrée-wave interactions between Turing modes, how-
only by quadratic interactions, which strongly inhibit multi- €V€r which generically Ieads to a §ubcrltlcal blfurcatlpn to a
mode patterns, since interaction between the modes directégxagonal pattern. These interactions are alvdgstabiliz-
at small angles tends to be mutually damping. Quasicrystaid: S0 that nonuniversaland generically weakgrcubic
line patterns of Turing type were, however, observed in ex_(four'WaVe interaction has to be introduced in order to pre-
periments with parametric excitation of surface wa(iear- ~ vent the runaway.
aday instability [4,5]. Conditions suitable for formation of ~ The question we shall investigate here is whether stabili-
quasicrystalline Turing patterns were detected by the analyzation by quadratic wave-mode—Turing-mode interactions
sis of model equation6] as well as of the amplitude equa- only is possible also when interactions between Turing
tions of the Faraday instability7]. Patterns formed by two modes are present. The set of amplitude equations including
resonant triplets were shown to be one of the possible statésteractions between Turing modes, which will be formu-
of Marangoni convection in a layer with a deformable inter-lated in Sec. Il and analyzed in Sec. Ill, turns out to be
face[8]. A sure recipe for creating a quasicrystakdsation  substantially more complicated than a system lacking these
of the optical field in a nonlinear cavifp—14|. The number interactions, due to the presence of an additional dynamic
of modes is dictated then by the rotation angle. If it is com-phase. We shall show in the Appendix that the required con-
mensurate with zr, so thatA=2zn/N (wheren andN are  ditions for wave-mode—Turing-mode resonance can be
integers that do not have common facjothe basic plan- achieved in a three-component reaction-diffusion system that
form is a rotationally invariant combination dff or N/2  is much simpler than nonlinear optical systems considered in
plane wavesgrespectively, folN odd or eveip which yields a  earlier studies.
guasicrystalline pattern =5, 7, or more. We shall see in Sec. Il that the stability region of station-
Recently, Pismen and Rubinst¢itd—16 suggested reso- ary states is reduced but not eliminated when Turing-mode
nant interaction among Turing modes and wave modes neaelf-interactions are present. Oscillatory states will be studied
a degenerate bifurcation point as a powerful mechanism aoh Sec. IV in the limit of weak Turing-mode—Turing-mode
formation of quasicrystalline patterns. Patterns involvingcoupling when a modified scaling can be applied to obtain a
resonant interactions are likely to exhibit complex dynamicsstable limit cycle at intermediate amplitudes.
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a three modes satisfy the resonance conditions
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D C A resonant triplet may involve therefore either three static
o .4 o 20 490,90 (Turing) modes =0) with wave vectors at the angle/3
: p o . or two wave modes with identical frequencies and one
Oy | 0 ’ static mode. In t_he latter case, the vertex angle of the isos-
® o \ Yot( C N ) celes resonant triangle depends on the ratio of wave numbers
— 9 of the Turing and wave modes, which must not exceed 2. A
s ©® O o - o .

0 (IS ‘. (] possible _flrst-order resonant structure is bthN)f‘I’grmg

e modes with the amplitudes; and 2N wave modes with the
N ) \.’ amplitudesb; andc; :

® ‘e N
=1

e ° +c; explik- 1)1V}, (2.2

whereV, andV,, are the eigenvectors corresponding to the
Turing and Hopf modes, respectively, and the resonance
conditiong; —kj=Q; is satisfied. The validity of Eq2.2) is

a nontrivial issue, i.e., if the wave vectors do not lie on a
regular lattice then at high orders wave vectors arbitrarily
close to the neutral curve can be excited. However, the prob-
lem of high-order wave vectors close to the neutral curve is
important forstationaryquasipatterns but not for oscillatory
patterns, since even in the case where the high-order wave
vectors are close to the neutral curve, the corresponding
high-order frequency is very high and strongly different from
. The minimal structure including also Turing-mode—
Turing-mode resonance is obtained\at 3. An example of

a quasicrystalline planforrftransverse pattejrcorrespond-

of a real spacénear field pattern(a) and the corresponding struc- ing to such a nmg-mode SWC‘”“? IS shown n F'g.‘ 1. The
ture in Fourier spacéar field) (b). The inner(outep circles corre- IOW_eSt'Ord?r amplitude equations including all possible trip-
spond to waveTuring) modes. Complex conjugate modes are de-let Interactions are

noted by gray circles. One of the wave-mode—Turing-mode ]

resonant triangles is shown, and the participating Turing mode is aj=— usdj+ @ 1@+ vgbicf,
indicated by the dashed line.

FIG. 1. The planforn{2.2) with N=3 (nine modes A snapshot

Il. AMPLITUDE EQUATIONS b; = mub;+ vuajc;, 2.3

Our starting point is a set of amplitude equations in the . .
vicinity of a degenerate wave-mode—Turing-mode bifurca- Cj = puCj T vwaj bj .
tion. We suppose that the underlying systdmomogeneous
and isotropic in two space dimensiongpossesses a We exclude nongeneric cases when the angle between the
codimension-2 bifurcation manifold where a Turing and awave modes in the resonant triangle is a multiplerés. All
wave mode are neutrally stable, and consider a point on thithe coefficients appearing in the above amplitude equations
manifold where the wave numbers of the Turing and wavecan be expressed through the parameters of the underlying
modes are, respectivelq) andk. The directions of the cor- problem under study. The coefficients and u,, depend on
responding wave vectors are arbitrary, and the number dhe deviation from the bifurcation manifold, whiles,v,,,
excited modes cannot be determireegriori. andAg are computed at the bifurcation point itself;, v,

The amplitude equations are obtained using the standamhd\ ¢ are real, whilew,, and »,, are complex. A dynamical
methods of bifurcation expansion in a dummy small paramsystem similar to Eg(2.3) but lacking the Turing-mode self-
eter e. In the leading order, the amplitudes of the excitedinteraction term(i.e., with A\;=0) has been obtained for op-
modes, the deviation from the bifurcation manifold, and thetical cavities with rotated beafi4], a two-component feed-
inverse slow time scale of the amplitude evolution are all ofback optical systerfil5], and an optical cavity with sodium
O(e€). The amplitude equation of some mog@tenoted, say, vapor in a magnetic fielf19]. In the Appendix we analyze a
by the index zerpcontains a quadratic term contributed by simpler example of a three-component reaction-diffusion
interactions between two other modésdexed, say, 1 and)2 system and apply the method of multiple-scale bifurcation
if and only if the wave vectork; and frequencies; of the  expansion to derive Eq$2.3).
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Ill. SMALL-AMPLITUDE DYNAMICS 0.5

In what follows, we shall study the influence of the
Turing-mode—Turing-mode interaction on the dynamics of
the resonant transverse patterns. We assume that the complex ©-4
amplitudes of the three static modes are equal, and those of
the wave modes fall into two groups of three equal ampli-
tudes. When only resonant Turing modes are present, the 0.3
equal-amplitude planform is typically chosen in the vicinity
of the bifurcation manifold, while higher-order interactions =
are still negligible, which leads to a common hexagonal pat- ¢ 5
tern[20]. The system(2.3), generally, does not possess gra-
dient structure and cannot be assigned endigsapunov
functiona). Nevertheless, the choice of an equal-amplitude
state is natural, and is necessary to make the problem trac-
table. Further on, this requirement will be relaxed by requir-
ing only the moduli, but not the phases, of the amplitudes to
be equal.
The system(2.3) reduces now to three complex equations
which can be further reduced to five real equations for real
amplitudes and phases using the polar representation of the FIG. 2. Bifurcation diagram of Eq3.2) in the (u,a) parameter

complex amplitudes, space forw>0 and cosx<<0. LettersS1 andSdenote the regions of
. . . stable stationary symmetric solutions with+ ¢=0 and 6=, ¢
aj:pae' Oa, b]-:pbe' O, cJ-:pce' Oc, (3.1 =0, respectively. InS1, the solid line corresponds =0, the

dotted line tok=0.01, and the dashed line ®©=0.1. In theS
The relevant variables are the three real amplitysleand  region, the dashed line corresponds«te 0.5.
the composite phases= 0,+ 6.— 6, and$p=36,. The am-
plitude equations can be further rescaled to a form containing coghy=sirfal(1+2u). (3.9
three real parameters only. The imaginary pargfcan be
absorbed in the frequency, and three more real parametebd the symmetric casep is an arbitrary constant. This de-
are eliminated by rescaling the amplitudes and time. It can bgeneracy corresponds to the translational symmetry of the
shown that the conditiops>0 is necessary to prevent run- pattern. On the other hand, the asymmetric solution gener-
away to large amplitudegvhich may be further arrested by ates a dynamic state of the full five-dimensional system with
third- and higher-order terms Assuming this condition ¢ = ¢o—Qt whereQ =3py,p.Sinby/p,.

holds, we rescale time by and denoteu= u,,/us. The The stability of the symmetric and asymmetric states has
resulting equations are been analyzed ifl15], where a bifurcation diagram in the

(m, ) parametric plane was constructed. In various paramet-

,')a: — pa+t pppeCOSH+ Kpg cOS¢, ric domains, the system may relax to either a symmetric or

an asymmetric stationary state, to a periodic orbit that corre-
sponds to slow modulation of the basic pattern on an ex-
tended time scale of E@2.3), or to a chaotic attractor on the
. same extended scale. For 0, the degeneracy of the sym-
Pe= MPct Papy COL O+ ), metric solution is broken, ang has to be fixed in the sta-
(3.2 tionary state at either O ofr; it is easy to see that only
solutions with¢p=0 are stable. This gives rise to two sta-

Pb=MPpTt papc COLO— ),

n_ —1q; _ =1
0=~ popcpa SINO—papppc ~ SIN(6+ ) tionary symmetric solutions. One of them,
_ 71 . _ _ .
Papcpy SINO= @)= Kpasing, 0=0; pa=—wlcosa, pp=pc.=vpa(l—«p,),

(3.5

_ reduces to Eq(3.3) at k—0. On the contrary, the second
where we have set,=|v,|e”'% k=\¢/|v,| and|v,|, vs  solution,
have been absorbed by rescaling the amplitudes. In what
follows, we reiterate the case with=0. In this case, the 0=, pa=—plcosa, pp=pc=Vpalkpa—1),
equation for¢ decouples. The remaining system of four (3.9
equations admits a stationary symmetric solutieith equal
wave amplitudes

$=—3kp,Sind—3pypcp, - SinG,

is subject to the conditiong cosa<O0, p,>1/k and disap-
pears atk< k.= —cosa/u, so that it has no counterpart in
0=0, pa=—pulcosa, pp=pc= \/m’ the abse_nce of Turing-mode_—Turing_-_mode_ in_teraction.
(3.3 Applying the Routh-Hurwitz stability criterion, one can
obtain the stability boundaries of both states. The numerical
and a stationary asymmetric solution with different waveresults for different values ok are shown in Fig. 2. The
amplitudes and= 6y, where stability region of the stat@=0 retreats a% increases in the
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interior of the stability region of the symmetric solution at Using the above expansions in the systehl), we find in

x=0. The two stability boundaries at=0, which corre-
spond to the Hopfstraight line in Fig. 2 and pitchfork bi-
furcations(solid curve in the same figureturn atx+# 0 into

the leading orde®©(« 1) that the Turing amplitudeAJQ de-
pend on the slow time scalg, only. The zero-order equa-
tions are

a single smooth curve, which corresponds to the Hopf bifur-

cation over its entire length. For the state 7, which does ﬁA? aAjl 0. 0% ~0 0~0x
not exist atk=0, the stability region is smaller than the (9_71:_0_70_'6‘1 TALATBICT,
previous one, and shrinks on increasiagintil it disappears

. . - . . 4.4
at k~0.8. The region outside the stability boundaries may in .9
general include periodic and chaotic dynamic states. One of ﬂB? oo aC? oo
such stategat k<1) is a perturbation of the above men- arg ACH o= nA;* By .

tioned asymmetric dynamic solution.

The solution to the last two equations of the systdm) is

IV. INTERMEDIATE-AMPLITUDE DYNAMICS given by

We have seen that any nonzero value «gf however
small, introduces a singular perturbation that causes a quali-
tative change of the character of behavior, adding a new
family of solutions which goes to zero and disappearg at
<k.. In the following, we shall concentrate upon dynamics
at k<1, and apply the powerful technique of multiple-scalewhere B-+=Cj+e‘ ¢, B, = —Cj‘e“Pi, and we define¢
analysis to elucidate the dynamics of the magnified ampli=, -, andA?zpoei‘Pi.

BY=B; (r1)e'"+B; (r)e ',
4.5

CP=C/ (r)e'™+C[ (1),

tudes. To ensure consistent scaling, we shall assume that, asTq gbtain evolution on the slow scale, we define the linear

k<1, the real part ofy,, is of O(x) and write v,,= — kv
+in; thus, we restrict ourselves to the case @e(«) (cf.

operator 7= 3%/ a5+ n°| A’|?. Then the first-order equa-
tions are written as

Fig. 2). The real amplitudes on the new branch of solutions

diverge atk— 0 with different powers; thus we have to res-

cale the amplitudes; , bj, andc; asa;=A;/«, bszj/\/;,

andc;=C; /\/k. Recalling that the amplitude equations de-

scribe small-amplitude dynamics,b=0(e€), we have to
require thatx, though small, satisfy the inequalig k. We

shall therefore consider the dynamics at “intermediate” am-

plitudes. The rescaled E¢{R.3) takes the form

B;=uB;—(v—in/k)AC;, (4.2)

Notice that atc<<1 and, respectively, cas~— v, the solu-
tions (3.5 and(3.6) have the same scaling &s,B;,C; and,

indeed, are stationary solutions of Eg.1). When rewritten
in the rescaled variables, E(.5 becomedA|=u/v, and

|B]=[Cl=VIAl(1~]A]),

j—'ijlZ&Sj [dTp+i nA?’Z},

(4.6
FiCl=0T,1979+i A" S},
whereS; and7; are defined by
Sj=— 9Bl o7+ uB)— vAJC)+inCIAT,
(4.7

Tj=—aCl 7+ uCl—vAY BO+iBoAL".

We assume that the moduli of the amplitudes of all static
modes are equal and those of wave modes fall into two
groups of three equal moduli. In contrast with the preceding
section, we make this assumption regarding moduli only,
while the phases of all modes are allowed to be different.
Averaging the first equation in the systd4) over the fast
time scale yields

argAC/B)=0, (4.2 A0
—L = A0+ A A +(BOCYY),
while the solution(3.6) takes the form T 0
(4.8
|B|=|C|=V|A|(]A|]-1), argAC/B)=m. (4.3 AL
. . . —L —BOCc%* —(BCY), |
Next, we apply the multiple-scale perturbation expansions drg 7} =1 o
and introduce a hierarchy of time scales,
where the average over the fast time scale is defined by
alot=x"ralorg+aldry- - -,
1T
and then expand the amplitude= (A, ,B;,C;) in a Taylor <F>To:TI'an?JO F(7o)d7o. (4.9

series ink:

A=A+ kAT L

Substituting the solutioni4.5) into the first equation of the
system(4.8) and computing the average, we find
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: 2 - 0.2
po=—pot pocose+|B] [*—|B;|%,
(4.10
] Unstable Region
¢=—3pgsing, 0.15
where the overdot denotes the time derivative with respect to
71, and o=@+ @, + @3. It is clear that the total phase al- /
ways relaxes to zero, while the phases of the wave modes do / .
1 0.1 / Stable Region

not affect the evolution of the Turing mode. To derive the y
dynamic equations for the slowly varying amplitudﬁ, /
one has to substitute the soluti¢h5) into the second equa- /
tion of (4.8) and integrate it to obtaiAJ-l. Next, we substitute 0.05 /
A]-l and Eq.(4.5 in Eq. (4.6) and eliminate secular terms /
contributed by the real part of the right hand side of the /)
system(4.6). In polar representatiorﬁsjizpiei %, the equa- !
tions take the form 0/

: 2, 2 2

pPo=—"potpotpi—p=,
FIG. 3. Stability boundaries of the fixed point in the,@)

parameter space. The dashed line corresponds to a Hopf instability

2
mt 2_p_0 - VPO) P+, (4.1 and the solid line to excitations on the invariant manifdit .

b+:

each point on the line=2u, we find analytically a continu-
p_. ous family of periodic orbits, which correspond tori of
Egs. (4.1). Indeed, rewriting the syster#.13 as a single
ordinary differential equation,

2
P+

o =\ p——tv
p (,U« 25, VPO

The equation for the phaseé??t is similar to the equation
of ¢; thus, all phases decay to zero, and are irrelevant. Thus,
we find that the three complex equatid2s3) are reduced to d B
three real amplitude equations. Next, we investigate the dy- Po pi+po—po
namics of the above system. To prevent runaway to infinity. . . :
(which might be further arrested by adding higher—orderand integrating Eqi4.19) yields
term9, we exclude the case>0, v<<0. The fixed points of 142 —p2)— p21pu=¢ 41
the systen(4.11) correspond tgeriodic orbitsof Eq. (4.1). [(1+21)(po=po) —pi Ipi =6, (4.19
The stationary solution with all three amplitudes differing where 0<é&<é&,,,=2"*"V*u. The largest closed trajec-

from zero is tory corresponding t¢=0 consists of the parabolic segment
po=1—4u, p+=+\2po(vpo*pu), (4.12 pi=(1+2u)(po—p3), po>0, (4.19

subject to the conditions-vpo<u<wvpy. Applying the and the axi9y=0. The orbits with€>0 lie within this orbit
Routh-Hurwitz stability criterion we find that this stationary (see Fig. 4. All orbits are neutrally stable with respect to
solution is linearly unstable faany . and v. Other station-  perturbations restricted to the invariant manifold —. The
ary solutions of Eq.(4.1)) lie on the invariant manifolds stability of the periodic orbits with respect to perturbations
p+=0 andp_=0, which we denote ag1 *, respectively. orthogonal to the invariant manifold ~ is checked by in-

dpy _ w(1=2po)p-

, (4.19

On M ™ the reduced dynamics is given by tegrating the last equation in the systéill):
4 524 2 m
Po= o PP p—(71)=p—(0)exrl( f L (po(&).p+ ()E |,
(4.13 0
_ (4.17
p+=(u=vpolps where we define
The nontrivial fixed point is given by,=u/v andp 5
=po(1—po). For the positiveness of the amplitude we re- T o p_++2 41
quire >0 andpy<1. Linearizing systent4.13 about the (Po.ps) = 2p  HPO (418
above stationary solution shows that it is stable3¥0 and The periodic orbits are stable if
0<w<wl2. The stability of the invariant manifold1 ~ re-
uiresu<v/(1+4v). Both stability conditions are shown in T
pregr vy Y | Poorap- (rndn<o, (419

The bifurcation linev=2u, shown by the dashed line in
Fig. 3, corresponds to a degeneraggtical Hopf bifurcation  with T=T(u) being the period of the oscillations. In what
[21]. Above this line, all trajectories run away to infinity. For follows, we provide a sufficient condition for the trajectories
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around this solution we find that it is always unstable. The
trajectories either run away to infinity or are attracted to the
trivial statepy=p_=0.

V. CONCLUSION

The results of the above analysis turned out to be far from
straightforward. It is reasonable to expect that resonant inter-
action between Turing modes, which are always destabiliz-
ing at a nondegenerate Turing bifurcation, would restrict the
parameter region where the amplitudes remain finite in the
absence of higher-ordécubic) terms. This is, indeed, con-
firmed by the results of Sec. IV. The stabilization by qua-
dratic terms only remains possible in a reduced parameter
domain shrinking a& increases, and the stability boundaries
at k<1 can be obtained by regular perturbation expansion.
A surprising fact, however, is the appearance of another
0 0.2 0.4 0.6 0.8 1 branch of stable dynamic solutions which disappears at

oo <k, and can be constructed usingsiagular perturbation
technique only. Thus, the character of the finite amplitude
solutions changes in a qualitative way when the Turing-
mode—Turing-mode resonance is present.

FIG. 4. Closed orbits obtained from E@.15 for ©=0.12 and
£=0 (solid ling), 1.7x 10" * (dotted ling, and 10 (dashed ling

to be unstable Notice that Eq(4.15 is invariant under the
transformationpy— 1—po. This implies that the sufficient
condition for instability with respect to perturbations or-  The authors are grateful to A. Nepomnyashchy for helpful
thogonal to the invariant manifold! ~ can be presented as discussions. The work of Z.H.M. was supported by a grant
from the Israeli Ministry of Science. L.M.P. acknowledges

I'(po,p+)+T'(1=pg,p+)>0, (4.20  support by the Technion V.P.R. Fund.
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which, upon substituting the expression for[Eq. (4.18] APPENDIX: A MODEL SYSTEM
takes the form
In this Appendix we derive the required conditions for

p2>8upo(1—po). (4.2  wave-mode-Turing-mode resonance to occur and compute
coefficients of amplitude equations for a model system,

The periodic orbits are unstable if the largest periodic orbitvhich is much simpler than the nonlinear optical systems
defined by Eq(4.16) lies completely inside this instability considered in earlier studies. Consider the following three-
boundary. This happens attRu<8u, i.e., u>1/6. This ~component reaction-diffusion system:
means that the stability boundary, if it exists, should be con-
tained in the interval & u<1/6. We have numerically inte-
grated Eq.(4.13 for different values ofu<1/6, and found w2
that condition(4.19 is satisfied foru<u. where u.=1/8. L (AL)
All the orbits, including the fixed point, have the same criti- 0=B8V2wW— ru—w.
cal value ofu, . In the interval 1/6> x> 1/8 small-amplitude

(large-energy orbits are stable, while large-amplitude [jnearizing Eq.(A1) around its trivial zero solution we get

(small-energy orbits are not. The dynamics on thel " in-  the eigenvalue problendu=0, where the linear operatat
variant manifold is less interesting. Ow * the dynamics is s defined by

governed by

u=Vau+u—u?+uv+w,

H—V?-1 -1 -1
po=—po+po—p>, L= 7 d— V2 +y 0
(4.22 v 0 —BV?+1
p_=(u+vpo)p-_. Presenting the linear term=(u,v,w) as the sum oN bi-

furcation modes with wave vectog(j=1,2,... N) and
When bothu andv are positive, the Turing mode, relaxes  frequencyo,
to zero, whereagp_ becomes unbounded. On the contrary,
when bothu andv are negativep _ relaxes to zero, whereas
po becomes unbounded. In the cage-0 and v<<0 the
manifold M " is unstable to orthogonal perturbations. In the
case u<0 and »>0, there is a stationary solutiop,  and substituting into the eigenvalue equatitm=0, we ar-
=|u|/v and p_=\po(po—1). Linearizing the system rive at the following dispersion relation:

N
u= >, U expig-x+at)+c.c., (A2)
=1
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S -Re (o)

0.65 0.7 0.75 0.8 0.85 0.9 0.95 v

kZ
FIG. 5. Locus of the wave-mode—Turing-mode resonant bifur- ! ? 3 4
cation in the ¢,v) space fory=0.334, and3=6 (solid line), B —Re (o)
=7 (dashed ling 0 25 ,
(b)
a?+1(g®)o+h(g?)=0, (A3)
where the coefficient§(q?) andh(g?) are given by
f(g%)=(5+1)g+ +y—1,
q q B+ 1 Y
(A4)
3 s
h(g?) = (89%+ 2+ —1|+7.
(@)=(09"+7)| a ,8(12"‘ 1 7 FIG. 6. Dispersion relation corresponding to Hggéashed ling

and Turing(solid line) instabilities. The values of the parameters
Stability of the trivial solution against zero-modeg€0)  are(a) 6=0.831, »=0.774 and(b) §=0.95, »=0.8. The other
perturbations impliesv>1—7/y and y+v—1>0. How- parameters arg=0.334, 7=0.25, and3=6.
ever, this solution may lose stability as a result of diffusion- R
driven instability ¢#0). The resulting instability may be whereu, is the first component afi; ande;=(1,0,0). The

static (Turing) or oscillatory(Hopf or wave. In the follow- linear operator7 is defined by
ing, we are interested in the conditions when wave-mode—
Turing-mode resonance occurs. The condition of Turing in- I, 0 0

stability is h(q?)=0, f(q?)>0, and the condition of wave _ s p2

instability is f(q%) =0, h(g?)>0. The location of the wave- = m T AVEN 0 ' (A9)

mode—Turing-mode resonance in th& 1) parametric space vy 0 —B,V?

is shown in Fig. 5. A typical example of the dispersion rela- _ _ _ o _

tion in the case of wave-mode—Turing-mode resonance i§he amplitude equations are obtained as solvability condi-

shown in Fig. 6a), as contrasted to an off-resonance disperdions of Eq.(A8), i.e., conditions of the orthogonality of the

sion relation in Fig. &). inhomogeneity to all eigenfunctions of the adjoint linear
For the purpose of weakly nonlinear analysis of the sysProblem, with respect to the scalar product defined by

tem (A1), we follow the standard method of multiple-scale

3
bifurcation expansion. We introduce a hierarchy of time _ J’ T
scalesty=t,t;=e€t, ... with <¢|¢>_2‘1 ¢ hdx.
dl gt=al dto+ edl oty + €29l tp+ - - -, (AS5) A possible resonant structure consists of two wave modes

) ) ] ] with wave numbek and one Turing mode with wave num-
and expand in a power series the field variabland the g, Q. Such a resonant structure has the foi2®), and
bifurcation parameters denoted as an ap&y{s,y,7.8,v}:  satisfies the resonance conditigr k=Q. The eigenvectors
of the linear eigenvalue problem are given b
U= €U+ €U+ - - -, (A6) ’ P k g

14

-1 ;7 " a2
0Q°+y BQ-+1

Using the above expansions in syst¢id), we recover in (A10)
the first order ine the corresponding linear eigenvalue prob-
lem. In the next order we arrive at the following nonlinear

inhomogeneous problem: V=

p=po+epy+eppt- - - (A7) U=

7 v
_11_ [l )
Tw+ 5q2+ y ,8q2+ 1)

Lup=— Ju;— ufey, (A8)  wherew is the Hopf frequency given by
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(A11)

5q2+ vy

+7. 1 1
Bo+1 7

vi=|1, : :
Yo\ T it 892+ y BaP+ 1

0= \/(5q2+ V(@=1)+v

Projecting the right-hand side of EGA8) on the eigenvec-
tors of the adjoint linear problem given by

. 1 1
U=\l
6Q°+y BQ°+1

we arrive at the system of amplitude equatid®s3), where
Ms, iy depend on the deviation from the bifurcation point
while vg,v,,, and\g are computed at the bifurcation point;
Ms, Vs, andig are real, whileu,, andv,, are complex. The
expressions for the coefficients are

_ 71(30Q%+ o) — 70( 51Q%+ 1) N [v1(BoQ%+ 1) — 1o 81Q%1(oQ3+ ¥0)?

Ms

(80Q%+ ¥0)%— 1m0 [(80Q%+ ¥0)?— 10](BoQ?+1)?
. m(iw+ 860+ ¥o) = 7o( 319°+ y1) N [v1(Bo0d®+ 1) — voB10°](i 0+ 5o0° + ¥0)?
" (iw+ 802+ ¥0)%— 79 [(iw+ 8002+ ¥0) 2= 170](Bod?+1)?
2(80Q%+ y0)? 2(iw+ 899+ yp)?
V= =

- L y=— ,
(50Q%+v0)%— 7m0 (iw+ 8002+ 70)%— 7o

_2(8Q%+ 7%0)°
* (80Q%+ ¥0)2— 70
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