
RAPID COMMUNICATIONS

PHYSICAL REVIEW E AUGUST 1999VOLUME 60, NUMBER 2
Suppression of transverse instabilities for vector solitons
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We analyze the transverse instability oftwo-component spatial solitonsin a saturable nonlinear medium, in
relation to recent experimental observations of spatial vector solitons in photorefractive media. We present the
stability analysis for all three realizations: dark-bright, bright-bright, and dark-dark soliton pairs, and demon-
strate that both the nonlinearity saturation and incoherent mode interaction can lead toa strong suppressionof
the soliton transverse instabilities.@S1063-651X~99!51708-X#

PACS number~s!: 42.65.Tg, 05.45.Yv
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Wave instabilities are probably the most dramatic phy
cal effects that occur in nonlinear systems. They can lead
only to the beam filamentation and self-focusing, but also
a decay of solitary waves due to the symmetry-breaking p
turbations at higher dimensions. Different types
nonlinearity-induced instabilities are known, such as mo
lational instability, self-focusing instability, transverse ins
bility of planar solitons, etc. It is commonly believed that t
instabilities arestrongly enhanced for coupled waves, that is,
when two~or more! waves coexist and interact. For examp
this is observed for modulational instability, where the cro
phase modulation can even generate an instability of ot
wise stable waves@1#, for nonlinear focusing, where for two
copropagating waves the nonlinear coupling reduces
critical power at least by a factor of 3~see, e.g., Ref.@2#!, or
it causes waves which do not focus by themselves to fo
because of their collective interaction, and so on.

Following the discovery of photorefractive spatial so
tons,vector solitonswere suggested to exist in photorefra
tive media, in several forms. One of these forms is o
particular interest, because it applies to any noninstantan
nonlinearity and allows more than two components: vec
solitons based onmutual incoherencebetween the various
constituents@3#. Experimental observations of such solito
in three realizations: bright-bright, dark-dark, and da
bright coupled pairs, have been recently reported@4#. How-
ever, unlike all earlier experiments with temporal vector so
tons in fibers@5# and with spatial vector solitons in sla
waveguides@6#, the soliton pairs observed in Ref.@4# were
generated in abulk saturable nonlinear medium. This obse
vation is in sharp contrast with the early belief that the tra
verse instability necessarily leads to a decay of the sol
stripe in a bulk. Furthermore, a very recent paper has
ported the observation of multimode vector solitons@7#, also
employing the photorefractive saturable nonlinearity in a
bulk medium.

In this Rapid Communication, beinginspired by the re-
cent experimental observation of stable incoherently coup
soliton pairs, we investigate the transverse instability of a
types of two-component vector solitons. We find that
saturable media, it is the nonlinearity saturation which le
PRE 601063-651X/99/60~2!/1170~4!/$15.00
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to the suppression of the transverse instability. The most
triguing result is for the dark-bright vector pair, for whic
even in the absence of saturation, i.e., Manakov limit, the
nonlinear mode coupling leads to a strong transverse sta
zation. In other words, the growth rate of the snakelike tra
verse instability of a single dark soliton in bulk Kerr media
dramatically reducedsolely due to the presence of a brigh
component, in sharp contrast to what was believed bef
Moreover, the suppression of the transverse instability is
hanced when the amplitude of the bright component gro

We start from the normalized equations@3#
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11uUu21uVu2 50, ~1!

whereU,V are the envelopes of the two interacting beam
g5b(11r), wherer is the total intensity at infinity andb
is the peak nonlinear index change, and¹'

2 5]2/]x2

1]2/]y2 is the transverse Laplacian. Equations~1! describe
two coupled beams in a saturable optical medium with
refractive index change proportional to 1/(11uUu21uVu2).
Such an interaction can formvector solitonsthat consist of
two ~or more! components mutually self-trapped in a nonli
ear medium. In the small-intensity~Kerr! limit, the govern-
ing equations~1! describe the so-calledManakov solitons
@6,8#.

Because it is well established that both bright and d
scalar Kerr solitons~solutions of a single cubic NLS equa
tion! are unstable to the symmetry-breaking instabilities
higher dimensions@9,10#, the commonly held belief is tha
vector solitons are not observable in higher dimensions
ther and, moreover, they should be even more unstable
to the mode interaction. Here we resolve this question
analyzing the transverse instability of all types of vector so
ton pairs@11#. The dark-bright soliton pair is the most inte
esting case from the physics standpoint and nontrivial for
analysis. It turns out that the effect of the mutual interact
between the soliton components ofdifferent types has never
R1170 © 1999 The American Physical Society
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been addressed for any kind of instability analysis. Here
consider first the transverse instability of the dark-bright s
ton pairs.

Dark-bright soliton pairs.We look for the stationary so
lutions in the form of bright,U0(z,x,y)5u(x)eimz, and
dark, V0(z,x,y)5v(x)einz, components defined by th
boundary conditionsu(6`)˜0 and v(6`)˜6Ar, re-
spectively. Equations of motion for the normalized env
lopesu andv are

1

2

d2u

dx2 2S m1
g

11u21v2Du50,

1

2

d2v
dx2 2S n1

g

11u21v2D v50. ~2!

Analyzing the asymptotics ofv(x) asx˜1`, one can show
that a dark component exists only asn52b.0 along with
a nontrivial bright componentu(x), as long asu(0),Ar
@3#. The other option, foru(0).Ar and b.0, is modula-
tionally unstable@3,4#. Though the analysis is done below fo
the nonlinearity~1!, our theory of transverse instability o
coupled dark-bright solitons is general and holds for a
kind of nonlinearity supporting such soliton pairs.

Let us write weakly perturbed solutions of Eqs.~1! in
the form U(z,x,y)5@u(x)1eU1(z,x,y)#eimz, V(z,x,y)
5@v(x)1eV1(z,x,y)#einz, where each perturbation is ex
pressed as a superposition of plane waves with the w
numberq and frequencyv:

U15f1~x!eivz1 iqy1f2* ~x!e2 iv* z2 iqy,

V15c1~x!eivz1 iqy1c2* ~x!e2 iv* z2 iqy.

By writing f1,25(f16f2)/2, c1,25(c16c2)/2 we ar-
rive, at the first order ine, at the following linear eigenvalue
problem:

1

2

d2f1

dx2 2S Vm~x!1
1

2
q2Df12vf21U~x!c150,

1

2

d2c1

dx2 2S Vn~x!1
1

2
q2Dc12vc21U~x!f150,

1

2

d2f2

dx2 2S m1
1

2
q21

g

11u21v2Df22vf150,

1

2

d2c2

dx2 2S n1
1

2
q21

g

11u21v2Dc22vc150,

whereVm(x), Vn(x), andU(x) are defined as

Vm~x!5m1
g~12u21v2!

~11u21v2!2 ,

Vn~x!5n1
g~11u22v2!

~11u21v2!2 , U~x!5
2guv

~11u21v2!2 .

It is impossible to solve the above spectral problem exac
i.e., to calculate the eigenvalue spectrumv(q). Therefore,
e
-

-

y

ve

y,

we restrict ourselves to the long-wave limit when the solit
size is assumed small in comparison with the perturba
scale. This means that the solution of the above system
be found in the asymptotic formf6.f0

61qf1
61q2f2

6

1¯ , c6.c0
61qc1

61q2c2
61¯ , v(q)5qv11q2v2

1¯ , leading to the following sets of equations:

O~q0!: Jm0
150, J mf0

250, J nc0
250;

O~q1!: Jm1
15v1m0

2 , J mf1
25v1f0

1 ,

J nc1
25v1c0

1 ;

O~q2!: Jm2
15v1m1

21v2m0
211/2m0

1 ,

J mf2
25v1f1

11v2f0
111/2f0

2 ,

J nc2
25v1c1

11v2c0
111/2c0

2 ,

wherem65(f6,c6) and the operatorsJ, Jm , andJn are
defined by

J5S 1

2

d2

dx2 2Vm~x! U~x!

U~x!
1

2

d2

dx2 2Vn~x!
D ,

Js5
1

2

d2

dx2 2S s1
g

11u21v2D ,

wheres5m,n. Keeping in mind that only localized pertur
bations can lead to instability, we attempt to construct,
each order inq, a localized solution to the above system
Scrutinizing the zero order equation shows thatf0

2 , c0
2 ,

andm0
1 are the neutral modes (v5q50), corresponding to

the gauge transformation and translational symmetry of E
~1!, respectively. Hence,f0

2(x)5c1u(x), c0
2(x)5c3v(x),

f0
1(x)5c2ux(x), and c0

1(x)5c2vx(x), where the indexx
stands for the corresponding derivative. All modes exc
c0

2 are localized and belong to bound states. By means of
multiscale expansion technique, we can show that the m
with c3Þ0 does not lead to instability. Therefore, for sim
plicity, we setc350. Then, the solution to the first order
given by f1

1(x)5c1v1(du/dm), c1
1(x)5c1v1(dv/dm),

f1
2(x)5c2v1xu(x)/2, c1

25c2v1@xv(x)2rv(x)G(x)#/2,
whereG(x) is defined by the relationdG(x)/dx51/v2(x).

Analyzing those results, we findtwo instability modes.
First, forc1Þ0, v1 is obtained from the solvability condition
for f2

2 in the second order inq, i.e., orthogonality of an
inhomogeneous part to the eigenfunctionu(x). In this way,
we retrieve the scalar result of@9#, where a long-wave ana
lytical expansion for the instability growth rate,iv5 iv1q
1¯ was derived. In our notation, this gives

v1
252

P

~dP/dm!
, ~3!

whereP is the soliton power,P5*2`
1`uuu2dx. From the mul-

tiscale analysis, we can show that the solvability condit
for the function c2

2 is satisfied and thatc2
2 is indeed a
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bounded function. The second instability mode follows fro
the solvability conditions form2

1 , and its frequency can b
written in the form

v1
25

E
2`

1`

@ux
2~x!1vx

2~x!#dx

P12r lim
x˜`

@v2~x!G~x!2x#
, ~4!

where P is the complementary power defined asP
5*2`

1`dx@u2(x)1v2(x)2r#. By considering the asymptot
ics at x˜1`, we can show that the valu
limx˜`@v2(x)G(x)2x# is always finite. We emphasize tha
the new condition~4! derived above is general, and it hold
for any kind of nonlinearity that supports dark-bright solito
pairs. Moreover, in the case of a single dark soliton~u50,
v5tanhx! from Eq.~4! we recover immediately the result o
Ref. @10#. In a particular case discussed in Ref.@3#,
we can use an approximate analytic solution,u(x)
5Ar sech@(bd)1/2x# and v(x)5Ar tanh@(bd)1/2x#, where d
[(r 2r)/(11r),0; udu!1 and the propagation constan
arem.2b(12d/2) andn52b. In this case, the condition
~3! does not lead to instability becausedP/dm,0. This is in
contradistinction with the bright solitons and bright-brig
pairs, for whichb.0; hereb,0, i.e., a self-defocusing non
linearity. However, applying the second condition~4!, we
obtain the instability growth ratev1

25bd(r 12r)/3(r
22r). From the experimental parameters of Ref.@4#, we
take b.0.566, and show this result in Fig. 1 for differe
values ofd. Another important example is the dark-brig
Manakov solitons@12#. In this case, the bright and dark com
ponents are given by the expressions@12#: u(x)
5A12a2 sech(ax) andv(x)5tanh(ax) with the propagation
constantm52(12a2/2), wherea (a2,1) characterizes the
amplitude of the bright component for the normalized ba
ground. Again, the condition~3! does not lead to any insta
bility becausedP/dm,0. However, from Eq.~4! we obtain

v1
25

a2~a223!

3~a211!
. ~5!

When a51, i.e., for a single dark soliton, we retrieve th
result of@10#, v1

2521/3. In general, the result~5! revealsan
unexpected featureof the dark-bright soliton pairs:a bright

FIG. 1. Growth rate of the transverse instability of a dark-brig
soliton pair for different values ofd.
-

component, embedded in a defocusing medium, leads t
effective suppression of the transverse instability of a d
soliton. This instability suppression resultsonly from the
presence of the bright component and becomes stronge
we increase the bright-soliton intensity.

Bright vector solitons.Next, for bright vector solitons, or
bright-bright soliton pairs, a solution of Eq.~1! that corre-
sponds to vanishing boundary conditions andr50, can be
obtained by the substitutionU0(z,x,y)5Ar cosuY(x)eimz,
V0(z,x,y)5Ar sinuY(x)eimz, wherer is the total peak inten-
sity, Y(x) is a normalized~real! amplitude,u is an arbitrary
angle, andm is a propagation constant. We consider a fu
damental soliton stripe described by the same shapeY(x) for
both U0 andV0 and uniform in the direction of applied per
turbation,y, whereY(x) satisfies the following scalar equa
tion:

d2Y

dx2 22mY2
2bY

11rY2 50, ~6!

and it describes a one-parameter family of bright solitons
b.0 andm52(b/r )ln(11r) @13,14#. Now, we consider a
steady-state soliton solution perturbed by a small pertur
tion. Notice that Eqs.~1! are invariant with respect to th
transformation U085U0 cosa1V0 sina, V0852U0 sina
1V0 cosa, which allows one to map the problem back to t
scalar case with the solutionsU085ArY(x)eimz[u(x)eimz,
V0850. This simplifies the corresponding eigenvalue pro
lem. Indeed, if we write a perturbed solution in the for
~omitting primes! U(z,x,y)5@u(x)1eU1(z,x,y)#eimz, and
V(z,x,y)5eV1(z,x,y)eimz, wheree!1, then from Eqs.~1!
we can obtaina system of two decoupled equations,

S i
]

]z
1

1

2
¹'

2 2m DU12
g~U12u2U1* !

~11u2!2 50, ~7!

i
]V1

]z
1

1

2
¹'

2 V12S m1
g

11u2DV150. ~8!

Importantly, Eq.~7! is a linearized nonlinear Schro¨dinger
~NLS! equation for a saturable nonlinear medium, and
stability analysis follows from the theory developed for
scalar NLS equation@9#. Applying the result~3! to a satu-
rable nonlinearity, we find numerically the dependence of
growth rate v1 on the beam peak amplitudeu0[Ar as
shown in Fig. 2. Thus, the growth rate of the soliton tran
verse instability is decreasing with an increasing ratio
tween the peak soliton intensity and the saturation intens
u0

2. In the low-intensity~Kerr! limit of the saturable nonlin-
earity, a strong transverse instability takes place, and i
typical of scalar Kerr solitons. The comparison with the ex
periments of Ref.@4# reveals the same trend: the instability
strongly suppressed with increasing saturation, and tha
why such bright-bright soliton pairs were observed expe
mentally in the saturated regime only. On the other hand
the low-intensity limit the strong transverse instability d
not make it possible to observe coupled bright soliton pa
@4#.

Next, we investigate the second equation~8!. Let
V1(z,x,y)5G(x)eivz1 iqy, whereq is the perturbation wave

t
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number andv is the corresponding growth rate. Substituti
this into Eq.~8!, we obtain the eigenvalue equation

1

2

d2G

dx2 2S m1
g

11u2 1
1

2
q2DG5vG, ~9!

with the boundary conditionsG(6`)˜0. It is easy to verify
that Eq.~9! is a self-adjoint eigenvalue problem with a re
spectrumv(q). This implies that the transverse instability
bright-bright vector solitons is completely defined by t
corresponding scalar problem.

FIG. 2. Growth rate of the soliton long-wavelength transve
instability vs saturation intensity.
.
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Dark vector solitons.Dark solitons are two-componen
kinklike solutions of Eqs.~1! with antisymmetric field profile
and nonvanishing asymptotics. For this case,rÞ0 and a
solution to Eqs.~1! can be sought in the formU0(z,x,y)
5ArY(x)einz[v(x)einz,V050, where we have used the ro
tational invariance of Eqs.~1!. Functionv(x) is a solution of
Eq. ~6! with the boundary conditionsv(6`)˜6Ar which
leads to the conditionn52b.0. Linearizing Eqs.~1!
around this solution, we obtain the same linear system~7!
and ~8!. The eigenvalue equation~7! has been recently ana
lyzed in Ref.@15#, and it has been revealed that the nonl
earity saturation leads to a strong suppression of the so
transverse instability~see Fig. 1 of Ref.@15#!. What remains
to be checked for our vector soliton case is the effect of
other mode perturbation described by Eq.~8! on the soliton
stability. Following the same reasoning as above, we fi
that at least in the long-wave limit, Eq.~9! has no solutions
corresponding to discrete unstable eigenmodes. This imp
that the case of dark vector solitons is also reduced t
scalar problem.

In conclusion, we have analyzed the transverse instab
of three possible realizations of two-component vector s
tons in a bulk nonlinear medium. In the case of dark-brig
soliton pairs, we have derived, in the long-wave approxim
tion, a general result for the instability growth rate, and de
onstrated that the incoherent mode interaction can lead
strong suppression of the soliton transverse instabilities
the case of rotationally invariant nonlinearity, the cases
bright and dark vector solitons are shown to map to the c
responding scalar problem.
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