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We investigate the effect of nonlinearity on beam dynamics in parity-time (PT ) symmetric potentials.
We show that a novel class of one- and two-dimensional nonlinear self-trapped modes can exist in optical
PT synthetic lattices. These solitons are shown to be stable over a wide range of potential parameters.
The transverse power flow within these complex solitons is also examined.
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Quantum mechanics demands that every physical ob-
servable is associated with a real spectrum and thus must
be Hermitian. In the case of the Hamiltonian operator, this
physical axiom not only implies real eigenenergies but also
guarantees conservation of probability [1]. Yet in recent
years, a series of studies by Bender and co-orkers has
demonstrated that even non-Hermitian Hamiltonians can
exhibit entirely real spectra provided they respect parity-
time (PT ) symmetry [2]. By definition, a Hamiltonian
belongs to this latter class as long as it shares a common set
of eigenfunctions with the P̂ T̂ operator. In general the
action of the parity operator P̂ is defined by the relations
p̂! �p̂, x̂! �x̂ (p̂, x̂ stand for momentum and position
operators, respectively) whereas that of the time operator T̂
by p̂! �p̂, x̂! x̂, i! �i. Given the fact that the action
of T̂ leads to a time reversal, i.e.,T̂ Ĥ � p̂2=2� V��x�, one
finds that P̂ T̂ Ĥ � Ĥ P̂ T̂ � p̂2=2� V���x� � Ĥ. From
here we conclude that a Hamiltonian is PT symmetric
when the following condition is satisfied V�x� � V���x�.
Therefore the real part of a PT complex potential must be
an even function of position whereas the imaginary com-
ponent should be odd. Among the most intriguing charac-
teristics of such a pseudo-Hermitian Hamiltonian, is the
existence of a critical threshold above which the system
undergoes a sudden phase transition because of spontane-
ous PT symmetry breaking. In this regime the spectrum is
no longer real but instead it becomes complex. The rele-
vance of these recent mathematical developments in quan-
tum field theories and other areas of physics, has also been
addressed in a number of studies [2–7].

Optics can provide a fertile ground where PT related
concepts can be realized and experimentally tested. In fact,
this can be achieved through a judicious inclusion of gain
or loss regions in guided wave geometries [8]. Given that
the complex refractive index distribution in a structure is
n�x� � n0�x� � nR�x� � inI�x�, one can deduce that n�x�
plays the role of the optical potential (where x represents
the normalized transverse coordinate). The parity-time
condition implies that the index waveguiding profile

nR�x� should be even in the transverse direction while the
loss or gain term nI�x� must be odd. In fact, gain or loss
levels of approximately �40 cm�1 at wavelengths of
�1 �m, that are typically encountered in standard quan-
tum well semiconductor lasers or semiconductor optical
amplifiers [8], will be sufficient to observe PT behavior.
The imaginary part of the PT potential in such SOA
arrangements can alternate between gain and loss in a
diatomic waveguide lattice configuration depending on
whether the input current is used above or below lasing
threshold. Of interest will be to synthesize periodic sys-
tems [9] that can exhibit novel features stemming from
parity-time symmetry. Even more importantly, the involve-
ment of optical nonlinearities (quadratic, cubic, photore-
fractive nonlinearities, etc.[10]), may allow the study of
such configurations under nonlinear conditions.

In this Letter we show that PT symmetric nonlinear lat-
tices can support soliton solutions. These self-trapped
states can be stable over a wide range of parameters in spite
of the fact that gain or loss regions are present in this sys-
tem. We first consider the propagation dynamics of non-
linear beams in a single PT waveguide cell and then we
examine their behavior in a PT symmetric optical lattice.
Both 1D and 2D soliton solutions are presented along with
their associated transverse power-flow density. Our analy-
sis sheds light for the first time on the interplay between
nonlinearity and parity-time symmetry. Interestingly
enough, even in the presence of relatively strong gain or
loss effects, stationary self-trapped states (single cell and
lattice) can exist with real propagation eigenvalues. This is
a direct outcome of the PT symmetric nature of the
potentials involved. It is important to stress that our results
are fundamentally different from those previously obtained
within the context of complex Ginzburg-Landau (GL)
systems [11].

We begin our analysis by considering optical wave
propagation in a self-focusing Kerr nonlinear PT sym-
metric potential. In this case, the beam evolution is gov-
erned by the following normalized nonlinear Schrödinger-
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like equation,

 i
@ 
@z
�
@2 

@x2 � 	V�x� � iW�x�
 � j j
2 � 0; (1)

where  is proportional to the electric field envelope and z
is a scaled propagation distance. Based on the previous
discussion, the real and the imaginary components of the
PT symmetric potential satisfy the following relations
V��x� � V�x�, W��x� � �W�x�, respectively. Physi-
cally, V�x� is associated with index guiding while W�x�
represents the gain or loss distribution of the optical po-
tential. Note that in the linear regime, Eq. (1) conserves the
‘‘quasipower’’ Q�z� �

R
�1
�1  �x; z� 

���x; z�dx as op-
posed to the actual electromagnetic power, P�z� �R
�1
�1 j �x; z�j

2dx [12]. In the nonlinear domain how-
ever, these quantities evolve according to i dQdz �R
�1
�1  �x; z� 

���x; z�	j �x; z�j2 � j ��x; z�j2
dx � 0 and
dP
dz � 2

R
�1
�1W�x�j �x; z�j

2dx � 0.
Stationary soliton solutions to Eq. (1) are sought in the

form  �x; z� � ��x� exp�i�z� where ��x� is the nonlinear
eigenmode and � is the corresponding real propagation
constant. In this case � satisfies

 

d2�

dx2
� 	V�x� � i W�x�
 � � j�j2� � ��: (2)

In order to determine the linear stability properties of such
self-trapped localized modes, we consider small perturba-
tions on the solutions of Eq. (1) of the form [13],

  �x; z� � ��x�ei�z � "	F�x�ei�z �G��x�e�i�
�z
ei�z; (3)

where "� 1. Here, F and G are the perturbation eigen-
functions and � indicates the growth rate of the perturba-
tion. By linearizing Eq. (1) around the localized solution
��x�we obtain the following linear eigenvalue problem for
the perturbation modes

 

L̂ �2

���2 �L̂�

 !
F
G

� �
� �

F
G

� �
; (4)

where L̂ � d2

dx2 � V�x� � iW�x� � 2j�j2 � �. Evidently,
the PT nonlinear modes are linearly unstable if � has
an imaginary component, while they are stable if � is real.

Before we consider light self-trapping in complex latti-
ces, it is important to first understand nonlinear optical
beam dynamics in a single PT complex potential. For
illustration purposes, we assume a Scarff II potential, e.g.,

 V�x��V0 sech2�x�; W�x��W0 sech�x� tanh�x�; (5)

with V0 and W0 being the amplitudes of the real and
imaginary part. Notice that the corresponding linear prob-
lem associated with the potential of Eq. (5) exhibits an
entirely real spectrum provided that, W0 � V0 � 1=4 [14].
Thus for a fixed value of V0, there exists a threshold for the
imaginary amplitude W0. Above this so-called PT thresh-
old, a phase transition occurs and the spectrum enters the
complex domain. Interestingly enough, even if the Scarff

potential of Eq. (5) has crossed the phase transition point
(its spectrum is complex), nonlinear states can still be
found with real eigenvalues. In other words, the beam itself
can alter the amplitude of the refractive index distribution
through the optical nonlinearity. Thus for a given W0, this
new effective potential nonlinearly shifts the PT V0

threshold and in turn allows nonlinear eigenmodes with
real eigenvalues to exist. In contrast, at lower power levels
the parity-time symmetry cannot be nonlinearly restored
and hence remains broken. A nonlinear mode of this
potential corresponding to � � 0:98, when V0 � 1, W0 �
0:5 is shown in Fig. 1. Equation (2) admits an exact so-
lution of the form � � �0 sech�x� expfi�tan�1	sinh�x�
g,

where � � W0=3, � � 1 and �0 �
������������������������������������
2� V0 � �W

2
0=9�

q
.

We next examine the stability of these nonlinear modes
by numerically solving the corresponding perturbation
eigenvalue problem of Eq. (4). To support the linear stabil-
ity results we have checked the robustness of each non-
linear state using beam propagation methods and by adding
random noise on both amplitude and phase. The results of
this simulation, shown in Fig. 1 for V0 � 1, W0 � 0:5,
indicate that the beam is nonlinearly stable. To shed
more light on the properties of these nonlinear solutions,
we examine the quantity S � �i=2��� ��x ��

� �x� asso-
ciated with the transverse power-flow density or Poynting
vector across the beam. This energy flow arises from the
nontrivial phase structure of these nonlinear modes. For the
analytical solution mentioned above we find that S �
�W0�2

0=3� sech3�x�. Obviously, S is everywhere positive
in this PT cell, thus implying that the power always flows
in one direction, i.e., from the gain toward the loss region.

We next investigate optical solitons and their dynamics
in nonlinear periodic PT potentials. Since the general
idea holds for any such complex potential, we here con-
sider for simplicity the case

 V�x� � cos2�x�; W�x� � W0 sin�2x�: (6)

FIG. 1 (color online). Intensity evolution of a nonlinear mode
in a PT Scarff II potential, when � � 0:98. The inset depicts
the real (solid blue curve) and imaginary (dotted red curve)
component of such an eigenmode.
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The linear properties of such a periodic potential can be
understood by examining the corresponding linear problem
of Eq. (2), i.e., d2�

dx2 � 	V�x� � iW�x�
� � ��, where �
now represents the propagation constant in the periodic
structure. Since the potentials V�x�, W�x� of Eq. (6) are
�-periodic, the Floquet-Bloch theorem dictates that the
eigenfunctions are of the form � � �k�x� exp�ikx�, where
�k�x� �� � �k�x� and k stands for the real Bloch mo-
mentum. We note that in general the band structure of a
complex lattice can be complex. Yet, for periodic PT
symmetric potentials, the band diagram can be entirely
real as long as the system is operated below the phase
transition point (unbroken PT symmetry). For the par-
ticular potential of Eq. (6), we find that purely real bands
are possible in the range 0 � W0 < 1=2. In Fig. 2 we show
the associated band structure for various values of the
potential parameter W0 (below and above the phase tran-
sition point W0 � 1=2). We notice that as W0 is increased
the band gap becomes narrower and closes completely
when crossing the critical transition value W0 � 1=2.
Pseudo-Hermitian periodic potentials having zero PT
threshold were also discussed [15].

Having found the band-gap structure, we next obtain
soliton solutions to Eq. (2) when the complex potential is
given by Eq. (6). For W0 < 1=2, we numerically construct
a family of localized solutions with real eigenvalues lo-
cated within the semi-infinite ‘‘energy’’ gap. A typical field
profile of such a soliton is shown in Fig. 3(a). We next
address the stability of these solutions given that these
complex structures involve strong loss and gain. In general
we found that the instability growth rate tends to increase
withW0. In addition, narrower self-trapped waves are more
stable since the nonlinearity tends to further enhance the
index guiding, thus perturbing the local PT phase tran-
sition point. To further examine the robustness of these
PT lattice self-trapped modes, beam propagation meth-
ods were used. Under linear conditions symmetric diffrac-
tion occurs in this periodic complex system. On the other
hand, as the power is increased the beam becomes confined

and propagates undistorted, thus forming a lattice soliton-
in spite of any symmetry breaking perturbations.
Figure 3(b), shows the propagation dynamics of such a
soliton (for V0 � 1, W0 � 0:45, � � 1:57) as a function of
the propagation distance. The transverse power flow is also
plotted in Fig. 3(c). Unlike the single-cell case considered
before, the power flow in this case is more involved. As
indicated in Fig. 3(c), the direction of the flow from gain to
loss regions varies across the lattice. More specifically, it is
positive (from left to right) in the waveguides and becomes
negative (from right to left) in the space between channels.
This should be physically anticipated since power transport
occurs always from gain to loss domains. We would like to
emphasize that the distribution of the power-flow density in
these self-trapped PT states differs from that encountered
in Ginzburg-Landau dissipative solitons [11]. More spe-
cifically, in GL systems the power flow is an antisymmetric
function of position whereas in PT lattices is even, as
clearly indicated in Fig. 3(c).

Notice that it is also possible to find stationary self-
trapped modes with real propagation eigenvalues even
above the symmetry breaking point W0 � 1=2, as shown
in the inset of Fig. 4. This is due to the fact that part of the
band structure still remains real even above the PT
threshold [Fig. 2]. This family of solitons exists provided
that the Fourier spectrum of these solutions (in Bloch-
momentum space) is primarily contained within the region
where the band is real (� real) located around the k � 0
point. Stability analysis however reveals that this latter
class of lattice solitons is in fact unstable. This instability
is corroborated by numerical simulations, as shown in
Fig. 4.

Finally, we discuss the formation of PT lattice solitons
in two-dimensional periodic geometries. In this case,
Eq. (1) becomes i @ @z �r

2 � 	V � iW
 � j j2 � 0,

FIG. 2 (color online). (a) Bandstructure for the PT potential
V�x� � cos2�x� � iW0 sin�2x�, when W0 � 0:45 (dotted line),
and W0 � 0:6 (solid line).

FIG. 3 (color online). (a) PT lattice (W0 � 0:45) soliton field
profile (real part: blue line, imaginary part: red line) for � � 0:7.
(b) Stable propagation of a PT lattice soliton with eigenvalue
� � 1:57. (c) Transverse power flow (solid line) of the soliton in
(a) across the lattice. The dotted line represents the real part of
the potential in both (a) and (c).
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where again the potentials V and W obey the PT sym-
metry requirement, V��x;�y��V�x;y� andW��x;�y��
�W�x;y�. In Fig. 5(a) the band structure corresponding to
the periodic potentials V�x; y� � cos2�x� � cos2�y� and
W�x; y� � W0	sin�2x� � sin�2y�
 is depicted for W0 �
0:3. It is instructive to observe that the symmetry breaking
level for this two-dimensional potential is identical to the
one-dimensional case (W0 � 0:5). Above this phase tran-
sition point the first two bands merge together forming an
oval, a double-valued surface (upon which all the propa-
gation constants are real) attached to a 2D membrane of
complex eigenvalues. A two-dimensional PT symmetric

soliton with eigenvalues within the semi-infinite gap is
shown in Fig. 5(b). At low intensities, the nonlinearity is
not strong enough and hence this beam asymmetri-
cally diffracts in this complex lattice as shown in
Fig. 5(c). At soliton power levels, however, this nonlinear
wave propagates in a stable fashion. To further understand
the internal structure of these self-trapped states, we plot
the transverse power-flow vector (Poynting vector) ~S �
�i=2�	� r�� ���r�
, as shown in Fig. 5(d), which in-
dicates again energy exchange among gain or loss
domains.

In conclusion, a new class of one- and two-dimensional
nonlinear self-trapped modes residing in parity-time sym-
metric wells and lattices is reported. The existence, stabil-
ity, and propagation dynamics of such PT solitons were
examined in detail.
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FIG. 4 (color online). Intensity evolution of an unstable PT
soliton above the phase transition point (W0 � 0:6). The inset
depicts the field profile (real part/blue line, imaginary part/red
line) of an unstable PT soliton.

FIG. 5 (color online). (a) Band structure of a 2D-PT potential
when W0 � 0:3. (b) The intensity profile of a PT soliton when
the propagation eigenvalues is � � 1:3. (c) Linear diffraction
pattern under single channel excitation (soliton input with � �
1:3), and (d) Transverse power flow of this PT soliton solution
within one cell where the dark area of the background represents
the waveguide area. The regions where the gain or loss is
maximum are indicated by the G, L points, respectively.
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