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Eliminating the Transverse Instabilities of Kerr Solitons
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We show analytically, numerically, and experimentally that a transversely stable one-dimensional
��1 1 1�D� bright Kerr soliton can exist in a 3D bulk medium. The transverse instability of the soliton
is completely eliminated if it is made sufficiently incoherent along the transverse dimension. We derive
a criterion for the threshold of transverse instability that links the nonlinearity to the largest transverse
correlation distance for which the 1D soliton is stable.

PACS numbers: 42.65.Tg, 05.45.Yv
Research on optical spatial solitons has made much
progress during the past decade: new systems that support
solitons have been identified, solitons of more than one
transverse dimension have been demonstrated, and a whole
range of soliton interactions was explored [1]. Despite
the diversity of the physical systems that support them,
solitons are a universal phenomenon and share many com-
mon features [1], one of which is transverse instability (TI)
[2–10]. TI is a symmetry breaking instability: almost all
solitons [11] of a particular dimension that propagate in a
higher dimension system [by having a uniform wave func-
tion in the additional dimension(s)] are unstable to pertur-
bations in the dimension(s) in which they are uniform. TI
occurs because perturbations in the dimension of unifor-
mity have nothing to restrain them from growing (driven
by the nonlinearity) and breaking the soliton up.

In the particular case of a spatial optical �1 1 1�D soli-
ton that is self-trapped in one dimension x, is uniform
in the transverse dimension y, and is propagating along
z, TI causes the soliton to break up along y into an ar-
ray of 2D filaments [2–10]. The transverse wavelength
of these perturbations is usually much larger than the soli-
ton width [2–4]. Transverse instability is especially severe
for Kerr nonlinearities and prohibits spatial 1D Kerr soli-
tons in a bulk medium. This is why spatial �1 1 1�D Kerr
solitons have to be launched in a planar waveguide con-
figuration, in which the y confinement is much narrower
than the self-trapped (soliton) width in x [5,6]. TI actually
occurs for solitons in any nonlinearity, including, for ex-
ample, quadratic solitons [7] and photorefractive solitons
[8,9]. Interestingly, saturation arrests transverse instabil-
ity [10] but never completely eliminates it. In fact, it is
the suppression of TI due to saturation that facilitates the
observation of stable 1D solitons in a bulk photorefractive
crystal for more than ten diffraction lengths [8].
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Thus far, in order to avoid TI, experiments with 1D
solitons were conducted in either planar waveguides [5,6]
or nonlinearities in which TI was greatly suppressed [8].
Here we demonstrate how to produce a truly stable stripe
Kerr soliton propagating in a 3D bulk medium without
suffering from transverse instability. We show that if the
soliton is made “sufficiently” incoherent in its transverse
dimension y, then TI is completely eliminated.

First, recall incoherent solitons made of partially inco-
herent light [12]. They are multimode (speckled) beams of
which the instantaneous amplitude varies randomly with
time. If such beams are launched into a noninstantaneous
self-focusing medium, so that the response time of the non-
linearity greatly exceeds the fluctuation time, then self-
focusing is driven solely by the average intensity. Then,
the incoherent beam induces a multimode waveguide and
guides itself in it by properly populating the guided modes,
thus forming an incoherent soliton [12–18].

A clue that TI could be completely eliminated for soli-
tons was given by two recent discoveries: modulation
instability (MI) of incoherent light [19] and elliptical in-
coherent solitons [14,20]. MI belongs to the same family
of symmetry breaking instabilities as TI does, and it oc-
curs when a plane wave (or a very broad beam or pulse) is
launched into a self-focusing medium. If this plane wave
is fully coherent, it breaks up into a train of filaments due
to MI. Recently, it has been shown theoretically and ex-
perimentally [20] that MI does exist also for incoherent
light, but it occurs only if the nonlinearity exceeds a well-
defined threshold. The MI threshold is determined by
the coherence of the light. If the nonlinearity is below
threshold, then MI is eliminated and the wave is stable.
This generic idea has enabled the observation of anti-
dark solitons [21], which were thought to be unstable in
conservative nonlinear systems [22]. The new finding of
© 2000 The American Physical Society
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incoherent elliptical solitons [14,20] is based on having
different coherence function for the two transverse dimen-
sions of self-trapping. Combing these ideas, one can gen-
erate a 1D soliton that is fully coherent in x (direction of
trapping), partially incoherent but uniform in y, and propa-
gating along z. The intimate relation between TI and MI
suggests that TI of incoherent beams should also exhibit
a threshold for its existence. Therefore, if the degree of
coherence in y is such that TI is below the threshold, all
transverse perturbations are suppressed and TI is elimi-
nated. This is the core idea of our Letter. The idea of
using the threshold to eliminate TI applies to any type of
nonlinearity, yet we will concentrate on the Kerr nonlinear-
ity for two reasons. First, wave propagation in Kerr media
is described by the cubic nonlinear Schrödinger equation
(NLSE) which is one of the most general soliton equations
[23]. Generally speaking, the NLSE describes envelope
solitons in dispersive wave systems with weak symmetric
anharmonicity. Second, the effect of TI for Kerr solitons
is very strong and we can demonstrate a convincing dif-
ference between having TI and eliminating TI by making
the soliton incoherent along y.

An incoherent beam can be represented as a series
of coherent speckles that change, on average, every
coherence time tcoh. We define B�x1, y1x2, y2, z� �
�E��x2, y2, z, t�E�x1, y1, z, t��, the spatial correlation func-
tion, E�x, y, z, t� being the slowly varying amplitude. The
� � denote averaging over the response time of the medium
t, which is much larger than tcoh. From the paraxial wave
equation we get [17]
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where z is the propagation direction, k is the carrier wave
number, n0 is the bias refractive index, dn is the nonlin-
ear contribution to the refractive index, x � �x1 1 x2��2,
y � � y1 1 y2��2 are the middle point coordinates, and
rx � x1 2 x2, ry � y1 2 y2 are the difference coordi-
nates. When rx � ry � 0, B�x, y, rx , ry , z� is the time-
averaged intensity I�x, y, z�. Let BS�x, y, rx , ry� � u�x 1

rx�2� u��x 2 rx�2�An�ry� be a z-independent solution
of Eq. (1). It represents a 1D soliton stripe, which is
self-trapped and fully coherent in x, while being uni-
form and incoherent along y with an angular spectrum of
An�ry�. u�x� is determined by the nonlinearity and can be
taken to be real without loss of generality. To study TI,
we add a small perturbation B1 to BS where B1 ø BS .
The nonlinear index change in Kerr media is dn�I� � gI ,
where g is the nonlinear coefficient �n2�. Linearizing
Eq. (1) yields
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We seek solutions in the form B1�x, y, rx , ry , z� � exp�gz� exp�iay�L�x, rx�Af�ry� 1 exp�g�z� exp�2iay� 3
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f�2ry�, where a is the transverse wave number, g is the TI growth rate (gain), and Af�ry� is the angular
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We are interested in determining the threshold condi-
tion: to find the conditions under which the growth rate
g�a� goes from a positive value to a negative value for all
a. The procedure of determining the threshold applies to
any form of spatial coherence (angular power spectrum),
but for simplicity, we consider an initial Gaussian angu-
lar power spectrum An�ry� � exp�2�ryu0k�2�2�, where
u0 defines the degree of coherence (correlation distance).
The higher u0 the more incoherent the soliton is. For a
fully coherent soliton, if we were to calculate the growth
rate g as a function of transverse wave number a, then g
starts from 0 (at a � 0), increases and reaches a maxi-
mum positive value (at the wave number with the largest
growth rate), and then drops back to 0 at a associated with
the “cutoff wavelength” [2–4]. This means that for a co-
herent soliton, the growth rate is positive (and TI exists)
for a band of wave numbers a between zero and the cutoff
wave number. For a soliton that is partially coherent in y,
we expect that for u0 small enough (a beam that is coherent
enough), g�a� will be positive in a band of wave numbers,
just as the coherent case. But, as u0 increases, this band
becomes narrower until it completely disappears at some
value u0T . If u0 is larger than this value, then TI is elimi-
nated. We therefore expect that, at the threshold u0 � u0T ,
the two boundary points at which g�a� � 0 (one at a � 0
and the other at the cutoff wave number) coincide. Thus,
we seek the value of u0 at which (i) g�a � 0� � 0 and
(ii) g0�a � 0� � 0. We solve Eq. (3) by expansion while
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retaining up to O�a�. This eliminates the first term on the
left-hand side (LHS) because g � O�a2�. The growth rate
of the transverse instabilities, g, is independent of x [2–4]
even though the actual shape of the perturbations depends
on x. We can therefore seek solutions of Eq. (3) under the
conditions (i) and (ii) at the center of the soliton, i.e., at
x � rx � 0, and assume that the threshold we find is the
same everywhere on the soliton. It can be easily shown
(by expanding into derivatives with respect to x1 and x2)
that the second term of the LHS is zero for x1 � x2, i.e.,
for rx � 0. Thus, from Eq. (3) we get
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where I0 � u�0�2 is the peak intensity of the soliton. It is
unlikely that a small perturbation will alter the coherence
statistics of the soliton (especially here that propagation
effects, given by g, are of the order of a2 and are ignored).
Thus, we assume that Af �ry� � An�ry�. Equation (4)
gives the threshold condition u

2
0T � 2Dn0�n0, where

Dn0 � gI0 is the maximum change in the refractive in-
dex. One can actually calculate, using numerical methods
similar to [10], the function g�a� and from it obtain the
threshold for any angular distribution function [24].

To verify the analytic predictions, we perform simula-
tions using the coherent density approach [12]. We launch
a 1D Kerr soliton with a Gaussian angular power spec-
trum, A� ry� � exp�2�ryu0k�2�2�, for various values of
u0. In this example, n0 � 2.3, l � 0.5 mm in vacuum,
FWHM � 9 mm, which yields a Dn0 � 0.000 105 6 and
an analytic prediction of the threshold of u0T � 0.55±. Our
results are displayed in Fig. 1, where we show images of
the intensity distribution of the soliton and cross sections
of the intensity along y for x � 0. Figure 1(a) shows the
input soliton at z � 0, and Fig. 1(b) shows a fully coherent
soliton �u0 � 0±� after 0.8 cm of propagation. As clearly
depicted there, TI breaks the soliton up into a train of 2D
filaments. As we approach the threshold, the TI gain is
getting smaller: As we set u0 to 0.5±, it takes a 4.5 cm
propagation to exhibit signs of TI [Fig. 1(c)]. To show that
TI is completely eliminated when the nonlinearity is below
threshold, we increase u0 to 0.56±. As shown in Fig. 1(d),
after 4.5 cm of propagation there are absolutely no signs
of TI.

Our experiments are conducted in a photorefractive
SBN:75 crystal in a setup similar to that of [12]. The beam
is made spatially incoherent by passing it through a rotat-
ing diffuser. The rotating diffuser provides a new phase
and amplitude distribution every tcoh 
 1 ms, which
is much shorter than the response time of the medium
t 
 1 s. Unlike all previous experiments with incoherent
solitons, here we need to generate a beam which is very
narrow and fully coherent in x, yet uniform and partially
incoherent y. To do that, we use a cylindrical lens which
focuses the beam only in the y direction onto the rotating
4890
FIG. 1. Simulations of a 1D Kerr soliton with a Gaussian spec-
trum, for various degrees of coherence. The predicted thresh-
old is u0 � 0.549±. (a) Input intensity. (b) Output beam after
0.8 cm of propagation for a fully coherent beam u0 � 0±; the
soliton is destroyed by TI. (c) Output beam close to the threshold
(for u0 � 0.5±), after 4.5 cm of propagation: As the threshold
is approached, TI gain is reduced and it takes a longer propa-
gation before TI is evident. (d) Output beam for u0 � 0.56±,
which is below the threshold, after 4.5 cm of propagation. TI is
completely eliminated.

diffuser. Then, by moving the focal point of this lens closer
(farther away) from the diffuser, we increase (decrease)
the coherence in y. The x coherence is not affected by
the translation of this lens. After the diffuser, the beam
is collimated (to 
2 cm) and passed through a narrow
(along x) slit. The slit is made narrower than the speckle
size in x, and it effectively creates a 1D beam that is
narrow and coherent in x and “infinitely” long (uniform)
and incoherent in y. The slit is then imaged to the input
face of the crystal. We get a reasonable estimate of the
correlation distance by stopping the diffuser and measur-
ing the average speckle size at the crystal input plane.
Finally, we use an orthogonally polarized background
beam that covers the crystal uniformly as necessary for
photorefractive screening solitons [8]. The input and
output faces of the crystal are imaged onto a CCD camera.

The photorefractive nonlinearity is in general saturable
but resembles the Kerr nonlinearity when the peak inten-
sity of the soliton normalized to the background intensity
is much smaller than unity [8,25]. In our case, this ratio
is 
0.1. At this normalized intensity, a soliton that is
fully coherent in both x and y exhibits strong transverse
instability [8]. We then gradually increase the incoherence
in y (decrease the speckle size) until the soliton becomes
transversely stable, while keeping all other parameters
(applied field, intensity) constant. Our results are shown in
Fig. 2. The 12 mm FWHM input beam [Fig. 2(a)] linearly
diffracts to a 60 mm output after 6 mm propagation in the
crystal [Fig. 2(b)]. The nonlinearity is turned on with the
application of 2.7 kV�cm and the beam self-traps forming
a soliton in x. When the beam is fully coherent, the soliton
suffers from TI and breaks up into filaments [Fig. 2(c)].
When the beam is made incoherent in y, but with a large
speckle size �
100 mm�, the nonlinearity is still above
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FIG. 2. Experiments in photorefractive SBN:75 in the Kerr
regime (intensity ratio 
0.1). (a) Input 12 mm FWHM beam.
(b) Output beam after 6 mm of linear diffraction when nonlin-
earity is off. (c), (d), and (e) show the output beams with an ap-
plied field of 2.7 kV�cm, for various degrees of coherence along
y and all other parameters kept constant. (c) A fully coherent
soliton breaks up into filaments because of TI. (d) The soliton is
made incoherent along y but with large speckle sizes 
100 mm
(small u0) and still displays a strong TI. (e) The speckle sizes
are reduced to 
5 mm: TI is completely eliminated.

TI threshold and the beam suffers from TI [Fig. 2(d)].
Finally, by decreasing the speckle sizes to 
5 mm,
TI is eliminated and we get a stable �1 1 1�D soliton
[Fig. 2(e)]. Thus, we have shown that a stable �1 1 1�D
soliton can propagate in a 3D bulk medium if it is made
partially incoherent in the “uniform” transverse dimen-
sion. For the soliton to be stable, the degree of coherence
in the “dimension of uniformity” must be such that the
nonlinearity is below threshold for transverse instability.

In conclusion, we have derived the threshold for TI of
�1 1 1�D solitons that are fully coherent in their direction
of trapping yet are partially incoherent in their direction
of uniformity. We predicted that if the nonlinearity is be-
low a well-defined threshold, then transverse instability of
such 1D solitons is completely eliminated. We proved our
results analytically, numerically, and experimentally, and
showed that it is possible to generate stable 1D Kerr-like
solitons in a 3D bulk material. This is the only method
we know of for propagating truly stable 1D solitons in a
bulk material. Our method applies to all types of saturable
nonlinearities and could be used to eliminate TI in them as
well. We believe that this work opens up a range of possi-
bilities of eliminating transverse instabilities in many soli-
ton systems, for example, instabilities of 1D dark solitons
in bulk media, instabilities of ring beams (with and with-
out topological charge) in self-focusing media, and more.
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