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Abstract

We show that the full dynamical equations for optical parametric oscillators in a large aspect
ratio cavity for the case of long-wave instability is reduced to a Ginzburg-Landau equation near
the instability threshold. This equation enables us to introduce the concept of optical vortices in
7 medium. A criterion of supercritical and subcritical instability is given as well as a condition
of the Benjamin—Feir instability. ©) 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

Pattern formation in nonlinear dynamical systems has recently attracted consider-
able attention from the scientific community [1]. Of particular interest is the study of
complex structures in nonlinear optics resulting from the appearance of different kinds
of instabilities [2,3]. The physical origin of these instabilities, in the case of optical
parametric oscillators, is the coupling of diffraction with an optical y'?) nonlinearity in
two transverse spatial dimensions.

An increasing interest has been focused on large aspect ratio nonlinear optical sys-
tems, where pattern formation is independent of transverse boundaries and is thus de-
scribed by a universal order parameter equations which provide a connection to other
nonlinear behaviours. Transverse pattern formation for large aspect ratio optical para-
metric oscillators and lasers has been studied for cavity configurations with flat-end
mirrors of infinite transverse extension and uniform pumping. In the latter case, it was
shown [4-6] that the full Maxwell-Bloch equations admit exact travelling wave solu-
tions. Moreover, the nature of the solutions above threshold strongly depends on the
sign of the detuning parameter.

Pattern formation in optical parametric oscillators (OPO) has been intensively studied
for the degenerate [7] as well as for the nondegenerate cases. Analytical and numer-
ical studies in the case of degenerate OPO has shown that roll patterns organize the
spatio-temporal evolution of OPO dynamics. For the nondegenerate case it was recently
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shown that the full OPO dynamical equations admit a continuum family of stable travel-
ling waves which are preferred to standing waves found in the degenerate case. The
analysis of stability of travelling wave against standing wave solutions was investigated
by deriving two coupled Newell-Whitehead—Segel equations describing the growth of
both solutions close to threshold [8].

Quite recently [9], a Swift-Hohenberg equation was derived for a single longitudinal
mode OPO operating near resonance for the case of small detuning parameters.

In the present work, we discuss further the OPO dynamics for the case of positive
not small detuning parameters. We show that in this case the full nondegenerate dy-
namical equations reduce to a single complex Ginzburg-Landau equation valid near
the instability threshold. In an analogy to the superfluid vortices, we introduce the con-
cept of optical vortices in the x>’ medium. We give a criterion of supercritical and
subcritical instability as well as a condition of the Benjamin—Feir instability.

2. The model equations

In this section we review briefly the OPO dynamics to set the notations. We con-
sider an optical ring cavity with plane mirrors, containing a nonlinear ) medium
(optical parametric oscillator) which converts a field of frequency w; into two fields
of frequencies wg (signal) and ), (idler). Three longitudinal modes of the cavity with
frequencies @y, w; and «, are close to resonance with the field frequencies. In the
paraxial approximation the behaviour of the system is governed by a set of coupled
dynamical equations [7,10,11]

Sdy = (1 +id)Ay +ia) VA, + pd5] + 71438,
0Ay = [ (1 +id))As + i@y VP Ay + pA7] + 7247 B, (2.1)
0B = yo[—(1 + id)B + iagV>B] — 74142,

where 4, and A4, are the normalized slowly varying envelopes for signal and idler
fields, respectively, and B = 4, — u, where Ay is the normalized slowly varying pump
field and y = E(1 —idg)/(1 + A7) is the parametric gain. Here, E is the normalized
amplitude of the plain-wave pump input field.
The detuning parameters for pump, signal and idler fields are defined as
W W W) —

do=——, 4h=——, M=
70 i1 72

Wy — Wy

where y9, ¥ and y; are the cavity decay rates of the three fields. wy, w, and w;
are the three longitudinal cavity frequencies close to the frequencies w;, ws and wy,
respectively. The diffraction parameters ;. a; and a, for the three fields are defined
by
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where ¢ is the speed of light and %, the longitudinal wave vector of the field at
frequency w;.

3. Ginzburg-Landau equation

In the present work we are interested in the case of positive detunings 4; and A4».
According to the stability analysis performed in Ref. [8], the neutral stability curve
@ = p(k) has minimum g = (1 + 42)"? at k. = 0. For excitations close to k. we let
i = p. + se?, where s = +1. The case s = —1 corresponds to the subcritical region
whereas s = | to the supercritical case. Following standard multiple-scale expansions,
we introduce the new variables, Ty = ¢, T, = &’t, X = &x and ¥ = ¢y. We look for
solutions for the system (Eq. (2.1)) in the form

A :SA(IH+E3A(|3)—|—O(£5), (3.1)
A, = .L:A(j” + f:3A(23) + 0(&), (3.2)
B = *BY + O(eh, (3.3)

Substituting into Egs. (2.1), we get to first order in ¢

ar A = =1 +iaA" + oipedl

an S = —pa(1 + i) + opeal” (34)
and to order &2 we have
0r,B? = —yo(1 + idg)B® — oA\ 4. (3.5)

Finally, to order &* we have
6T(,A(13) + 65/1(,” =—y(l+ iA,)A(]3) + i}’laIVZA(lI) + ylui.A(;)*
+syd) 4940 B, (3.6)
oA + A = —p(1 +id)AY) + i@ VA + e
+sdl 4l B (3.6)
We obtain a solution for Eq. (3.4) in the form
ANX Y T2, To) = A (X, Y o)™ T,
AVXY T2, Ty) = 3(X,Y; T )e o, (3.8)
where
Y172

W= (4 4y), 3.9
TR B9
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and
1 +i4
ity =2 (3.10)
He
Here, A = (3141 + 1242)/(71 + y2). Since 2 = 1 + A? then Eq. (3.10) yields |7, =
|4 >, A possible solution to Eq. (3.5) can be chosen in the form

A(I)A(l)
B = L2 3.11
1 +idg ( )
In terms of ./; and .73, the above expression can be rewritten in the form
5 o A 5
B = - — gl 3.12
1+ idy (T‘ b ﬁl ( )

where ¢ = —(1 — id)/(fe + iueAy). The solvability condition at order ¢ yields
ol | = 28U + [(a) + ax)A + ilay — az )]szfil
41 — A4g)
1+ A2
where o=y, + y2 + iA(71 — 72)])/7172. Scaling the spatial variables and time and in-
troducing a new function ¢ = o) explis4(7; — y2)/(71 + 72)], we obtain the following
equation:

AR (3.13)

o s 2(1 = A4y) s
@ 1- Vi - U ! , 3.14
o~ (T~ S )¢ (3.14)
where the parameters n and v arc defined as
_ it iar —an) + A2 =y Nay + a)

24Cha) + aaz) 3

A2 —7)
A

A L—

We see that the full dynamical equations describing the OPO dynamics near the insta-
bility threshold for positive detuning parameters are reduced to a complex Ginzburg—
Landau equation. Many properties of nonequilibrium systems are encountered in such
an equation. It should be noted that this equation provides a quantitative description
of real experiments valid only in a small region near the transition threshold.

We notice that in the case where A4, >> | there is a subcritical instability of the
trivial solution ¢ =0, while in the case where A4y < 1 a supereritical bifurcation takes
place.

In the latter case, the Benjamin—Feir instability condition 1+ v < 0 can be studied.
In the corresponding region of parameter space, all spatially periodic solutions of the
above Ginzburg—Landau equation are unstable.

Let us note that a complex Ginzburg--Landau equation admits vortex (spiral wave)
solutions. Such solutions have the form ¢(r.0) = R(r)eV" 1M where m is the topo-
logical charge (usually taken to be +1) and (#,0) are the polar coordinates in two
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dimensions. The functions R(r) and ¥(») depend on » only. Analogous to the super-
fluid vortices the concept of optical vortex was introduced firstly by Coullet et al. in
the framework of Maxwell-Bloch equations [12]. This optical vortex corresponds to
zeroes of the modulus of the electric field in the transverse plane of the laser beam
operating above threshold. Associated to each of these zeroes, a topological charge
is defined as the gradient circulation around a closed loop which encloses it. Let us
mention also the works of Arecchi et al. [13] where a method for direct detection of
topological defects in nonlinear optics was developed.

In conclusion, we have shown that the full OPO dynamical equations for the case
of long-wave instability are reduced to a single complex Ginzburg-Landau equation
valid near the instability threshold. A criterion for the subcritical as well as for the
supercritical instability was given. The Benjamin—Feir instability condition was also
established. Finally, for the first time we predict the appearance of optical vortices in
a 7% medium.
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