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Suppression of transverse instabilities for vector solitons
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We analyze the transverse instabilitytafo-component spatial solitoris a saturable nonlinear medium, in
relation to recent experimental observations of spatial vector solitons in photorefractive media. We present the
stability analysis for all three realizations: dark-bright, bright-bright, and dark-dark soliton pairs, and demon-
strate that both the nonlinearity saturation and incoherent mode interaction can &attdng suppressioaf
the soliton transverse instabilitids$1063-651X99)51708-X]

PACS numbeps): 42.65.Tg, 05.45.Yv

Wave instabilities are probably the most dramatic physito the suppression of the transverse instability. The most in-
cal effects that occur in nonlinear systems. They can lead ndtiguing result is for the dark-bright vector pair, for which
only to the beam filamentation and self-focusing, but also teeven in the absence of saturatjare., Manakov limit, the
a decay of solitary waves due to the symmetry-breaking pemaonlinear mode coupling leads to a strong transverse stabili-
turbations at higher dimensions. Different types ofzation. In other words, the growth rate of the snakelike trans-
nonlinearity-induced instabilities are known, such as moduVverse instability of a single dark soliton in bulk Kerr media is
lational instability, self-focusing instability, transverse insta-dramatically reducedolely due to the presence of a bright
bility of planar solitons, etc. It is commonly believed that the COMponent, in sharp contrast to what was believed before.
instabilities arestrongly enhanced for coupled wayésat is, ~Moreover, the suppression of the transverse instability is en-
when two(or more waves coexist and interact. For example, hanced when the amplitude of the bright component grows.
this is observed for modulational instability, where the cross- We start from the normalized equatiof
phase modulation can even generate an instability of other-

- ; : U 1 vU
wise stable wavefl], for nonlinear focusing, where for two i—+-V2U- =0
copropagating waves the nonlinear coupling reduces the gz 2 7 1+[U[+]V ’
critical power at least by a factor of (3ee, e.g., Ref2]), or
it causes waves which do not focus by themselves to focus oV 1,
; S . i—+-ViVv—
because of their collective interaction, and so on. dz 2+

Following the discovery of photorefractive spatial soli-
tons, vector solitonswere suggested to exist in photorefrac- whereU,V are the envelopes of the two interacting beams,
tive media, in several forms. One of these forms is of ay=pB(1+p), wherep is the total intensity at infinity ang
particular interest, because it applies to any noninstantaneoig the peak nonlinear index change, aWf = 4% x>
nonlinearity and allows more than two components: vector+ d?/dy? is the transverse Laplacian. Equatiqi$ describe
solitons based omutual incoherencdetween the various two coupled beams in a saturable optical medium with a
constituentg3]. Experimental observations of such solitonsrefractive index change proportional to 141U|?+|V/|?).
in three realizations: bright-bright, dark-dark, and dark-Such an interaction can formector solitonsthat consist of
bright coupled pairs, have been recently repofld How-  two (or more components mutually self-trapped in a nonlin-
ever, unlike all earlier experiments with temporal vector soli-ear medium. In the small-intensitKerr) limit, the govern-
tons in fibers[5] and with spatial vector solitons in slab ing equations(1) describe the so-calleManakov solitons
waveguided 6], the soliton pairs observed in Re¢#] were  [6,8].
generated in #&dulk saturable nonlinear medium. This obser- Because it is well established that both bright and dark
vation is in sharp contrast with the early belief that the transscalar Kerr solitongsolutions of a single cubic NLS equa-
verse instability necessarily leads to a decay of the solitoition) are unstable to the symmetry-breaking instabilities of
stripe in a bulk. Furthermore, a very recent paper has rehigher dimension$9,10], the commonly held belief is that
ported the observation of multimode vector solitdik also  vector solitons are not observable in higher dimensions ei-
employing the photorefractive saturable nonlinearity in a 3Dther and, moreover, they should be even more unstable due
bulk medium. to the mode interaction. Here we resolve this question by

In this Rapid Communication, beinigspired by the re- analyzing the transverse instability of all types of vector soli-
cent experimental observation of stable incoherently coupleton pairs[11]. The dark-bright soliton pair is the most inter-
soliton pairs we investigate the transverse instability of all esting case from the physics standpoint and nontrivial for the
types of two-component vector solitons. We find that foranalysis. It turns out that the effect of the mutual interaction
saturable media, it is the nonlinearity saturation which leaddetween the soliton componentsdifferenttypes has never
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been addressed for any kind of instability analysis. Here wave restrict ourselves to the long-wave limit when the soliton
consider first the transverse instability of the dark-bright soli-size is assumed small in comparison with the perturbation

ton pairs. scale. This means that the solution of the above system may
Dark-bright soliton pairs.We look for the stationary so- be found in the asymptotic fornp™= ¢y +q¢; +q¢,

lutions in the form of bright,Uo(z,x,y)=u(x)e'*?, and  +.--, g =ys+qy; +q%; + -, o(q)=qw;+ 0w,

dark, Vo(z,x,y)=v(x)€e'"%, components defined by the +... |eading to the following sets of equations:

boundary conditionsu(*%)—0 and v(*%)—*+/p, re-

spectively. Equations of motion for the normalized enve- 0(q%): Jmg=0, J,bo=0, T,i¥=0;

lopesu andv are N B B N
O(gh): Jmi=wimy, J.b1=w1dg,

1 d%u N v 0

22 |\ HT e U T T =19 ;

1 d?v ¥ 0(g?): Jmy =wm; +w,my +1/2m7 ,
2a¢ | vV @

T uz = 0181 +wa¢hg + 112 ,
Analyzing the asymptotics af(x) asx— + o0, one can show B N N B
that a dark component exists only as — >0 along with T by = w19 + 0oty + 1245 ,
a nontrivial bright componenti(x), as long asu(0)<+p
[3]. The other option, fou(0)>+/p and >0, is modula-
tionally unstabld 3,4]. Though the analysis is done below for

wherem™=(¢~,") and the operatorg, J,, and.7, are
defined by

the nonlinearity(1), our theory of transverse instability of 1 d2
coupled dark-bright solitons is general and holds for any EW_V“(X) Ux)
kind of nonlinearity supporting such soliton pairs. TI= ) ’
Let us write weakly perturbed solutions of Ed4) in U 1d _
the form U(z,x,y)=[u(x)+eU(z,x,y)]e'**, V(z,X,y) ) 2 dx? Vi(X)
=[v(x)+ eV (z,x,y)]e'"%, where each perturbation is ex-
pressed as a superposition of plane waves with the wave 1 d?
numberq and frequencyw: %Zid—xz— S+ T+ uZ+v2)
Up= 1 (x)e' ez 04 % (x)e 1o 271y, wheres=pu,v. Keeping in mind that only localized pertur-
o _ _ bations can lead to instability, we attempt to construct, at
V=i (x)e' ezt + zp;(x)e"“’*z"qy. each order ing, a localized solution to the above system.

N L L Scrutinizing the zero order equation shows tiagt, ¢, ,
By writing ¢1,=(¢" £ ¢7)/2, no=(4" £4)/2 we ar-  gndm are the neutral modess=q=0), corresponding to
rive, at the first order irg, at the following linear eigenvalue e gauge transformation and translational symmetry of Egs.

problem: (1), respectively. Henceg, (X)=c,u(x), g (X)=csv(X),
1 d2¢* 1 do (X) =C,U,(x), and ¢§(x).=c2vx(.x),_where the index
EW—<V#(X)+ qu) ¢ —wd FUX) T =0, stands for the corresponding derivative. All modes except
¥, are localized and belong to bound states. By means of the
1 d2y 1 multiscale expansion technique, we can show that the mode
- —2—(Vy(x)+ _q2) YTy +UX) T =0, with c3#0 does not lead to instability. Therefore, for sim-
2 dx 2 plicity, we setcy=0. Then, the solution to the first order is

given by ¢; (x)=Cciwy(du/du), ¢ (X)=Ccrwi(dv/du),

1d%¢p~ ( 1, y - . S - B
s —— | ut+t 0P+ ——5—>|p —wept=0 $1 (X)=Cow1XU(X)/2, ¢y =Cow[Xv(X) = pVv(X)I'(X)]/2,
2 dx SRS eTRvo L A whereI'(x) is defined by the relatiodI(x)/dx= 1A2(x).

” Analyzing those results, we fintlvo instability modes
E d<y _( n E 2 U — oyt =0 First, forc, # 0, w4 is obtained from the solvability condition
2 @ VT2 T T2 @ ’ for ¢, in the second order i, i.e., orthogonality of an

. inhomogeneous part to the eigenfunctiofx). In this way,
whereV,(x), V,(x), andi(x) are defined as we retrieve the scalar result 9], where a long-wave ana-
Iytical expansion for the instability growth ratep=iwq

V,(X)=p+ Zﬁ_:jg—jj;\z’;) +--- was derived. In our notation, this gives
2_.,2 wz=—L 3
V(x)= v+ y(1+u—v?) U = 2yuv . 1 (dPidp)’
v (1+u§+vz)z’ (1+u7+v7)§

whereP is the soliton powerP = [ *%|u|?dx. From the mul-
It is impossible to solve the above spectral problem exactlytiscale analysis, we can show that the solvability condition
i.e., to calculate the eigenvalue spectrartq). Therefore, for the functiony, is satisfied and thaty, is indeed a
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Im(W, ) component, embedded in a defocusing medium, leads to an
52-0.05 effective suppression of the transverse instability of a dark
0.15f e T T T T T T soliton This instability suppression resultnly from the
- 5--0.03 presence of the bright component and becomes stronger as
0.125p /'  emm— - -mST oo TT we increase the bright-soliton intensity.
0 1t ///’ ____________ 6=-0.02 - Bright vector solitonsNext, for bright vector solitons, or
’ /e bright-bright soliton pairs, a solution of E¢l) that corre-
/' 5=-0.01 I "
0.075} sponds to vanishing boundary conditions gnd0, can be
o 05l obtained by the subst_itutioon(z,x,y)=\/FcosaY(x)e'”Z,
’ Vo(z,x,y) = I sin6Y(x)€*? wherer is the total peak inten-
] 5=-0.001 ; . . ) . .
0.025f — — — — — — — — — — — — sity, Y(x) is a normalizedrea) amplitude,6 is an arbitrary
! o angle, andu is a propagation constant. We consider a fun-
0.2 0.4 0.6 0.8 1 damental soliton stripe described by the same siggg for

bothU, andV, and uniform in the direction of applied per-

FIG. 1. Growth rate of the transverse instability of a dark'brightturbation,y, whereY(x) satisfies the following scalar equa-

soliton pair for different values oé.

tion:
bounded function. The second instability mode follows from d2y 28
the solvability conditions fom; , and its frequency can be F_Z’“Y_ ——=0, (6)
written in the form X 1+ry
+oo and it describes a one-parameter family of bright solitons for
f [UZ(X) +VZ(x)]dx B>0 andu=—(B/r)In(1+r) [13,14. Now, we consider a
2__ 7% 4 steady-state soliton solution perturbed by a small perturba-
W, : 2 o 4 . . ! . ;
P+2p lim [vE(x)I'(X) =X] tion. Notice that Eqs(1) are invariant with respect to the
X—»00

transformation Ugy=Ugcosa+Vysing, Vg=-—Ugsina
where P is the complementary power defined &8 *+Vocosa, Whi(f‘h allows one to r,nap the pr?slem baclfﬂtzo the
= [*2dxX[u?(x) +v2(x)— p]. By considering the asymptot- scfalar case Wlth 'Fhe solutlon:iO:\/FY(.x)e 'Eu(x)e ,
ics at Xx—-+o, we can show that the value Vy=0. This s!mpllfles.the corresponding e_lgenvalue prob-
lim,_..[v2(x)T'(x)—x] is always finite. We emphasize that Iem._ I_ndeeq, if we write a perturbed solution |in Zthe form
the new conditior(4) derived above is general, and it holds (OMitting primes U(z,>i<,3z/):[u(x)+ €Uy(z,x.y)]e'* and
for any kind of nonlinearity that supports dark-bright soliton V(2X.Y) = €V1(z,x,y)€'**, wheree<1, then from Eqs(1)
pairs. Moreover, in the case of a single dark solitar-0, W& ¢a&n obtaira system of two decoupled equatipns
v =tanhx) from Eq.(4) we recover immediately the result of P
Ref. [10]. In a particular case discussed in RéB], -i 1 2 _ y(U;—u"Uy) _

. > . | + VL o Ul Vi 01 (7)
we can use an approximate analytic solution(x) dz 2 (1+u9)
=r secti(B8)Y*] and v(x) = p tant (B8 *], where &
=(r—p)/(1+p)<0; |8|<1 and the propagation constants oV 1, Y
areu=—B(1— 6/2) andv=— B. In this case, the condition e + Evivl_ pt 1+ U2
(3) does not lead to instability becaud®/d . <0. This is in
contradistinction with the bright solitons and bright-bright Importantly, Eq.(7) is a linearized nonlinear Schdimger
pairs, for which3>0; here<0, i.e., a self-defocusing non- (NLS) equation for a saturable nonlinear medium, and its
linearity. However, applying the second conditioh), we  stability analysis follows from the theory developed for a
obtain the instability growth ratewi=ﬂ5(r+2p)/3(r scalar NLS equatiof9]. Applying the result(3) to a satu-
—2p). From the experimental parameters of Ref], we  rable nonlinearity, we find numerically the dependence of the
take $=0.566, and show this result in Fig. 1 for different growth rate w; on the beam peak amplitude,=\r as
values of 8. Another important example is the dark-bright shown in Fig. 2. Thus, the growth rate of the soliton trans-
Manakov soliton$12]. In this case, the bright and dark com- verse instability is decreasing with an increasing ratio be-
ponents are given by the expressiofd2]: u(x) tween the peak soliton intensity and the saturation intensity,
=J1—a?sechf@x) andv(x)=tanh@x) with the propagation uS. In the low-intensity(Kerr) limit of the saturable nonlin-
constaniu= —(1—a?/2), wherea (a?<1) characterizes the earity, a strong transverse instability takes place, and it is
amplitude of the bright component for the normalized back-typical of scalar Kerr solitons. The comparison with the ex-
ground. Again, the conditiof3) does not lead to any insta- periments of Refl4] reveals the same trend: the instability is
bility becaused P/d < 0. However, from Eq(4) we obtain  strongly suppressed with increasing saturation, and that is
why such bright-bright soliton pairs were observed experi-
5) mentally in the saturated regime only. On the other hand, in
3(a’+1) - the low-intensity limit the strong transverse instability did

not make it possible to observe coupled bright soliton pairs

Whena=1, i.e., for a single dark soliton, we retrieve the [4].
result of[10], w§= —1/3. In general, the resulb) revealsan Next, we investigate the second equati¢8). Let
unexpected featuref the dark-bright soliton pairsa bright  V;(z,x,y) =G(x)e'“*"'%, whereq is the perturbation wave

, a’(a*-3)
(l)]_:
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Im (W) Dark vector solitons.Dark solitons are two-component
0.5r kinklike solutions of Eqs(1) with antisymmetric field profile
and nonvanishing asymptotics. For this capes0 and a
0.4 solution to Egs.(1) can be sought in the formy(z,x,y)
=pY(x)e'"?=v(x)e'"? V,=0, where we have used the ro-
0 3l tational invariance of Eqg1). Functionv(x) is a solution of
) Eq. (6) with the boundary conditions(+%)— =+ \/p which
leads to the conditionv=—38>0. Linearizing Egs.(1)
0.2 around this solution, we obtain the same linear sys@m
and (8). The eigenvalue equatidi¥) has been recently ana-
0.1 lyzed in Ref.[15], and it has been revealed that the nonlin-
earity saturation leads to a strong suppression of the soliton
" transverse instabilitysee Fig. 1 of Ref[15]). What remains

5 10 15 20 to be checked for our vector soliton case is the effect of the
. other mode perturbation described by E8). on the soliton

_ FIQ._ 2. Growth r_ate_of thg soliton long-wavelength transversestab”ity_ Following the same reasoning as above, we find

instability vs saturation intensity. that at least in the long-wave limit, E¢9) has no solutions

corresponding to discrete unstable eigenmodes. This implies

) . .. that the case of dark vector solitons is also reduced to a
number ando is the corresponding growth rate. Substituting scajar problem.

this into Eq.(8), we obtain the eigenvalue equation In conclusion, we have analyzed the transverse instability
of three possible realizations of two-component vector soli-
tons in a bulk nonlinear medium. In the case of dark-bright
soliton pairs, we have derived, in the long-wave approxima-
tion, a general result for the instability growth rate, and dem-
with the boundary condition&(*=«)—0. It is easy to verify  onstrated that the incoherent mode interaction can lead to a
that Eq.(9) is a self-adjoint eigenvalue problem with a real strong suppression of the soliton transverse instabilities. In
spectrumw(q). This implies that the transverse instability of the case of rotationally invariant nonlinearity, the cases of
bright-bright vector solitons is completely defined by thebright and dark vector solitons are shown to map to the cor-

1 d%G

Y o 1olal
2 0% (“+1+u2+2q G=uG, ®

corresponding scalar problem. responding scalar problem.
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