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Abstract

Localized, stable nonlinear waves, often referred to as solitons, are of broad interest in mathematics and physics. They
are found in both continuous and discrete media. In this paper, a unified method is presented which is used to describe the
propagation of linearly polarized light as well as two polarization modes in a diffraction-managed nonlinear waveguide array.
In the regime of normal diffraction, both stationary and moving discrete solitons are analyzed using the Fourier transform
method. The numerical results based on a modified Neumann iteration scheme as well as renormalization techniques, indicat
that traveling wave solutions are unlikely to exist. An asymptotic equation is derived from first principles which governs the
propagation of electromagnetic waves in a waveguide array in the presence of both normal and anomalous diffraction. This
is termed diffraction management. The theory is then extended to the vector case of coupled polarization modes.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Dynamics of discrete nonlinear systems dates back to the mid-fifties when Fermi, Pasta and Ulam (FPU) studied
dynamics of nonlinear spring&]. Apart from the fact that the work of FPU motivated the discovery of solitons,
it also stimulated considerable interest in the study of discrete nonlinear media which possesses self-confinec
structures (discrete solitary waves). Such waves are localized modes of nonlinear lattices that form when “discrete
diffraction” is balanced by nonlinearity. In physics a soliton usually denotes a stable localized wave structure, i.e.,
solitary wave. We shall use the term soliton in this broader sense (i.e., they do not necessarily interact elastically).
Discrete solitons have been demonstrated to exist in a wide range of physical sistBinsor example, atomic
chaing[6,7] (discrete lattices) with an on-site cubic nonlinearities, molecular cryf@hlbiophysical systemf®],
electrical lattice$10], and recently in arrays of coupled nonlinear optical wavegyitied 2] An array of coupled
optical waveguides is a setting that represents a convenient laboratory for experimental observations.

The first theoretical prediction of discrete solitons in an optical waveguide array was reported by Christodoulides
and Josep[i3]. Later, many theoretical studies of discrete solitons in a waveguide array reported switching, steering
and other collision properties of these solitfté—19](see also the review papgp,21). In all the above cases, the
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localized modes are solutions of the well known discrete nonlinear Schrédinger (DNLS) equation which describes
beam propagation in Kerr nonlinear media (according to coupled mode theory). Discrete bright and dark solitons
have also been found in quadratic meffa], in some cases, their properties differ from their Kerr counterparts
[23].

In fact, the DNLS equation (and its “cousins” such as diffraction-managed discrete nonlinear Schrodinger
(DM-DNLS) or DNLS with a potential such as discrete BEC) is “asymptotically universal’. Namely it is the
discrete equation which emerges from either a weakly nonlinear Helmholtz equation with a suitable “potential” or
a weakly nonlinear continuous NLS equation with a suitable potential where the following terms are in balance:

(i) Slow variation in either distance (waveguide array) or time (for BEC);
(ii) linear terms induced by a potential which can be viewed as asymptotically separated localized potentials
(sometimes called the “tight binding approximation”);
(iii) nonlinearity.

It took almost a decade until self-trapping of light in discrete nonlinear waveguide array was experimentally
observed11,12] When a low intensity beam is injected into one or a few waveguides, the propagating field spreads
over the adjacent waveguides hence experiencing discrete diffraction. However, at sufficiently high power, the beam
self-traps to form a localized state (a soliton) in the center waveguides. Subsequently, many interesting properties
of nonlinear lattices and discrete solitons were reported. For example, the experimental observation of linear and
nonlinear Bloch oscillations in: AlIGaAs waveguidgl], polymer waveguidef5] and in an array of curved
optical waveguidef26]. Discrete systems have unique properties that are absent in continuous media such as the
possibility of producing@anomal ous diffraction[27]. Hence, self-focusing and defocusing processes can be achieved
in the same medium (structure) and wavelength. This also leads to the possibility of observing discrete dark solitons
in self-focusing Kerr medi§28]. The recent experimental observations of discrete solifbhsand diffraction
managemer[7] have motivated further interests in discrete solitons in nonlinear lattices. This includes the newly
proposed model of discrete diffraction-managed nonlinear Schrédinger eq{28i80] whose width and peak
amplitude vary periodically, optical spatial solitons in nonlinear photonic cryf3als33]and the possibility of
creating discrete solitons in Bose—Einstein condens@3idh Also, recently, it was shown that discrete solitons in
two-dimensional networks of nonlinear waveguides can be used to realize intelligent functional operations such as
blocking, routing, logic functions and time gatif@s—38] In addition, spatiotemporal discrete solitons have been
recently suggested in nonlinear chains of coupled microcavities embedded in photonic crystal sti8@tures

In this paper, we introduce the Fourier transform method to analyze both stationary and moving solitons in
nonlinear lattices. The essence of the method is to transform the DNLS equation governing the solitary wave into
Fourier space, where the wave function is smooth, and then deal with a nonlinear nonlocal integral equation for which
we employ a rapidly convergent numerical scheme to find solutions. A key advantage of the method is to transform a
differential-delay equation into an integral equation for which computational methods are effective. Mathematically,
the method also provides a foundation upon which an analytic theory describing solitons in nonlinear lattices can
be constructed. We shall consider in this paper two important models: the DNLS equation and the DM-DNLS
equation. Applying this method to the first model, shows that approximate traveling solitons possess a nontrivial
nonlinear “chirp”. Moreover, our results (both numerical and analytical) indicate that, unlike the integrable case
[40], a continuous exact traveling wave (TW) solution is unlikely to ejddt]. In the limit of small velocity,
we develop a fully discrete perturbation theory and show that slowly but not uniformly moving discrete solitons
are indeed “chirped”. An asymptotic equation is derived from first principles which governs the propagation of
electromagnetic waves in a waveguide array in the presence of both normal and anomalous diffraction. This is
related to the second model of DM-DNLS equation. The theory is then extended to the vector case of coupled
polarization modes.
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The new results of this paper can be summarized as follows:

e The derivation of the DNLS equation based on asymptotic multiple scale theory starting, e.g., from the Helmholtz
equation.

e The derivation of the scalar DM-DNLS equation from first principles. Using multiple scale asymptotic theory it
is found that the most general equation that governs the dynamics of light propagating in a diffraction-managed
waveguide array is

oE
a; +C(2)Ent1+ C*(2) En—1+ v|E4|2E, =0,

whereE, is the slowly varying envelope of the electric field at siter a constant that measures the nonlinear
refractive index((z) a complex periodic function andthe complex conjugate.

e The derivation from first principles of the vector DM-DNLS equation which includes self and cross-phase
modulation as well as four-wave mixing (FWM) terms:

9A
i 3; + kwgAn + C(2) A1 + C* (@) Ap—1 + (|1An 1% + b1| By 1P A, + mB2AY = 0,
iaB"Jrk By + C(2) Bpi1 + C*(2) Bno1 + (|Bn|? + b2|An|?) By + n2A2B* =0
32 wgDn Z)Dbpn+1 (2)Bp—1+ (|By] 2|Anl%) By + 12 nby, =Y,

whereA,,, B, are the slowly varying envelopes of the two polarization fields atsii¢he cross-phase modulation
coefficient and; the strength of FWM term. We note that even the derivation of the constant diffraction case is
new.

e Anumerical scheme based on renormalization of suitable norms to solve the nonlinear integral equation governing
solitons is proposed.

e Based on asymptotic and numerical evidence, we conclude that it is unlikelydhidibamly moving TW exists
for the DNLS equation.

e The derivation of a new discrete nonlinear Schrédinger type equation.

The paper is organized as follows.3ection 2ve formulate the basic physical model and describe the asymptotic
analysis that leads to the DNLS equation. Linear propagation is discussed in both normal and anomalous regimes
In Section 3we introduce the discrete Fourier transform method to find soliton solutions and show how one can
obtain approximate TW solutions. Two numerical schemes are introduced. The first is based on modified Neumann
iteration and the second on renormalization. Analytical analysis of TWs based on asymptotic theory is provided in
Section 4which further support our conjecture tlexact TWs may not exist. Next, we set up$ection 5a physical
model that describes the propagation of two interacting optical fields in a nonlinear waveguide array with varying
diffraction. Moreover, the general scalar as well as vector equation governing diffraction management is derived
from first principles based on asymptotic theory.

2. Waveguide array

As mentioned above, an array of coupled optical waveguides is a setting that represents a convenient laboraton
for experimental observations and theoretical predictions. Such systefigsdgis typically composed of three
layers of AlGaAs material: a substrate with refractive indgxa core with higher indexn1) and surface with
index ng. By etching the surface of the waveguide, one forms a periodic structure which is called a waveguide

array. Self-trapping of light in they"” (i.e., vertical) direction is possible (even in the linear regime) by virtue of
the principle of total internal reflection. On the other hand, the beam will diffract inthdifection unless it is
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Fig. 1. AlGaAs waveguide structure. It is composed of three layers of AlGaAs material: a substrate with refractive index no, a core with higher
index (n1) and surface with index ng. By etching the surface of the waveguide, one forms a periodic structure which is called awaveguide array.

balanced by nonlinearity. In the following we describe the propagation of light in such a periodic structure both in
the linear and nonlinear regimes.

2.1. Linear and nonlinear propagation

If the full width at half maximum (FWHM), z, of the optical field is small compared to the distance, d, between
adjacent waveguides, then the propagating beams across each single waveguide do not “feel” each other. Therefore,
the amplitude of each beam evolves independently according to the linear wave equation:

2

T 1 1B 300 — 230 =0, @)
where ko is the wavenumber of the optical field in vacuum, fg the refractive index of a single waveguide and
Ao the lowest eigenvalue (propagation constant) that corresponds to the ground state 1o (a bell shape eigenfunc-
tion). In this respect we have assumed that a single waveguide supports only a single mode. The more intricate
situation of multimode waveguide is also possible in which case g — 1 ; and g — ; where j is the number
of modes occupied by a single waveguide. On the other hand when 7 is on the order of d or larger, then there
is a significant overlap between modes of adjacent waveguide (see Fig. 2). In either case, the beam’s amplitude
is not constant in z anymore. Moreover, when the intensity of the incident beam is sufficiently high then the
refractive index of the medium will depend on the intensity which for Kerr media is proportional to the inten-
sity. In this case, the evolution of the total field's amplitude ¥ follows from Maxwell equations (see details in
Section 5.3):

G 242 2
<@+W)\Il+(kof (x) 4+ 8|¥|9)¥ = 0, (2.2
where f2(x) represents the refractive index of the entire structure and § a small parameter to be determined later.
If the overlap between adjacent modes is “small”, which is valid in the regime © = t/d <« 1, we expect the
power exchange to be slow. By introducing aslow scale Z = ¢z (¢ isasmall parameter to be determined later) we
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Fig. 2. Cross-section of the waveguide array and mode overlap.

approximate the solution to Eq. (2.2) as a multiscale perturbation series:
~+00

V=Y En(Z)Ym(x)exp(—iroz). (2.3)

m=—00

In this notation, v, (x) = Yo(x — md) and f2(x) = f2(x — md). Substituting the ansatz (2.3) into Eq. (2.2), we
find

+00 2 2
. oE 0°E deyr
Y- 2I8)\01[fm8—zm + %Y aZ;” + ( dx2m + K3 P — A%W) E,,
m=—0oQ
+4 Z EmEm’E;kn// Y l//m/‘/fy*nu:| e_uoz =0 (2-4)
m/,m//

Using Eqg. (2.1) in the above equation, multiplying Eq. (2.4) by v exp(iioz) and integrating over x yields the
following:

100 2 +00 +00
> [(—Zieko% +82%)/ dxxpmw;;JrkéEm/ dx A2yt
o _

2
e FY4 0z2 ) J_ o
+o00
+8 Y EnEnE}, f dx YE Y Yy, | = 0. (2.5)
m',m” —o0

Here, Af2 = f2 — f2 which measures the deviation of the total refractive index from each individual waveguide.
Asmentioned earlier, the overlap integral between adjacent waveguidesis an important measure in determining the
dynamic evolution of the modes. With thisin mind we shall assume that the overlap integrals appearing in Eq. (2.5)
can be approximated by

f dr Yty = ane, / dr AS2|Yim[? = cos, / dr AS2Y7 Ymst = cre. (26)

In order to understand the idea behind this scaling, we will assume that the mode at waveguide m can be modeled
by
Ym (x) = sechx(x —md), (2.7)
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where x = 1/t and 7 is the FWHM. The reason for this choice is only to simplify the analysis. In fact, the real
modes of a step index waveguide has exponential behavior which is close to a sech-like mode. Other choices of
eigenfunctions with different exponential decays are possible, e.g., ¥, (x) = exp[—(x — md)?/7?] but the basic
ordering mechanism remains the same. A straightforward cal cul ation shows that

+o00
/ dx Y9 = celnmmli/mn (2.8)
—00

with ¢ being aconstant of order 1. Since u <« 1, thenthechoicee = exp(—1/u) providesameasurefor the order of
magnitude for the overlap integral. Restricting the sum in Eq. (2.5) to nearest neighbors, i.e., m = n, n £ 1 (which
contribute to the order ¢ equation) and assuming that the only order 1 contribution comes from the nonlinear term
iswhenm =n = m’ = m” and that

—+00
/ dx [¥* = gn,

—00

we find that to O(¢) the nonlinear evolution of E,, is given by
. oF
—2ihoao " + k3o En + kGea(Ens1 + En-1) + gl Eal*En =0, (29)

where we have taken § = ¢ to ensure maximal balance. By defining a new variables 7 = Z/(2)oao), kgcl =C,
E, = E} exp(—ik3coz) wefind that £, satisfies (dropping the tilde)

oE
az” + C(Ent1+ En_1) + gnl|Ex|?E, = 0. (2.10)

To put the DNLS equation in dimensionless form, we define
E, = /Py exp2iC2), 7 = (2.11)
Znl
with P, and zy being the characteristic power and zpy the nonlinear length scale. Then ¢,, satisfies
dn

Idz

1
+ o3 @1+ $no1 = 200) + ¢ |°pn = 0 (2.12)

With zoC = 1/h? and zy = 1/(gn Ps). In the DNLS equation there are two important length scales: the diffrac-
tion and nonlinear length scales, respectively, defined by Lp ~ 1/C and zy = 1/(gn Py). Solitons which are
self-confined and invariant structures are expected to form when Lp ~ zj.

2.2. New discrete nonlinear Schrddinger type equation
We begin as before with the nonlinear Helmholtz equation with modulated Kerr coefficient:

* 2.2 2
— 4+ — |V Y|P = 2.1

<8Z2 + 8X2> + (kof (.X) + 8(X)| | ) 09 ( 3)
where f2(x) isdefined before, and § (x) measuresthe local change of nonlinear refractiveindex aong the transverse
direction. Importantly, note that as compared to Eq. (2.2), we now assume the nonlinear coefficient to be aspatially
dependent function. Moreover, we shall assume here, that the nonlinear index change §(x) is an odd function
relative to each waveguide (i.e., §(x) — 8(x — nd) = —§(—x + nd)). Following the reasoning outlined before, we
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approximate the solution to Eq. (2.13) viaamultiscale perturbation series given in Eq. (2.3). In this case, the linear
part remains the same but the nonlinear contribution changes to

+o0
N= Z Z Em E EX /8 Y Y ¥ €71707, (2.14)
m=—oQ ml’m/!
Multiplying Eq. (2.14) by ¢ exp(iroz) and integrating over x yields the following:

+oo

+o00 too
Iz/ dx Ny exp(iroz) = Z Z EmEm/E;I,,/ dx SC) Y Y Ve Wiy (2.15)

m=—00m’,m"

Since §(x) isan odd function then there is no on-site contribution, i.e.:

2 +oo 4
T n = | Enl2Ep / dr 800y [* = O.

—00

Therefore, the leading order contribution comesby settingm =n+1,m' =m" =n;m=m" =n,m' =n £+ 1;
m =m’' =n,m” =n + 1. The nonlinearity in each of the casesis

—+00
2 2
Im:n:l:l,m’:m”:n = Lm=m"=n,m'=n+1l = i|En| En:l:l/ dx S(X)I/f;ﬂwﬂ Ipn:l:l,
—00
2 oo 2
Im:m’:n,m”:n:l:l = :I:EnEZj:l/ dx 8(x)|17”n| anzj:l-
—00

The linear portion follows the same derivation asin Section 2.1 and we shall assume that the waveguide function
f2(x) isO(e), and Z = £°z, 8(x) = O(e). Combining al the linear and nonlinear terms, we find

. oE
—zmoaoeza—z" + kicosEn + k5c16?(Ens1 + En—1) + 2018 En|*(Eps1 — En—1)
+ Qae?Ef(Eyyq — Ef_p) =0, (2.16)

where

+00 +o0
a0=/ dr |y (02, Co8=/ dr (2 = )2,

+00 +00

cre? = [ dr (/2 — f2 U Vnsa (). Q162 = / 800 (0) 27 () Y 1 (2).

—0oQ —00

+00
026% = f b 80) [ Y1 () 2 (O 1 ().

—00

By defining new variablesz = Z/(2hoa0), kic1 = C, E, = E}; exp(—ik3coZ/¢), wefind that E, satisfies

dE . L - - . ey 5
8; + C(Eps1+ En—1) + 2011 Ey |2 (Ensr — Enc1) + Q2E2(E, — EX_) = 0. (217)

2.3. Diffraction properties of a waveguide array

In this section we consider the basic properties of discrete diffraction of alinear array of waveguides emphasizing
the recent discovery of anomalous diffraction [11]. However, we consider first propagation of light in bulk linear
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and homogeneous media which is governed by the linear Helmholtz equation:

2 2 . 029
V'E+k‘E=0, V= —+

—, 2.18
x2 = 972 ( )

where E is the amplitude of the electric field. If we assume a solution of the form E = a expl[i(k,z + k,x)] then
wefind k, = \/k2 — k2. In the paraxial approximation (k,/k < 1), the diffraction relation reads k, ~ k — k?/2k.
Then the group velocity is defined by ok, /dk, ~ —k,/k which says that each transverse component k, travels at
different rates hence beam will diffract. A measure for the rate of diffraction is 8k, / 8k§ which for plane waves
is~—1/k < 0. Since al plane waves have this definite negative sign for diffraction, it is referred to as normal
diffraction regime. Note that this is exactly the opposite from dispersion in which the normal regime is positive.
Next, we discuss linear propagation of light in a waveguide array. As mentioned in Section 2.1, the dynamics of
the beam’ s amplitude E, (z) at waveguide number n follows Eq. (2.10). In this case, when an extended state or cw
mode of the form

En(z) = Aexpli(k;z — nkid)] (219
isinserted into Eq. (2.10) it yields the following diffraction relation:
k, = 2C cos (kyd). (2.20)

In close analogy to the definition of dispersion, discrete diffraction is given by k! = —2Cd? cos (k.d). Since
the diffraction relation is periodic in Fourier space, we shall restrict the discussion for wavenumbers in the in-
terva |kyd| < m. In that region, the diffraction is normal for wavenumbers k, satisfying —n/2 < kyd <
7/2 (k! < 0) and is anomalous in the range 7/2 < |k,d| < 7. Moreover, contrary to the bulk case, diffrac-
tion can even vanish when k,d = +m/2. In practice, the sign and value of the diffraction can be controlled and
manipulated by launching light at a particular angle y or equivalently by tilting the waveguide array. The rela-
tion between k,, k, and the tilt angle is given by siny = k,/k. Thisin turn allows the possibility of achieving
a “self-defocusing” (with positive Kerr coefficient) regime which leads to the formation of discrete dark soli-
tons [28]. To understand more about diffraction management we consider three typical cases for which light
enters the central waveguide array at different angles, say, k,d = 0, 7/2 and 7. When k,d = 0 then light tun-
nels between adjacent waveguides giving rise to discrete diffraction. The phase front in this case has a concave
(negative) curvature. On the other hand, if k,d = =, then diffusion of light still occurs but this time the phase
front has convex (positive) curvature. Finaly, at k.d = 7/2 the diffraction vanishes (even though light can cou-
ple to different waveguides) and in the absence of any higher order diffraction the phase front looks almost flat
(seeFig. 3).

3. Stationary and moving solitons: Fourier transform method

In this section, we introduce a new method to obtain both stationary and moving solitons for the DNL S equation.
The essence of the method isto transform the DNL S equation governing the solitary wave into Fourier space, where
thewavefunctionissmooth, and then deal with anonlinear nonlocal integral equation for which weemploy arapidly
convergent numerical scheme to find solutions. A key advantage of the method is to transform a differential-delay
equation into an integral equation for which computational methods are effective (see aso Refs. [42,43]). Math-
ematically, the method also provides a foundation upon which an analytic theory describing solitons in nonlinear
|attices can be constructed. Moreover, the method is applicable to continuous problems.
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Fig. 3. Diffraction relation (top left) showing three typical examples of diffraction scenarios: (A) Normal in which the phase front is concave;
(B) vanishing diffraction in which the phase front is aimost flat; (C) anomalous diffraction with convex phase front.
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3.1. Sationary solutions

We look for a stationary solution to Eq. (2.12) in the form
$n = Fn explioz) 31
with F,, being real valued function and w areal eigenvalue. Then F,, satisfies
—wFy, + h—lz(Fn+1 + F,1—2F,) + F>=0. (3.2)

Eq. (3.2) can be solved using Newton iteration scheme by which one gives initial values for Fy and F1 and then
iterate. However, our aim here isto provide a different approach based on the Fourier transform method in which a
discrete equation is transformed into an integral equation. To this end, we use the transform defined by

+00
n(w,r) = Z upw " (3.3

n=—0oo

with the inverse transform given as

1
un () = —% i(w, w1 dw, (3.9
27l Co
where w is a complex number and Co the unit circle. If we let w = €% then Eq. (3.4) coincides with the discrete
Fourier transform
7w/ h

oo . h .
ﬁ(Q) = Umn eilthv Un = 57— ’:\l(Q) elth dq- (35)
> 2]

m=—0oQ
Applying the discrete Fourier transform in Eq. (3.2) leads to the following nonlinear integral equation:
h2

Fo = zm60 / , a1de2F @ F @2 Flq = a1 - 2) = KulF (@), (36)
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whereD? = D x D and D = [—n/h, n/h]. Here, 2(9) = o + 2(1 — cos(hg))/h? corresponds to the fre-
guency of the linear excitations. The important conclusion is that the soliton can be viewed as a fixed point of an
infinite-dimensional nonlinear functional. To numerically find the fixed point, one might start with an initial guess
for F(g) and iterate Eq. (3.6) using

Fri1(9) = Kol Fu(@)], n>0. (3.7

However, if the norm of F(q) is “large” then the iteration based on Eq. (3.7) will diverge while it will converge
to zero for small norm. This is because the right hand side of Eq. (3.7) has degree 3 whereas the left hand side is
suggested of degree 1. To overcome this difficulty, we employ instead, a modified Neumann iteration scheme and
consider anew equation
(F,, F,) 32
Foi1(q) = (W) KolFa(@], n =0, (38)

where the inner product (-) is defined by
.= [ Fawa (39

Thefactor 3/2 ischosen to make the right hand side of Eq. (3.8) of degree 0 which yields convergence of the scheme
[42,43]. When F,, isrea and even, it impliesthat 7 (¢) isalso real. Clearly when F,(q) — F;(q) asn — oo then
(F,, F,)/(F,, Ko) — Llandinturn Fy(g) will be the solution to Eq. (3.6). Fig. 4 shows a typical solution to (3.6)
both in the Fourier domain (Fig. 4a) and in physical space (Fig. 4b) for different values of lattice spacing i. The
proposed scheme converges linearly as can be seen in Fig. 5 where the relative error between successive iterations
EF defined by

EF =log|E, — E,_1| (3.10)

isplotted for different values of lattice spacing # and typical parameter value w = 1. In order to shed more light on
the property of the solution, we will consider for comparison the IDNLS given by [40]

.ou 1
Ia_l‘n + ﬁ(un+1 +up—1— 2up) + |un|2(un+1 +up-1) =0, (3.11)
45 2
7
!
-\
3 " c
A S LL
hF S 1
»I \
15 ! !
! \
! \
/,// v\\v\
=" S
4 -2 0 2 4 —08 8
(a) a ()

Fig. 4. Mode profiles obtained with w = 1 in Fourier space (a), for 4 = 0.5 (solid), 7 = 1 (dashed) and # = 1 (dashed-dotted) for the integrable
case. (b) Soliton shape in physical space for 2 = 0.5 (solid), # = 1 (dashed) and for the integrable case at & = 1 (dashed-dotted).
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Fig. 5. Plot of the relative error EX between successive iterations for = 0.5 (solid) and & = 1 (dashed) with w = 1.

which possesses an exact TW solution of the form
sin(h)

u,(t) = sech(nh — Vt) exp[—i(Bnh — wi)], (312

w= h—22[cos(/3h) cos(h) — 1], V= —h—22 sin(Bh) sin(h). (3.13)
Consider first the case when the soliton is stationary (V = 0). The method of discrete Fourier transform rapidly
converges when applied to Eqg. (3.11) and agrees with Eq. (3.12) (see Fig. 4). What is aso remarkable about
the solution (3.12) is that it forms a continuous function, i.e., the solution is not only defined at the grid pints
n = 0,£1, +£2, ... but dso it can be defined off the grid points (e.g., n = 1.234). This suggests that Eq. (3.11)
can be embedded in alarger class of differential-delay equations in which the discrete variable n can be consid-
ered as a continuous variable without affecting the solution. With this extension in mind, we could search for a
stationary solutions for Eq. (3.11) (with n = & being a continuous variable) by applying the continuous Fourier
transform:

+o00 . 1 +00 .
i) = / w@ e ds e = o f (g) €% dg. (3.14)

which can be obtained from Eqg. (3.5) by taking the limit 2 — 0 with fixed nh = &. Theimportant question we ask
is: does a continuous stationary solution exist for the DNL S equation as well? To partially answer this question we
applied the continuous Fourier transform in Eq. (3.2) (to find stationary solution). The only change from Eqg. (3.6)
is that D? — R2. We found that the numerical scheme based on (3.8) does not converge which indicates that a
continuous stationary localized solution to the DNL S may not exist. On the other hand we did find numerically that
acontinuous Fourier transform solution to Eq. (3.11) converged rapidly. Aswe will seelater, thiswill have a direct
impact on the TW problem.

3.2. Remarks

Below we make some comments on the proposed scheme for discrete systems outlining its usefulness.

e The numerical scheme based on Eq. (3.8) can be replaced by one in which the convergent factors belong to L

1Flly = fD F(g) da. (3.15)
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In this case, the iteration scheme takes the form

N 3/2
Frra(@) = ( 7ol ) Kulba@). n=0. (3.6)
1Kol

e Finding stationary solutions for multidimensional continuous partial differential equations (PDES) using the
above scheme is straightforward.

o Applying the Fourier transform technique to higher order continuous or discrete systems only results in a modi-
fication of the linear dispersion relation from, e.g., cos(gh) — cos(gh) + cos(2gh).

e The proposed technique is natural for diffraction-managed systems in which an infinite-dimensional nonlinear
integral equation must be solved. Applying direct methods such as Newton iteration would be difficult on such
diffraction-managed equations.

3.3. Numerical iteration based on energy renormalization

We next highlight a different approach based on energy renormalization to solve Eq. (3.6). As we have seen
before, one reason why simple iteration scheme does not converge is because the right and |eft hand side of (3.6)
have different homogeneity. An alternative method is to renormalize the wave function (q) at each iteration stage
by its L> (maximum) or L2 norm, respectively, defined by

I Flloo = max|F(q)], (3.17)
qeD
. . 1/2
Il = ( /D |F(q>|2dq) : (3.18)

In this case the beam amplitude remains aways finite. For discrete problems, the choice of the maximum norm is
particularly natural si nce the problemisrestricted to afi nite domain in g space. To implement this scheme, we start
with alocalized guess, Fo(q) and compute |ts norm ||Fo|| (by || - || we mean either || - || OF || - ||2). We then define
the renormalized function ]—'o(q) = Fo(q) /||Fo|| Then from Eg. (3.6) we compute Fl(q) and, in general, the mth
iteration takes the form

. h? N N N
Fint1(@) = 55— / f dg1 dg2Fn(q1) Fin(q2) Fm(q — 91 — g2), (3.19)
§2(q) D2
5 [A:I‘n
Flg) = @ (3.20)
Fml
Note that asm — oo the scheme based on Eq. (3.20) converges, i.e.:
lim_ | Fm — Fsll =0, (3.21)

where F, and F, = ||F,||F, is the exact solution to Eq. (3.20). Importantly, Eq. (3.6) admits the following scaling
property: if F(q) = »F'(¢) then F'(q) = +°K,[F'(¢)] isaso asolution. In light of this scaling property we find
that 7, and F, are also solutions to Eqg. (3.6). We have compared the solution obtained by this method with the
previous technique and with the IDNL S solution and found excellent agreement.

3.4. Do discrete TWs exist or not?

Finding analytical TW solutions for a continuous PDE and for differential-delay equations in particular, is a
challenging problem. For some PDEs, TWs can be readily obtained by making use of either Galilean or Lorentz
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invariance. However, for general discrete systems, such asymmetry does not exist. An additional source of difficulty
that arises when dealing with differential-delay systems is the lack of quadrature. In this section, we describe a
method to obtain TW solutions for discrete systems which is applicable to many discrete models such as FPU
lattice, sine-Gordon to name a few. However, here we will focus our attention to TW of the DNLS model. Unlike
the IDNL S in which exact continuous traveling solitons are known, there are no known explicit solutionsfor DNLS
solitons. Previous studies of TWs for the DNLS equation employed various techniques and ansatz [44-46]. One
method is to write the DNLS as a perturbed IDNLS [47] and use perturbation theory, based on inverse scattering,
to gain some insight to the solution. However, this method is limited to moderately confined wave functions and
cannot be used as a constructive method. Another technique is to use the “exact” stationary solutions discussed in
Section 3.2 and, based on what we know from continuous NL S theory, employ alinear phase tilt:

¢n = Fy exp(ipnh) (322

with F), being the stationary solution found before and 8 the beam “velocity” or phase tilt. However, by doing so,
we do not obtain a uniformly moving solitary wave (as can be seen in Fig. 6 where the top of the beam oscillates).
Thisis even more clear when we zoom in on small amplitude where radiation modes are seen to be emitted during
propagation (see Fig. 7). Our analysis, which is based on the discrete Fourier methods, reveal s another fundamental
distinction from the IDNL Straveling solitons: there are approximate TW solutionswhich are “multimode” discrete
solitons, i.e., asingle mode (sech-like shape) does not propagate without significant radiation [48]. In fact the modes
wefound are characterized by having anonlinear “chirp”. To formulate the analysis, welook for traveling localized
modes in the form

¢n(2) = u@) exp[—i(pnh — wz)], & =nh—-Vz (3.23)
with V and » being the soliton velocity and wavenumber shift, respectively. Assuming « is complex, i.e., u(§) =
F(&) +1G (&) (with F, G being redl), then Eq. (2.12) takes the form

dG dF
Vd—g + D1F + D2G + (F? + GO F = wF, —VE +D1G — DoF 4+ (F? + GG = G,  (3.24)

Fig. 6. Evolution of the stationary solution in physical domain for » = 1 and 4 = 0.5 obtained by direct numerical simulation by employing a
linear phasetilt (or velocity) with 8 = 0.5.
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Fig. 7. The same asin Fig. 6 but zoomed to small amplitude. Radiation modes are clearly seen which leads to a nonuniform moving beam.

where the linear operators D1 and D, are defined by

1 sin(Bh
Dif = Sloos(B(Es + E)f—2fl,  Dag= "0k, £ ) (329
with ELS(&) = S(& + h). To find the mode shapes and soliton velocity, we proceed as before by taking the discrete
Fourier transform of Eq. (3.24) which yields the following iteration scheme:

22(q) » (012

N 22 -
Fn+l(q) = Z(q) <al

32 )
G, — Fy, Gnl, Gy =
1) (@) + ) o ] +1(q)

2
P o2 B, Gl
AL O ) Qal Fin. Gl

B2
(3.26)
where F(q) and G‘(q) = —iG(q) arethe Fourier transforms of F(£) and G (&), respectively, and

R o o

(I:“*IA’*IA’—G*G*?), Qz[ﬁ,é]z
(3.27)
where * denotes a convolution:
frg= /D fR)g(g — b dk.

The convergence factors o and 8, j = 1, 2 are given by

A 2,G ~ 2oF o ~
a1=<Fn,Fn— 91n>’ az=<Gn,Gn— 91n>’ B1=(Fn, Q1),  B2=(Gn, Q2)

with

2 2
21 =0+ ﬁ[l — cos(hq) cos(Bh)], 22(9) = W2 sin (hg) sin(Bh) + Va. (3.28)
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Fig. 8. Mode shapes in physical space for ® = 1 and 8 = 0.5. Solid line correspondsto 42 = 0.5 and velocity V = —0.25 whereas dashed line
forh=1and V = —0.155.

The next stage would be to iterate Eq. (3.26). However, Eq. (3.26) form a system of two equations with three
unknowns, F, G and V. Therefore, we need to add an extra condition to match the number of variables with the
number of equations. By doing so, we proceed as follows. For a given set of parameters h, w and 8 > 0, the
mode shapes and soliton velocity are found by iterating Eq. (3.26) with an initial guess, e.g., Fo(g) = sech(g),
Go(g) = sech(g) tanh (¢) and V = V, < 0. Theiterations are carried out until the condition IEjl = laj— Bj| <€
(j =1, 2)issatisfied with € > 0 being a prescribed tolerance. However, unlike the stationary case, here, the soliton
velocity is still to be determined. For any choice of V., < 0if |€;| 4 ¢, we seek adifferent value of V, at which &;
changes sign. Then, we use the bisection method to change V.. in order to locate the correct velocity V and modes
F, G for each w, B and h. Typical soliton modes are shown in Fig. 8.

Atthisstageitisuseful to make some further comments on the Fourier transform. Since & isacontinuous variable
it implies that Eq. (3.24) are continuous equations in &. Therefore it seems natural to use the continuous Fourier
transform rather than discrete. However, when we apply the continuous Fourier transformin Eq. (3.24), wefind that
the numerical schemebased on Eq. (3.26) withr/ h — oo doesnot convergeto asolution. Thisisastrongindication
that, as opposed to the integrable case, a true continuous stationary or TW solutions to the DNLS model does not
exist. By continuous solution we mean a solution that can be defined off the lattice points which is necessary when
discussing TWson lattices. In fact, the perturbation analysis presented below supports this observation asit fails to
give consistent results off the grid points. To support these founding, let us take the continuous limit on the DNLS
which yields

. 0¢ 2

157 T xct cadoo + 1617 = 0, (3:29)
where aq = h?/12. Importantly, it was shown in [49] that Eq. (3.29) with a4 > O lacks exact soliton solutions
whereas it possess closed form solution for a4 < 0 [50]. Moreover, in this case the asymptotic behavior of the
solution to Eq. (3.29) inthelimit 0 < a4 <« 1is[49]

¢ ~ sech(€) + O(e™ " Pg, ),

with& = x —Vzand 7" being a positive constant with P(&, z) being a concrete function of both & and z (see Eq. (16)
of Ref. [49]). Thismeansthat for # = 0.1 (as an example), the nonstationary correction to the exact solution (when
a4 = 0) isexponentially small and cannot be captured in numerical simulations. These results differ from those of
[51,52] in which a*“continuous’ traveling solitary waves were reported using Fourier series expansions with finite
period L while assuming convergenceas L — o©.
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2.0

Fig. 9. Evolution of amoderately localized soliton in physical domainfor 8 = 0.5, V = —0.25, w = 1and h = 0.5 obtained by direct numerical
simulation.

= 7 o

Fig. 10. Evolution of astrongly localized soliton in physical domainfor 8 = 0.5, V = —0.2, » = 2 and » = 0.5 obtained by direct numerical
simulation.

Although Eg. (3.26) can be solved numerically with high accuracy, the resulting solutions are only obtained at
the discretelocations & = nh, while all real values of & are called uponinaTW solution. So the question we want to
ask is: what happen to the modes found above when they propagate across the arrays? To answer this question, we
simulated Eq. (2.12) using ¢, (z = 0) = u(nh) e "#"M as an initial condition with u(nh) = Frw(nh) 4+ iGtw(nh)
being the sol utions obtai ned from (3.26). When amoderately localized mode! islaunched, the beam moved acrossthe

1 Moderate localization obtains when the FWHM of the intensity is 4-6 lattice sites; strong localization occurs when FWHM = 1-3 lattice
sites.
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2.0

Fig. 11. Evolution of astrongly localized soliton in physical domain for large distance. Contrary to Fig. 10, in which the beam travels for short
distance, here after some distance, the beam starts to decelerate. Parametersare: 8 = 0.5, V = —0.2, w = 2and h = 0.5.

waveguides undistorted (Fig. 9) over 100 normalized z-units. This corresponds, according to the experimental data
reportedin[11], to 120 mm (recall that thewaveguidesusedin[11] were 6 mminlength). Ontheother hand, strongly
localized modes travel essentially undistorted for shorter distances (around 20 normalized z-units, see Fig. 10)
which corresponds to 24 mm. Noticeably, during propagation there was a change of 0.0133%/mm(0.245%/mm) in
the soliton velocity for moderately (strongly) localized modes in which case strongly localized mode slows down
and eventually relaxes to a stationary state (see Fig. 11). This behavior depends crucially on theinitia amplitude.
Higher amplitude solitons are less “mobile” than lower amplitude beams. The discrete Fourier transform yields a
useful, but nonuniform TW solution.

4. Asymptotic theory for discrete TWs
4.1. Perturbation expansion around stationary solutions

We have seen in Section 3.4, that TWs with nonuniform speed can be numerically constructed by means of the
Fourier iteration method. These solutions can move over short distances without drastic change in their shape or
speed. However, strongly localized modeswill immediately start decel erating and emitting radiation. Our conclusion
from Section 3.4 was that uniform TWs for the DNLS equation are unlikely to exist. To give further support to
this belief, we consider the case in which the solitons move slowly. We develop afully discrete perturbation theory
for finite amplitudes. It is important to note that our perturbative approach is fundamentally different than the
perturbation methods based on inverse scattering theory (cf. [47]). We begin by taking 8 = €81 + O(€?), € < 1,
and expand the soliton velocity, frequency and the wave functions in a power seriesin e:

F = Fo+ eF1 + éF> + O(d), G =eG1+ G+ O(d), (4.1)

V=€Vi+ Vo + 0(63), © = ws + €w + wp + 0(63). (4.2)
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Substituting Egs. (4.1) and (4.2) into Eq. (3.26), wefind that to leading order (°), Fo satisfiesthe stationary equation
andiseveniné:

L1Fy(€) = 0. (4.3

The order € equations for F1 and G1 are given by

L1F, = w1 Fo, (4.4)
dF
£:61=v0 L P e E R (4.5)
de ' h
and the order €2 system is
dF: dF
LGy = 01G1 + Vi— + Vol — 2FgF1G1 + &(EJr — E_)Fy, (4.6)
dé d& h
46y i B1

L1F2 = 01F1 + w2Fg — V1 FoGf — 3FoFf + 5 (Eq + E_)Fo— —~(E+ — E)Gu, (4.7)

d&
where the linear operators £1 and £ are defined by

1 1
LiS= -0+ (B +E-—2S+ 3F3S,  L2S=-w,S+ By +E-—2)S+ FS. (4.8)

Next we solve the system of eguations at each order in €. By taking w19/ dw; in EQ. (4.3) wefind that solution to F1
isgiven by

Fi= o 350 + 6138_‘”;’. (4.9)
To solve equation in (4.5), we make the ansatz:

G1= V1A + B1§Fo + c2Fp, (4.10)
where ¢1 and ¢, are arbitrary constants and A satisfies

LoA — aa_? (4.11)

which can be solved either numerically by Fourier transform method or by reduction of order method. Note that
A (&) isan anti-symmetric function.

4.2. Solvability conditions at O(¢)

The velocity V1(B1) and frequency shift w1, are determined by a solvability condition at order €2 which is
the discrete analog of Green's identity. We start first with the order ¢ equations. Let W(&) be a solution to the
homogeneous equation, £1W(&) = 0. Multiplying Eq. (4.4) by W(§) and subtracting F1(§)£L1W(&) = 0 wefind

AlY(®)] = P W(E) Fo(&), (4.12)

where Y(§) = W(§ — h)F1(§) — F(§ — h)W(&) and Ag isdefined by Ag[S(§)] = S(& + h) — S(&). An important
identity which will be used frequently is the discrete analog of Green’s identity

+oo
> [SE+th) — SE+ (€ — D] =0

{=—00
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with £ € Z. Since W = dFp/dg, summing over all integersin Eqg. (4.12) and using the discrete Green’ sidentity we
find

—0. (4.13)
E+th

~+00
dFp
w1 Z (Fo—>
l=—00 df

Importantly, if & isnot restricted to the grid pointsthen the sumin Eq. (4.13) isgenerally not zero. We shall consider
thecaseinwhich & € Z otherwise, aswe will see below, no TW solution is obtained. With this assumption in mind,
the solvability condition at order ¢ is satisfied and at this stage w1 is an arbitrary constant. Similarly, we find that
the solvability condition for Eq. (4.5) reads

+

i (Fo6+ (L +1h) — Fo(§+ (£ — 1)h))j| =0. (4.14)
E+Lh

h

{=—00

+o0 dF.
> Foe +th) |:V1d—€0

Asbefore, if we are off the grid points then the sum in (4.14) does not necessarily vanish and as aresult the vel ocity
will depend on &. Therefore, we restrict the sum to the lattice points which is consistent with the discrete Fourier
transform.

4.3. Solvability conditions at O(e2)

Next we consider the solvability conditions to the O(e2) equations which will determine the velocity V1 and
frequency 1. The solvability conditions for Egs. (4.6) and (4.7), respectively, read

= dFi dFp B1
Y FoE+th [vld— + Voo |+ (PLEF E+ D) — FiE + (€= D)
t=—00 § leen 6 E+th
+01G1(§ + €h) — 2Fo(€ + Lh) F1(€ + Lh)G1(E + Eh)} =0, (4.15)
+o00 dGl 5
> Fo(t+th) |:a)1F1($ + €h) + waFo(§ + Lh) — Vl_dg — Fo(§ 4 th)G3(& + th)
{=—00 E+Lh

2
—3Fo(§ + Lh)F{(§ + th) + %(Fo(é + (€ +Dh) + Fo(§ + (£ — Dh))

—%(Gl(é + €+ Dh) -G+ (£ — 1)h)):| =0. (4.16)

Substituting the expressions for F; and G1 [see Egs. (4.9) and (4.10)] in Egs. (4.15) and (4.16) and using the fact
that the function A (&) is anti-symmetric we find

A A
1 Ap [cl] o (4.17)
Apy Ay | L2
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. ﬁ (dFo B dFp ):|
h dé de _
E+(l+D)h SH(E=Dh

where

+00 2
d°F
Au=V1 Y Fo(&+th) [ :

dg2
f=—00 g E+Ch
—+00 F —+00 F
—2V1 Y AG+ ) FG(E+ th) ] > E+ ) FS(E + th dfo|
=00 A leren o0 95 leten
+00 5 +00 3 dFo
Ap=w1 Y FE+th) —20 Y FQ(E + th)——=(& + th),
{=—00 {=—00 s
= dFy 2 = dFp 2 dFy
Apn=o1 ) (d_g> —6w1 Yy (d_g> Fo(§ + th)g°(& + th).
{=—00 E+Lh {=—00 E+Lh
+00
Ap=— Y dd_I;O [2B1(& + Lh) F3(& + €h) + 2V1A(E + Lh)FE (& + th)]
400 F 400 F 2
S0 Bl R e Dby — Ro+ - Dy~ Y (ﬂ)
h d& dé
— E+th f=—00 E+Lh

The dependence of the velocity on g1 will be determined by requiring that the determinant of the matrix
equation (4.17) vanish. By restricting the sum to the lattice points, &€ = & = ¢£h, which is consistent with the
discrete Fourier transform we find that the results are consistent if w1 = 0 in which case the velocity is given by

Vi=——81, h) = —_— 2¢ F, —(EL — E_)F ,
1= b a) ZZ% & |, [ EFS (&) + 1 (Ey )Fo(&)
dF dF
a) =Y =2 |24 F3E) +—2| |- (4.18)
LET dé: & dé
&

We compared these semi-analytical results with direct numerical simulation for the fully discrete case and found a
good agreement for distances z of order 1. However, for longer distances, the theory needsto be modified. Moreover,
inthelimit » — O weretrieve the known result V; = —281, G1(§) — O.

5. Nonlinear diffraction management
5.1. Heuristic approach

Let us begin the anaysis by considering an infinite array of weakly coupled optica waveguides with equal
separation d. We have seen that the equation which governs the evolution of asingly polarized beam in anonlinear
waveguide array follows the discrete NL S equation. A natural generalization to two interacting electric fields E,(ll)
and E,SZ), isgiven by [13,29,30,53,54]

dEy

dz
where k isa2 x 2 matrix with «jj and «jj, j # I the self and cross-phase modulation coefficients, respectively, that
result from the nonlinear index change, &, = (|Ef,1) 12, |E,(12) 12T, € acoupling constant, z the propagation distance

=iC(EV + EV ) +ikd EY +i€)EY, j=12, (5.2)

n
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and k\ﬁ,l’z) the propagation constants of the waveguides. When a cw modes of the form

EX?(2) = Avzexplitkez — nked)] (5.2)
isinserted into the linearized version of Eq. (5.1) it yields
k, = k{F? +2Ccos(ked), k! = —2Cd? cos(k.d), (5.3)

where, as mentioned earlier, discrete diffractionisgiven by k. Animportant consequence of Eq. (5.3) isthat k!’ can
haveanegativesignif =/2 < |k.d| < 7, hence, alight beam can experience anomal ous diffraction. Experimentally,
the sign and local value of the diffraction can be controlled and manipulated by launching light at aparticular angle
with respect to the normal to the waveguides or equivalently by tilting the waveguide array. To build a nonlinear
model of diffraction management, we use a cascade of different sesgments of the waveguide, each piece being tilted
by an angle zero and y, respectively. The actua physical angle y, (the waveguide tilt angle) is related to the
wavenumber k, by the relation [27] sinyy = ky/k wherek = 2rng/Ao (Lo = 1.53 pm isthe central wavelength
in vacuum and we take ng = 3.3 to be the linear refractive index). In this way, we generate a waveguide array with
alternating diffraction. Next, we define the dimensionless amplitudes U,Sj) (U,El) =U,, ,(,2) =V,) by

EY — /U il +20z g _ L (5.4)
T
where P, = max(|U, |ﬁqax, [Va |r2nax) isthe characteristic power and z, the nonlinear length scale. Substituting these
guantities into Eq. (5.1) yields the following (dropping the prime) diffraction-managed vector DNLS equations
[29,30]:

dU, | D(z/zw)

[ +

(Unt1 + Un—1 — 2U,) + ((Un |2 + | Vu DU, =0,

dz 2h?
.ady, D(z/zw)
5t %(VM + Vae1 = 2Va) + |Un* + |ValP) Vi = 0, (5.5)

wheren = k12/k11 (Wetakex11 = k22, k12 = k21) andz, = 1/(k11 Py). Wechoosez,C cos (kyd) = D(z/zw)/(2h?)
where D(z/zw) is a piecewise constant periodic function that measures the local value of diffraction. Here zy, =
2L /z, with L being the physical length of each waveguide segment (see Fig. 12(a) for schematic representation).
Eq. (5.5) describe the dynamical evolution of coupled beams in a Kerr medium with varying diffraction. When
the “effective” nonlinearity balances the average diffraction then bright vector discrete solitons can form. The
dependence of the coupling constant C on the waveguide width (¢) and separation (d) is given by (for AlGaAs
waveguide) C = (0.00984/¢) exp(—0.22d) (see Eq. 13.8-10, pp. 523 of Ref. [55]). Therefore, the coupling constant
C that corresponds to the experimental data reported in [28] (for 2.5 wm waveguide separation and width) is found

AQ)

[2L 8/ 1-062

@ (b)

Fig. 12. Schematic presentation of the waveguide array (a) and the diffraction map (b).
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to be C = 2.27mm~1. For typical power P, ~ 300W; typical nonlinear Kerr coefficient k11 = 3.6m~tW~-1 and
typical waveguide length L ~ 100 um we find z, =~ 1 mm and zy, =~ 0.2, which suggests the use of asymptotic
theory based on small zy. Such asymptotic analysis was developed in [29,30] for both the scalar and vector cases
wherethe diffraction function D = §1 + A /zw With A being a piecewise constant function (see Fig. 12(b)). Model
(5.5) admits stationary soliton solution even when z,y is of order 1.

5.2. Asymptotic theory for diffraction management

5.2.1. Renormalization

We have seen in the preceding section how can we build, based on physical heuristic arguments, a model that
incorporate both normal and anomalousdiffraction. Thekey ideain formulating amodel of diffraction management,
isto use acascade of different segments of waveguide, each piece being tilted by an angle zero and y, respectively.
Here, we give a derivation of the model, in the scalar case, based on asymptotic theory. Two approaches are given.
Thefirst is based on perturbation expansion using a renormalized eigen-mode of each single waveguide, whereas
in the second we expand around eigenfunction of an untilted waveguide. It is clear from Fig. 12(a) that each single
waveguide is not stationary. As aresult, the evolution of the beam’ s amplitude is governed by

r L7 Y 22AX)W =0, X a/ZD(Z/)dZ/ (5.6)
— =Xx— - .
32 | a2 0 e Jo ’

whereas before, Z = ¢z; a is a small parameter to be determined later and D(Z) a piecewise constant periodic
function that measures the local value of diffraction. When the waveguides are well separated then the dynamics of
each mode v, in waveguide f,ﬁ is decoupled and is given by

Zwm

<a2D2(2)+1) o+ (G LA(X) = 25)Ym = 0. (5.7)

However when the waveguides are at close proximity, we approximate the solution to Eg. (5.6) as a multiscale
perturbation series:

+00
Y En(Z)¥m(X)e o, (58)

m=—oo
Substituting the ansatz (5.8) into Eq. (5.6), we find

+00

Z |: 2I8)»01ﬁm

m=—00

52
8Z2
dﬁ" 20eDEm Wi _ o 9D —dw’"] g 107 =,

(( 07+ 1) ‘””’ K2 (2 — Aéwm) En

+ 2iaergDE,, (5.9

- 9z dx  fTMmaz dx

Using Eq. (5.7) in the above equation, multiplying Eq. (5.9) by ¢ exp(iroz) and integrating over X yields the
following:

= . BE ZazEm +oo 2 oo 2
3 [(_2. roln 4 25 )/ demx/f,’;+k0Em/ dX Af2Y v
V4 —00

m=—0o0 —0o0

+00 E,. D +00 ]
+2iaA0DEm/ dxdﬂ% (2D8—+E d-)/ dx d‘/’”w } =0. (5.10)
—o0 dz dx
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Similar to the arguments we presented before, we shall assume that the overlap integrals follow the scaling given
in Eq. (2.6) and that « = O(u). In close analogy to the calculations given before, we find that for a sech-like mode
(Eq. (2.7)) profile we have

+o00
f dxdwmw be_m_m\/,l, (5.11)
"

—00

where b is aconstant. Restricting the sum in Eq. (5 10) to the nearest neighbors, i.e., m = n, n + 1 and by defining
7 = Z/(2\cap), kocl = C1, 2A.bD = D; E, = E* exp(— Ikocoz) we find that E,, satisfies (dropping the tilde)

BEn

+ C1(Epq1 + En—1) +iD(2)(Epq1 — En—1) = 0. (5.12)

The constant diffraction case, i.e., Eq. (2.10) isrecovered when D = 0. Eq. (5.12) isthe general dynamical equation
that governs the evolution of optical beam in a diffraction-managed linear waveguide array. However, when the
intensity of the incident beam is sufficiently high then the refractive index of the medium will depend on the
intensity which for Kerr mediais proportional to the intensity. Therefore, by following the same procedure outlined
in Section 2.1 we find that the general evolution equation for the optical field in a diffraction-managed nonlinear
waveguide array is governed by

w1+ En—1) +iD(2)(Ent1 — En—1) + gn|Ex?E, = 0. (5.12)

In the case of strong diffraction for which max |D(z)| > |C1| (recall that D(z) is a piecewise constant function) and
by defining E,, = E, exp(—inn/2), Eq. (5.12) reduces to

ntl+ En_1) + gnl |En|2En =0. (513)

5.2.2. Direct approach
In this section, we give a different approach to derive amodel for diffraction management. We approximate the
solution to Eq. (5.6) again as a multiscale perturbation series:

+00
> En(2)Ym(X) elon@—rod, (5.14)

where the the phase ¢, (z) will be chosen later. Substituting the ansatz (5.14) into Eq. (5.6), we find

“+o00

; d v, . d(pm oE,, dlﬂm
E : m (2)—Aoz ‘ m 212 2 02

e'[‘” O=hod 2 14+ aD )+k0f Env, + 2 <_Z —A0> < p —Y; —aD——E,,

m=—0Q0

) (Wi—ko) Bt — 2060222 W DD i + ZaE—’"w,j -

dz 0z dx "dz dx RYA
(5.15)

Using Eq. (2.1) and multiplying Eq. (5.15) by v exp[—ig, (z)] and integrating over —oo < X < oo yields the
following equation (ignoring the order &2 term):
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oo do do . d?g
ei[(p’" @=¢u(2)] / dx ‘//m iﬁ 2D2 )\ —k —+ k A — n —|— 2\ T +1 m
ngi ( 0 Ofm) 0 fm dz 0 dz de

. dep, dD 0E,

Ipm - d(pm m |

Until now the phase factor ¢,, isarbitrary. Therefore, we shall choose the phase in such away that

212 oo 2 2 2 2 dom 2 dem oo 2
w0? [ " axog- g = | () -2 | [ aximt 516
oo z z 0

Eq. (5.16) implies that

dem _ 2 dem 2 _ 4 dz(ﬂm _
@ = O(x), ( &z ) = O(a"), 2 O(we). (5.17)

The localized nature of the waveguides indicates that ¢, isindependent of m, i.e., it isthe samefor al waveguides.
With this scaling in mind and by taking as before « = O(yt), we recover Eq. (5.12).

5.3. Asymptotic theory for vector diffraction management

In this section we present a derivation of the vector DM-DNLS equation starting from the nonlinear vector
Helmholtz equations which is obtained from Maxwell’ s equations. The propagation of an intense laser beam in a
Kerr medium is described by the vector Helmholtz equations:

? P
—+ — |E+6§V(V-PnL) + kof (x)E 4+ 6PN = 0. (5.18)
a2 9z2

The nonlinear polarization Py can be expressed in terms of the electric field as
Pne = (E-EYE+ y(E-E)E", (5.19)

where y is a constant related to the third order nonlinear susceptibility [56]. Since we are interested in interac-
tion between two coupled laser beams, we shall assume that each one is initially linearly polarized and mutually
orthogonal, i.e.:

E(x, 2) = &1(x, D)X + E2(x, 2)Y + E3(x, 2)Y. (5.20)

In this case, the nonlinear polarization takes the form

Pae = PR+ P + P 2. (5.21)
where

P = (L + D& + |E21DEL + vESE; + vERES., (5.22)

PR = (&7 + A+ pI&DE + vEES + vE3ES, (5.23)

P = (&1 + 1217 + (L + P)|E3P)E3 + vE3ES + vEZES, (5.24)
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Substituting the expression for E in Eg. (5.18) and taking into account the nonlinear polarization, leads to the
coupled system:

82 32 2P(1) D

(W + p 2) E1+6 2 + kof (x)&L+ 8Py =0, (5.25)
i + — ” &+ K3 f2(0)E + 8PP =0 (5.26)
o2 32 0 2T oML =5 '
32 82 aZP'EllL) 2 (3) (3)

Inthiswork, we areinterested in interaction of two mutually orthogonal beams. However, if weinitially assume that
&3 = 0, then the source term 82P(l) /0xdz appearing in Eq. (5.27) will eventually generate anonzero £3 component.
In fact, this additional term (due to nonlinear polarization) is of order §. Hence, we are justified in neglecting £3 as
compared to £1 and &2. Next we follow the same expansion as mentioned earlier and let

+00 oo
D An@Yn () e, S = ) Bu(D)ym(X)e P, (5:28)

where X has been defined in Eq. (5.6). The expansion of the linear termsisalready givenin (5.12) with the addition
of on-site terms kygA,, and kwgB,,. Therefore, we focus the attention below solely on the nonlinear terms and in
particular give an estimate on the order of magnitude of 82P(1) /9x?. Substituting the ansatz (5.28) into Egs. (5.25)
and (5.26); multiplying by v exp(iioz) and integrating over X yields the following result for the nonlinear terms:

+o0 1 ) +00
/ AXPRL Y €495 =1+ D AnAwAl, / AX Yo Y 5 U
—0oQ —00

m,m’,m"”
+00 +00
+ X mmpap [ axwuiviy ¥ onsag [ dxumie;,
B - LIl -
(5.29)
+00 .
f dXP@ y dhor = D AnAL Bm/// AX YV ViV + (L+9) > BBy B
-0 m,m’,m" i
+00 +00
X / dX iy, +v Z AIAI’B;/f dX Y . (5.30)
- L -

Due to the assumption of widely separated waveguides, the only order 1 contribution comes from the nonlinear
termwhen m = m’ = m” = n. We therefore find that to O(e) the nonlinear evolution of A, and B, is given by
(taking 6 = ¢€)

3 n

+ kwgAn + C(2)Ant1 + C () Ap—1 + (@1l A, 12+ b1|Ba?) A, + r]leA* =0, (5.31)

0B
w11+ C*(2) Byt + (@2 Bu|? + b2l Anl®) B, + 72A%B = 0, (5.32)

where the coefficients ax, a, b1, b, 71, 712 are given by

1= Q+Y+ya, bi=nn+ya, aG2=A+Ynn, ba=nn, 1=y + v T2 = Y,
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and

400 4 400 82 )
/ dX ¥ l™ = M, / dxﬁ(hﬂﬂ V)V, = Val.
—00

—00

By rescaling the field amplitudes, i.e., A, = A, /v/a1, B, = B,/+/a> we find the system (dropping the tilde):

L0A

1=+ hwgAn + C@ A1+ C @ An1 + (1Al + b1 By[*) Ay + n1B; A} = 0,
0B, " 2 2 2
="+ kg B + C@) Brsa + €@ Bu-a + (1Bl + b2l 4ul*) By + 1247 B = O,

With by = by /ap, by = bp/a1, 1 = fi1/az, n2 = fiz/a1 (see also Section 1).

6. Conclusions

L ocalized, stable nonlinear waves, often referred to as solitons, are of broad interest in mathematics and physics.
They are found in both continuous and discrete media. In this paper, aunified method is presented which is used to
obtain soliton solutions to discrete problems. In recent experiments, discrete solitons were observed in an optical
waveguide array. The fundamental governing system is the scalar DNL S equation. A suitable modification of this
system describes diffraction-managed solitons.

In this paper we have derived and investigated scalar and vector discrete diffraction-managed systems. The
proposed vector model describes propagation of two polarization modes interacting in awaveguide array with Kerr
nonlinearity in the presence of varying diffraction. The coupling of the two fields is described via a cross-phase
modulation coefficient. Intheregime of normal diffraction, both stationary and moving discrete solitonsare analyzed
using the Fourier transform method. The results indicate that a continuous stationary solution and a TW solutions
with uniform velocity are unlikely to exist. In the presence of both normal and anomalous diffraction a model is
developed from first principles that governs the propagation of two polarization modes interacting in a nonlinear
waveguide array via cross-phase modulation coupling.
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