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The possibility of parity-time (PT ) symmetric periodic potentials is investigated within the context of
optics. Beam dynamics in this new type of optical structures is examined in detail for both one- and two-
dimensional lattice geometries. It is shown that PT periodic structures can exhibit unique characteristics
stemming from the nonorthogonality of the associated Floquet-Bloch modes. Some of these features
include double refraction, power oscillations, and eigenfunction unfolding as well as nonreciprocal
diffraction patterns.
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Over the last few years a new concept has been proposed
in an attempt to extend the framework of quantum me-
chanics into the complex domain. In 1998, Bender et al.
found [1] that it is in fact possible even for non-Hermitian
Hamiltonians to exhibit entirely real eigenvalue spectra as
long as they respect parity-time requirements or PT
symmetry [2–4]. This fascinating result appears to be
counter-intuitive since it implies that all the eigenmodes
of a pseudo-Hermitian Hamiltonian [5] (bound as well as
radiation states) are only associated with real eigenener-
gies. Another intriguing characteristic is related to sponta-
neous PT symmetry-breaking beyond which this class of
systems can undergo an abrupt phase transition [1]. In
particular, above this critical threshold, the system loses
its PT property and as a result some of the eigenvalues
become complex. The notion of PT symmetry is now
extensively considered in diverse areas of physics includ-
ing, for example, quantum field theories [2], non-
Hermitian Anderson models, complex Lie algebras, and
lattice QCD theories just to mention a few [6]. It is worth
mentioning that, even before the PT concept was intro-
duced, wave scattering from complex periodic potentials
has been considered at both the theoretical [7] and experi-
mental front [8].

In general, a Hamiltonian is PT symmetric provided
that all its eigenfunctions are simultaneously eigenfunc-
tions of PT operator [2]. Here the action of the parity
operator P̂ is defined by the relations p̂! �p̂, x̂!�x̂
while that of the time operator T̂ by p̂! �p̂, x̂! x̂, i!
�i, where p̂, x̂ denote momentum and position operators,
respectively. In operator form, the normalized Schrödinger
evolution equation (@ � m � 1) is given by i�t � Ĥ�,
where Ĥ � p̂2=2� V�x̂� and p̂! �i@=@x [9]. Given that
the T̂ operation corresponds to a time reversal, i.e., T̂ Ĥ �
p̂2=2� V��x�, then one can deduce that Ĥ P̂ T̂ � p̂2=2�
V�x� and P̂ T̂ Ĥ � p̂2=2� V���x�. From the above con-
siderations one finds that a necessary condition for a

Hamiltonian to be PT symmetric is V�x� � V���x�.
This last relation indicates that parity-time symmetry re-
quires that the real part of the complex potential involved
must be an even function of position whereas the imagi-
nary component should be odd.

While the implications of PT symmetry in the above
mentioned fields are still under consideration, as we will
show some of these basic concepts can be realized in
optics. This can be achieved through a judicious design
that involves a combination of optical gain or loss regions
and the process of index guiding. Of particular importance
is to explore the properties of periodic PT symmetric
lattices as this may lead to pseudo-Hermitian synthetic
materials. Quite recently, conventional optical array struc-
tures (based on real potentials) have received considerable
attention and have been examined in several systems in-
cluding semiconductors, glasses, quadratic and photore-
fractive materials, and liquid crystals [10]. Given that
even a single PT cell can exhibit unconventional features,
one may naturally ask what new behavior and properties
could be expected from parity-time symmetric optical
lattices.

In this Letter we investigate optical beam dynamics in
complex PT arrays. The unusual band structure proper-
ties of these periodic systems is systematically examined in
both one- and two-dimensional geometries. We find that
above the phase-transition point, bands can merge forming
loops or closed ovals (attached to a 2D membrane) within
the Brillouin zone and the Floquet-Bloch (FB) modes are
substantially altered. Our analysis indicates that under
wide beam excitation, interesting diffraction patterns
emerge such as ‘‘double refraction’’ and power oscillations
due to eigenfunction unfolding. We show that this dynam-
ics is a direct outcome of mode skewness or nonorthogo-
nality. The nonreciprocal characteristics of these PT ar-
rays are also discussed.

In optics, several classical processes are known to obey a
Schrödinger-like equation. Perhaps the most widely known
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physical effects associated with this evolution equation are
those of spatial diffraction and temporal dispersion [11].
Here we will primarily explore the diffraction dynamics of
optical beams and waves in PT symmetric potentials in
the spatial domain. Along these lines, let us consider a
complex parity-time potential. In this case, the complex
refractive index of the system is described by n � n0 �
nR�x� � inI�x�, where n0 is the background refractive in-
dex, nR�x� is the real index profile of the lattice, and nI�x�
represents the gain or loss periodic distribution of the
structure [in practice n0 � nR;I�x�]. Under these condi-
tions, the electric field envelope U of the beam obeys the
paraxial equation of diffraction: iUz � �2k0n0�

�1Uxx �
k0�nR�x� � inI�x�	U � 0, where z is the propagation dis-
tance, x is the transverse coordinate, and k0 � 2�=�0 with
�0 being the light wavelength. We note that this latter
equation is formally analogous to a Schrödinger equation.
In an array arrangement nR;I�x�D� � nR;I�x�, where D
represents the lattice period. From our previous discussion,
this complex potential is PT symmetric provided that its
real part or refractive index profile is even, i.e., nR�x� �
nR��x�, while the imaginary component nI�x� (that is loss
or gain) is odd. From a physical perspective such PT
symmetric lattices can be realized in the visible and in
the long wavelength regime (0:5 �m< �0 < 1:6 �m) us-
ing a periodic index modulation of the order of �nmax

R 

10�3 withD 
 10–20 �m (similar to those encountered in
real arrays [10] ) provided that the maximum gain or loss
values are approximately g � �� 
 30 cm�1 or �nmax

I 

5� 10�4. Such gain or loss coefficients can be realistically
obtained from quantum well lasers or photorefractive
structures through two-wave mixing [11]. By introducing
the following scaled quantities, � � z=�2k0n0x

2
0�, � �

x=x0, V��� � 2k2
0n0x2

0�nR � inI�, (where x0 is an arbitrary
scaling factor) the normalized equation of diffraction can
now be expressed in the form:

 i
@U
@�
�
@2U

@�2 � V���U � 0: (1)

To understand the properties of a periodic PT structure
we must first analyze its corresponding band structure. In
particular, we seek solutions of the form �kn����
exp�i�kn��, where �kn��� is the n-band Floquet-Bloch
mode at Bloch momentum k, and �kn is the associated
eigenvalue or propagation constant. For illustration pur-
poses we assume the periodic PT potential V��� �
A�cos2��� � iV0 sin�2��	, �A � 4� with period D � �x0

for both real and imaginary component [shown schemati-
cally in Fig. 1(a)]. We stress that the requirement V��� �
V����� satisfied by this potential is a necessary but not a
sufficient condition for the eigenvalue spectrum to be real.
By using spectral techniques we numerically identify the
PT threshold (V th

0 ), below which all the propagation
eigenvalues for every band and every Bloch wave number
k are real. Above this PT threshold, an abrupt phase
transition occurs because of spontaneous symmetry break-

ing and as a result the spectrum is partially complex. This
happens in spite of the fact that V��� � V����� is still
satisfied. For the particular potential considered here we
find that V th

0 � 0:5. More specifically, for V0 < 0:5, the
band structure is entirely real while for V0 > 0:5 it be-
comes complex (starting from the lowest bands).
Figure 1(b) depicts the first two bands of this potential
for two cases, i.e., when V0 � 0:2 and 0.5. Note that below
Vth

0 all the forbidden gaps are open whereas at the threshold
Vth

0 � 0:5 some band gaps at the edges of the Brillouin
zone close (no gaps exist at k � �1) as shown in Fig. 1(b).
On the other hand, when V0 exceeds this critical value
these two same bands start to merge together and in doing
so they form oval-like structures with a related complex
spectrum. The real as well as the imaginary parts of such a
double-valued band when V0 � 0:7 are depicted in
Figs. 1(c) and 1(d), respectively. These figures show that
the propagation eigenvalues are entirely real in the double-
valued regions (oval R regions) while along the overlapped
sections (C lines) happen to be complex conjugate. Some
of these aspects associated with the real part of these bands
were also discussed by Bender et al. [12] for pseudo-
Hermitian periodic potentials having zero PT threshold
(purely imaginary potentials with Vth

0 � 0).
Relevant to our previous discussion is the structure

and properties of the corresponding Floquet-Bloch
modes for PT symmetric potentials. Unlike real poten-
tials, the eigenfunctions have no zero nodes at k � �1
(edge of the Brillouin zone) [12]. In addition, at k � �1 in
the complex conjugate part, these functions are shifted
with respect to their potentials. We emphasize that the
above unexpected modal structure is a direct consequence
of the nonorthogonality of the related Floquet-Bloch func-

FIG. 1 (color online). (a) Real part (solid line) and imaginary
component (dotted line) of the PT potential V��� �
4�cos2��� � iV0 sin�2��	; (b) corresponding band structure for
V0 � 0:2 (dotted line) and V0 � 0:5 (solid line). (c), (d) Real and
imaginary part of the double-valued band for V0 � 0:7, respec-
tively, resulting from the merging of the two first bands.
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tions. In particular, the usual orthogonality conditionR
�1
�1�

�
k0m����kn���d� � 	nm	�k� k

0� (that holds in
real crystals) is no longer applicable in PT symmetric
lattices. This skewness of the modes [13] is an inherent
characteristic of PT symmetric periodic potentials and
has a profound effect on their algebra.

The most interesting aspects associated with PT sym-
metric lattices are revealed during dynamic beam evolu-
tion. Figure 2(a) illustrates the intensity distribution during
propagation when the PT array V��� � A�cos2��� �
iV0 sin�2��	 (with V0 � 0:49, A � 4) is excited by a
wide optical beam at normal incidence. Figure 2(b) on
the other hand shows this same process in the real version
of this lattice (V0 � 0) under the same input conditions.
These two figures indicate that there is a marked difference
between these two regimes. In the PT array the beam
splits in two and double refraction occurs at an angle of
1� after 3 cm of propagation when D � 20 �m, g �
35 cm�1, �nmax

R � 10�3. In order to explain this behavior
we project the input field on an orthogonalized Floquet-
Bloch base of the complex array; e.g., we write U��; �� �R

1
�1

P
�1
n�1 cn�k� ~�k n��� exp�i�k n��dk, where cn�k� repre-

sent the mode occupancy coefficients in band n and at
Bloch momentum k. This decomposition was accom-
plished by devising a new orthogonal basis suitable for
PT periodic potentials. In this case, the projections are
facilitated by:

 

Z �1
�1

~���k0m���� ~�kn���d� � dkn	nm	�k� k0�; (2)

where dkn � f�1g and ~�kn � �kn=�
R
�1
�1�

�
�kn�����

�kn���d�	1=2. Unlike real lattices, in these pseudo-

Hermitian structures, the inner product is taken by reflect-
ing both the spatial coordinate and the Bloch momentum
itself. Consequently, the modal coefficients can be ob-
tained from cn�k��dk�

R
�1
�1

~���kn����G���d�, where
G��� is the input beam profile. Figure 2(c) depicts the
jcn�k�j occupancy (among bands) corresponding to the
input used in Fig. 2(a). This result clearly shows that this
distribution is asymmetric in k space especially in the
second and third band while in the first band it is almost
symmetric. This asymmetry is attributed to the skewness of
the FB modes. Keeping in mind that the beam components
will propagate along the gradient rk���, one can then
explain from Fig. 2(c) why the double refraction process
occurs towards the right. Intuitively this can be understood
given that the PT periodic structure involves gain or loss
dipoles, thus promoting energy flow from left to right.
Another feature associated with Fig. 2(a) is power oscil-
lation. Even though this lattice is operated below the PT
threshold value and hence the entire spectrum is real, what
is conserved here is the quasipower [14], e.g., Q �R
�1
�1U��; �� U

����; ��d� as opposed to the actual power
itself P �

R
�1
�1 jU��; ��j

2d�, which oscillates during
propagation. These power oscillations are due the unfold-
ing of the nonorthogonal FB modes. This unfolding pro-
cess becomes even more pronounced under narrow-beam
excitation conditions where secondary emissions can be
observed during discrete diffraction as shown in Fig. 2(d).

Another direct consequence of this modal ‘‘skewness’’
is nonreciprocity. Figure 3 shows beam propagation in a
PT lattice when excited by a wide beam at �
 angle of
incidence (in this case 2�). Note that the two diffraction

FIG. 2 (color online). Intensity evolution of a broad optical
beam under normal incidence when (a) V0 � 0:49, (b) V0 � 0.
(c) depicts the FB decomposition of the input in (a) for the first
three bands (solid black line—1st, left dashed blue line—2nd,
right dashed red line—3rd), and the inset shows the correspond-
ing band structure. (d) Single channel excitation of this same
lattice when V0 � 0:49.

FIG. 3 (color online). Intensity evolution of wide beams ex-
citing a PT lattice at angle 
 when V0 � 0:45, A � 4 and
(a) 
 � 2�, (b) 
 � �2�.

FIG. 4 (color online). Two-dimensional band structures asso-
ciated with V��; ��, when A � 4 and (a) V0 � 0:45 and
(b) V0 � 0:6.
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patterns are different and hence, light propagating in PT
symmetric arrays can distinguish left from right. This is
another general property of such pseudo-Hermitian optical
systems.

These effects can also be considered in two-dimensional
configurations provided that the optical potential satis-
fies V��; �� � V����;��� in the wave equation iU� �

U�� �U�� � V��; ��U � 0. In the following examples
we consider the complex PT symmetric potential
V��;�� � Afcos2��� � cos2��� � iV0�sin�2�� � sin�2��	g,
with �A � 4�. Numerical analysis reveals that the threshold
in this separable 2D case is again V th

0 � 0:5. The real part
of the band structure corresponding to this potential is
shown in Figs. 4 for two cases, below and above threshold
(V0 � 0:45 and V0 � 0:6). Again below threshold the ei-
genvalue spectrum is real while at V th

0 � 0:5 the two bands
collide at their M points at the edges of the Brillouin zone,
Fig. 4(a). On the other hand, above the phase-transition
point (at V0 � 0:6) the first two bands merge thus forming
a two-dimensional oval double-valued surface (upon
which all the propagation constants are real) attached to
a 2D membrane where the complex conjugate eigenvalues
reside [see Fig. 4(b)]. The double refraction process in such
2D pseudo-Hermitian structures (V0 � 0:45) is shown in
Fig. 5(a) when the system is excited by a normally incident
wide 2D Gaussian beam. As opposed to the familiar 2D
discrete diffraction pattern occurring in real lattices
[Fig. 5(b) with V0 � 0], in the PT case, two significant
secondary lobes are produced only in the first quadrant.
This is of course another manifestation of parity-time
symmetry.

In conclusion, we have demonstrated that PT symmet-
ric periodic potentials can exhibit new behavior in optics.
Beam dynamics in such structures reveal that double re-
fraction, power oscillations, and secondary emissions are
possible. The existence of abrupt phase transitions, as well

as the associated band structure of PT lattices in both one
and two geometries, was also examined in detail. These
issues are of direct relevance to other configurations such
as those associated with coupled and nonlinear PT sys-
tems [15].
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