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Motivated by recent experimental observations of anomalous diffraction in linear waveguide array, we
propose a novel model governing the propagation of an optical beam in a diffraction managed nonlinear
waveguide array. This model supports discrete spatial solitons whose beamwidth and peak amplitude
evolve periodically. A nonlocal integral equation governing the slow evolution of the soliton amplitude
is derived and its stationary soliton solutions are obtained.
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Discrete spatial solitons in nonlinear media have at-
tracted considerable attention in the scientific community
for many years [1]. They have been demonstrated to exist
in a wide range of physical systems such as atomic chains
[2,3], molecular crystals [4], biophysical systems [5], elec-
trical lattices [6], and recently in arrays of coupled nonlin-
ear optical waveguides [7,8]. Such discrete excitations can
form when discrete diffraction is balanced by nonlinearity.
In an optical waveguide array this can be achieved by using
an intense laser beam which locally changes the nonlinear
refractive index of the waveguides via the Kerr effect and
in turn decouples them from the remaining waveguides.

After almost a decade since their first theoretical pre-
diction [9], discrete solitons in an optical waveguide array
were experimentally observed [7]. When a low intensity
beam is injected into one waveguide, the propagating field
spreads over the adjacent waveguides, hence, experiencing
discrete diffraction. However, at sufficiently high power,
the beam self-trap (to form a localized state) in the center
waveguides. Soon thereafter, many fascinating properties
of discrete solitons were reported: for example, the ex-
perimental observation of linear and nonlinear Bloch os-
cillations in AlGaAs waveguides [10]; temperature tuned
polymer waveguides [11], and in an array of curved op-
tical waveguides [12]. Moreover, the dynamical behavior
of discrete solitons was also experimentally realized [8].
Discrete solitons have unique properties that are absent in
their bulk counterparts [13]. The most noticeable one is
the possibility of designing the diffraction properties of a
linear waveguide array to produce anomalous diffraction
[14]. As a result, self-focusing and defocusing processes
can be achieved in the same medium (structure) and wave-
length that leads to the possibility of observing dark soli-
tons in self-focusing Kerr media [15].

In this Letter, inspired by the recent experimental ob-
servations of anomalous diffraction in a linear waveguide
array, we propose a novel model governing the propaga-
tion of an optical beam in a diffraction managed nonlin-
ear waveguide array. Using a cascade of tilted segments
of an array of waveguides with positive average diffrac-
tion, we develop a nonlinear discrete model that describes
the evolution of an optical field in self-focusing nonlinear
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Kerr media in the presence of both normal and anomalous
diffraction. Importantly, even though optical diffraction
and chromatic dispersion originate from different physics
(the former being geometric and the latter being media de-
pendent), nevertheless, discrete diffraction spatial solitons
and dispersion managed solitons share many properties
which highlight the universality and diversity of solitons.
A nonlocal integral equation governing the slow evolution
of the beam amplitude is derived, and its stationary soli-
ton solutions are obtained. Such averaged beams lose peak
power during propagation, hence, since the overall power
is preserved, they become wider; at the end point of the
diffraction map, a full recovery of the initial beam peak
power occurs. The competition between varying diffrac-
tion and self-focusing nonlinearity offers many new excit-
ing physical possibilities.

We begin our analysis by considering an infinite array of
weakly coupled optical waveguides with equal separation
d. The equation which governs the evolution of the elec-
tric field En, according to nonlinear coupled mode theory
[7,9,16], is given by

≠En

≠z
� iC�En11 1 En21� 1 ikwEn 1 ikjEnj

2En , (1)

where C is the coupling constant between adjacent wave-
guides which is given by an overlap integral of the two
modes of such waveguides; k is a constant describing the
nonlinear index change, z is the propagation distance, and
kw is the propagation constant of the waveguides. To fa-
cilitate understanding, we first recall basic properties of
discrete diffraction of a linear array. When a cw mode of
the form En�z� � A exp�i�kzz 2 nkxd�� is inserted into
the linearized version of Eq. (1) it yields

kz � kw 1 2C cos�kxd� . (2)

In close analogy to the definition of dispersion, discrete
diffraction is given by k00

z � 22Cd2 cos�kxd�. As first
pointed out in [14], an important feature of the last
relation is that k00

z can change sign depending on kx .
Indeed, the diffraction becomes positive in the range
p�2 , jkxdj # p; hence, a light beam can experience
anomalous diffraction. In practice, the sign and value of
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the diffraction can be controlled and manipulated by
launching light at a particular angle or equivalently by
tilting the waveguide array. This in turn allows the
possibility of achieving a “self-defocusing” (with positive
Kerr coefficient) regime which leads to the formation
of discrete dark solitons [15]. Similar to [14], we use
a cascade of different segments of waveguide, each
piece being tilted by an angle zero, and g, respectively.
The actual physical angle g (the waveguide tilt angle)
is related to the wave number kx by the relation [14]
sing � kx�k, where k � 2pn0�l0 (l0 � 1.53 mm
is the central wavelength in vacuum and n0 � 3.3 is the
linear refractive index). In this way, we generate a wave-
guide array with alternating diffraction. To model such a
system, we define En �

p
P� fnei�kw12C�z and z 0 � z�z�,

with P� and z� being the characteristic power and nonlin-
ear length scale, respectively. Substituting these quantities
into Eq. (1) yields the following (dropping the prime)
diffraction-managed discrete nonlinear Schrödinger
(DM-DNLS) equation:

dfn

dz
� i

D�z�zw �
2h2 �fn11 1 fn21 2 2fn� 1 ijfnj

2fn ,

(3)

with z� � 1��kP�� and z�C cos�kxd� � D�z�zw���2h2�,
where D�z�zw � is a piecewise constant periodic func-
tion that measures the local value of diffraction. Here,
zw � 2L�z�, with L being the actual length of each
waveguide segment [see Fig. 1(a) for schematic represen-
tation]. Equation (3) describes the dynamical evolution of
a laser beam in a Kerr medium with varying diffraction.
When the “effective” nonlinearity balances the average
diffraction, then bright discrete solitons can form.

The coupling constants that correspond to the experi-
mental data reported in [14] (for 2.5 mm waveguide sepa-
ration and width) are found to be C � 2.27 mm21 [17],
k � 3.6 m21 W21. For typical power P� � 300 W and
waveguide length L � 100 mm, we find z� � 1 mm and
zw � 0.2. Hence, it is natural to construct an asymptotic
theory based on small zw . It is in this parameter regime
that diffraction managed spatial solitons can be experimen-
tally observed. To this end, we consider the case in which
the diffraction takes the form

D�z�zw� � da 1
1
zw

D�z�zw� , (4)

where da is the average diffraction (taken to be positive)
and D�z�zw� is a periodic function. Since in this case
Eq. (3) contains both slowly and rapidly varying terms,
we introduce new fast and slow scales as z � z�zw and
Z � z, respectively, and expand fn in powers of zw:

fn � f�0�
n �z , Z� 1 zwf�1�

n �z , Z� 1 O�z2
w� . (5)

Substituting Eqs. (5) and (4) into Eq. (3), we find that
the leading order in 1�zw and the order 1 equations are,
respectively, given by
254102-2
2L

(a)

∆ 2

∆(ζ)

θ 2 1−θ 2

ζ

∆1

(b)

FIG. 1. Schematic presentation of the waveguide array (a) and
of the diffraction map (b).

J �f�0�
n � � 0, J �f�1�

n � � 2Fn , (6)

where

J �An� � i
≠An

≠z
1

D�z �
2h2

�An11 1 An21 2 2An� ,

Fn � i
≠f�0�

n

≠Z
1

da

2h2 �f�0�
n11 1 f

�0�
n21 2 2f�0�

n �

1 jf�0�
n j2f�0�

n .

To solve at order 1�zw [see Eq. (6)], we introduce the
discrete Fourier transform,

f̂0�q, z , Z� �
1X̀

n�2`

f�0�
n �z ,Z�e2iqnh ,

f�0�
n �z , Z� �

h
2p

Z p�h

2p�h
f̂0�q,z , Z�eiqnh dq .

(7)

The solution is therefore given in the Fourier representation
by

f̂0�q, z , Z� � ĉ�Z, q� exp�2iV�q�C�z �� , (8)

with V�q� � �1 2 cos�qh���h2 and C�z � �
Rz

0 D�z 0� dz 0.
The amplitude ĉ�Z, q� is an arbitrary function whose

dynamical evolution will be determined by a secularity
condition associated with Eq. (6). In other words, the
condition of the orthogonality of Fn to all eigenfunctions
Fn of the adjoint linear problem which, when written in
the Fourier domain, takes the formZ 1

0
dz F̂ �q, z , Z�F̂�q, z , Z� � 0 , (9)

where F̂ , F̂ are the Fourier transform of Fn, Fn, respec-
tively. Here, Ĵ yF̂ � 0 with Ĵ y being the adjoint operator
to Ĵ � id�dz 2 D�z �V�q�. Substituting (8) into F̂ and
performing the integration in condition (9) yields the fol-
lowing nonlinear evolution equation for ĉ�Z, q�:

i
dĉ�Z, q�

dZ
� daV�q�ĉ�Z, q� 2 R�ĉ�Z, q�� ,

R �
Z

dqK�q, q1, q2�ĉ�q1�ĉ�q2� (10)

3 ĉ��q1 1 q2 2 q� ,

where dq � dq1dq2 and the kernel K is defined by
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K�q, q1, q2� �
h2

4p2

Z 1

0
dz exp�iC�z�x�q, q1,q2�� ,

x �
4
h2 cos

µ
h�q1 1 q2�

2

∂ 2Y
j�1

sin

µ
h�qj 2 q�

2

∂
.

Equation (10) governs the evolution in Fourier space of
an optical beam in a coupled nonlinear waveguide array
in the regime of strong diffraction. In the special case of
the two-step diffraction map shown in Fig. 1(b), i.e., when
two waveguide segments are tilted by angle zero and g

alternatively, we have D�z � � D1 for 0 # jz j , u�2 and
D2 in the region u�2 , jz j , 1�2, where u is the fraction
of the map with diffraction D1. In this case, the kernel K
takes the simple form K � h2 sin�sx���4p2sx� with s �
�uD1 2 �1 2 u�D2��4. Importantly, these parameters can
be related to the experiments reported in [14]. To achieve
a waveguide configuration with alternate diffraction, we
use two values of kxd � 0 and 2p�3 �h � 1� which cor-
responds to waveguide tilt angles g � 0 and 3.43±. In
this case we find, for u � 0.5, D1 � 2D2 � 0.681, da �
1.135, and s � 0.17. Different sets of parameters with a
smaller angle g are also realizable. Next, we look for a
stationary solution for Eq. (10) (for the particular kernel
given above) in the form ĉ�Z, q� � ĉs�q� exp�ivsZ�. In-
serting this ansatz into (10) leads to

ĉs�q� �
1

daV�q� 1 vs
R�ĉs�q�� � M�ĉs�q�� , (11)

which implies that the mode ĉs�q� is a fixed point of the
nonlinear functional M . To numerically find the fixed
point, we employ a modified Neumann iteration scheme
[18–20] and write Eq. (11) in the form

ĉ �m11�
s �q� �

√
a�ĉ�m�

s �
b�ĉ�m�

s �

!3�2

M �ĉ�m�
s �q��, m $ 0 ,

a �
Z

jĉ�m�
s �q�j2 dq ;

b �
Z

ĉ�m�
s �q�M �ĉ�m�

s �q�� dq .

The factors a and b are introduced to stabilize an
otherwise divergent Neumann iteration scheme. This
method is used to find stationary soliton solutions to
the integral equation (10) which in turn provides an
asymptotic description of the diffraction-managed DNLS
Eq. (3). It should be also noted that we can obtain periodic
diffraction-compensated soliton solutions directly from
Eq. (3). The technique is similar to that originally pro-
posed for finding periodic dispersion-managed solitons in
communications problems [21,22]. The averaging proce-
dure does not require that the map period, zw , be small. To
implement the method, initially we start with a guess, for
instance f�0�

n � sech�nh� with E0 �
P`

n�2` sech2�nh�.
Over one period, this initial ansatz will evolve to f�0�0

n
which in general will have a chirp [23]. We then de-
fine an average: f�0�00

n � �f�0�
n 1 f�0�0

n e2iQn ��2, where
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FIG. 2. Mode profile in physical space obtained from Eq. (11)
(solid line) and from the average method (dashed line). Parame-
ters are as follows: (a) vs � 1, h � 1, s � 0.17, D1 � 2D2 �
0.681, da � 1.135, and zw � 0.2; (b) vs � 1, h � 0.5, s � 1,
D1 � 2D2 � 4, da � 1, and zw � 0.2.

f�0�0
n � jf�0�0

n j exp�iQn� which has power E
00
0 . Then

f�1�
n � f�0�00

n

q
E0�E 00

0 is the new guess and, in general,
the mth iteration takes the form

f�m11�
n �

q
E0�E 00

m f�m�00
n , E 00

m �
X̀

n�2`

jf�m�00
n j2.

(12)

In Fig. 2 the mode profiles associated with a stationary so-
lution are depicted for two typical parameter values. The
profiles are obtained by using both the integral equation ap-
proach as well as the averaged method. The evolution of
these discrete diffraction managed solitons are illustrated
in Figs. 3 and 4 for the same two sets of parameter values
as in Fig. 2, respectively. We note that initially the beam
has zero chirp [23]. During propagation, a chirp develops
and the peak amplitude of the beam begins to decrease and,
as a result, the beam becomes wider (due to conservation
of power). A full recovery of the soliton’s initial ampli-
tude and width is achieved at the end of the map period.
This breathing behavior is shown in Figs. 3 and 4 for both
strongly and moderately confined beams, respectively.

To establish the relation between the two approaches and
to highlight the periodic nature of these new solitons, we
calculate the nonlinear chirp by both the integral equation
approach and the averaging method. It is clear that for
small values of the map period, zw, the asymptotic analy-
sis is in good agreement with the averaging method, as
shown in Fig. 5. We also mention briefly that the method
of analysis associated with Eq. (3) can be modified to ac-
count for situations where the average diffraction is small,

FIG. 3. Beam propagation over one period using Eq. (8) as
the initial condition obtained by a direct numerical simulation
of Eq. (3). Parameters are the same as used in Fig. 2(a).
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FIG. 4. Beam propagation over one period (a) and station-
ary evolution (b) obtained by a direct numerical simulation of
Eq. (3) evaluated at end map period. Parameters are the same
as used in Fig. 2(b).

i.e., da ø 1. In such a situation we write da � eDa,
D � eDa 1 D�z�, z � j�e, and fn �

p
e Cn. Then it

is found that Cn satisfies

dCn

dj
� i

D �j�e�
2h2

�Cn11 1 Cn21 2 2Cn�

1 ijCnj
2Cn , (13)

where D �j�e� � Da 1
1
e D�j�e�. The model (13) is

valid in parameter regimes which applies to a physical situ-
ation where the average diffraction is small.

In conclusion, we have developed a new discrete equa-
tion governing the evolution of an optical beam in a wave-
guide array with varying diffraction. This equation has
a novel type of discrete spatial soliton solution which
breathes under propagation and, as a result, gains a non-
linear chirp. A full recovery of the soliton initial power is
achieved at the end of each diffraction map. This opens
the possibility of fabricating a customized waveguide ar-
ray which admits specialized diffraction-managed spatially
confined solitary waves. A nonlocal integral equation gov-
erning the slow evolution of the soliton amplitude is de-
rived and its stationary solutions are obtained.
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FIG. 5. Periodic evolution of the beam chirp versus maximum
peak power. Solid line represents the leading order approxi-
mation, i.e., Eq. (8); dashed line represents numerical solution
of the DM-DNLS, and dotted line depicts the evolution of the
leading order solution under Eq. (3). Parameters are the same
as used in Fig. 2(b) with zw � 0.2 (a) and 0.1 (b).
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