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Abstract 

We analyze stability of continuous wave (cw) solutions to the second-harmonic-generation equations in a multidimensional 
dispersive medium, and demonstrate that they are always unstable. We also consider the modulational stability in a more 
general three-wave system, and demonstrate that, at least in some cases, its multidimensional cw solutions may be stable. 
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I. Introduction 

Solitons in dispersive media with the second-harmonic-generating (SHG) quadratic nonlinearity have recently 

attracted a great deal of  attention, see the papers [ 1,2,4-8] and references therein. With a few exceptions [4,6], the 

work was thus far focussed on stationary spatial solitons in one- and two-dimensional media, the latter case assuming 
cylindrical symmetry [2]. However, the quadratic nonlinearity is expected to produce still more nontrivial results in 
bulk dispersive media in the form of stable "light bullets", i.e., fully localized spatio-temporal solitons. Unlike the 
cubic nonlinearity, the quadratic nonlinearity does not give rise to the wave collapse in two- and three-dimensional 
media, which is why the corresponding "light bullets" have a chance to be stable. The absence of collapse and the 

possibility of  existence of the stable "bullets" in the three-dimensional dispersive SHG model were discovered by 
Kanashov and Rubenchik back in 1981 [3] (see also [4]). Nevertheless, the spatio-temporal solitons in the two- 
and three-dimensional SHG models have only recently been constructed [5] (see also [6]), by means of analytical 
methods based on the variational approximation and parallel direct numerical simulations. 

An issue closely related to the existence of both the usual (bright) and dark solitons (in the multidimensional case, 
the dark solitons represent optical vortices) is the modulational stability of the constant-amplitude background, i.e., 
cw solutions. For the one-dimensional case, MI has been recently analyzed in [7,8]. It has been demonstrated that, 
in the usual model of  the stationary SHG process in the spatial domain, al l  the cw solutions are modulationally 
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unstable. Stable solutions are possible in the temporal domain (e.g., in the model of the SHG optical fiber; however, 

this is still, chiefly, a theoretical object), provided that the signs of the dispersion coefficients at the fundamental 

harmonic (FH) and second harmonic (SH) have opposite signs [8]. 

The main objective of the present work is to study MI of the cw solutions in the multidimensional dispersive 

SHG model. We show that, in the multidimensional case, cw solutions are always unstable. This includes the case in 

which the FH and SH dispersion coefficients have opposite signs, even though in this case the modulational stability 

is possible in one dimension, as it was demonstrated in [8]. In particular, this implies that optical vortices with a mod- 

ulationally stable cw background can never exist in the SHG media, unlike stable multidimensional bright solitons. 

The general equations describing copropagation of FH and SH in the quadratic medium were actually formulated 

by Kanashov and Rubenchik in 198 1 [3]: 

iu, + Vfu + uss - u + UU* = 0, (1.1) 

2iv, + V~V + 6v,, - yv + ;u’ = 0, (1.2) 

where u and v are slowly varying envelopes of FH and SH, z and t are the properly resealed propagation distance 

and the so-called local time, the d-dimensional gradient VI acts upon the transverse coordinates (d = 1 and 

d = 2, respectively, for the two- and three-dimensional cases), and the parameter y measures the phase mismatch 

between the two harmonics. The dispersion at the FH is assumed to be anomalous, and S is the ratio of the SH 

and FH dispersion coefficients, which may have any sign. The system (1.1) and (1.2) implicitly assumes equal 

group velocities at the chosen carrier wavelengths, which can always be achieved by means of the necessary gauge 

transformation. 

2. Modulational instability of the homogeneous state 

First of all, we will study MI of the homogeneous solution to the system (1.1) and (1.2). This solution is given by 

ue = fi and vu = 1, where we assume y > 0, and a constant phase of the solution can be removed in an obvious 

way. We study stability of this solution by adding to it an infinitesimal perturbation, u = uu + u 1 and v = vu + v 1. 

Then Eqs. (1.1) and (1.2) yield 

iulz+V:ut +~1rr-z41 +uT+u~vt =O, (2.1) 

2ivtz + V:vt + Svtrr - yvt + ~0~1 = 0. (2.2) 

Next we look for a solution to the system (2.1) and (2.2) with each perturbation being a linear combination of 

exp(i(k . XI + wr) + az) and exp(-i(k . XI + tit) + G*z), where CJ is the (generally complex) instability growth 

rate, and o and k are the frequency and wave vector for the perturbation. It follows that the stability determinant of 

the perturbed cw solution is 

icr - B 1 J2y 0 

1 -iu - B 0 fi 

J2y 0 2ia - A 0 ’ 

0 J2y 0 -2ia - A I 

(2.3) 

where A = k2 + So2 + y and B = k2 + w2 + 1. The equation for the instability eigenvalue c produced by this 
determinant is 

40~ + a2[A2 + 4B2 - 4 + 8y] + A2(B2 - 1) - 4yBA + 4y2 = 0. (2.4) 
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The solution to Eq. (2.4) for 0-2 is 

8cr 2 = - [ A  2 + 4(B 2 - 1) + 8y]  i x/-~, (2.5) 

where 

79 ~ [a  2 - 4(B 2 - 1)] 2 + 16y[ (a  + 2B) 2 - 4]. (2.6) 

Because we are dealing with a conservative (Hamiltonian) system, the stability may be only neutral. Therefore cr 

must be purely imaginary, i.e., 0 -2 mus t  be strictly real and nonpositive, for the stability. Any complex or real but 

posit ive 0-2 implies an instability. 

Although we have the explicit formula (2.5) for 0-, the full analysis is not straightforward. Therefore, we will 

study the system in different regimes. First, we consider the homogeneous perturbations, i.e., k = o9 = 0. In this 

case, A = y and B = 1, which yields ¢r 2 = 0 or 0-2 = _ y ( y  + 8)/4. Since y > 0, the stability condition is 

satisfied for this perturbation. 

Next, we consider the long-wave approximation, in which we assume that 09, k and 0- are of  the same order of 

smallness. Then Eq. (2.4) becomes 

cr2(y 2 -4- 8]-') -+- 2y2(k 2 + o92) - 4 y [ y ( k  2 + o92) + (k 2 + 8o92)] = 0. (2.7) 

Solving for 0-, we obtain 

cr 2 = (2y + 4)k 2 + (2y + 48)o9 2 
y + 8 (2.8) 

Direct inspection of  this expression demonstrates that the parameter 0-2 cannot be made negative definite. This 

means that the homogeneous cw solution cannot be stable and, therefore, it cannot support a stable optical vortex 

either. On the other hand, the homogeneous solutions are stable against short-wave perturbations as can be seen 

directly from Eq. (2.5). Indeed, for large k and co one obtains, for the two branches of expression (2.5), 0-+ ~ - 4 B  2 
and 0-2 ~ - 2 A  2. 

In the case when the cw solutions are unstable, it is interesting to find a particular perturbation mode that provides 

for a maximum instability growth rate. In the generic case, such a perturbation mode will determine periodicity of  a 

nontrivial solution generated by MI [9]. To this end, in Fig. 1 we display a three-dimensional plot of the instability 

growth rate as a function of the perturbation parameters k and co, as obtained numerically from the full equation (2.5). 

Another nontrivial solution to the system (1.1) and (1.2) can be obtained by means of  the transformation u = 
-~i- _Ve-4iz  Ue - ",v = (which is not equivalent to the Galileian transformation). The transformed variables U and 

V satisfy the following equations: 

iU: + VZL U + U~r + U - VU* = 0, (2.9) 

2iV.- + V 2 V  + ~Vrr + E,V -- ~U 2 = 0, (2.10) 

where E~ ----- 8 - ),. Following the same analysis, one finds that the solution U0 = 2v/~.~, V0 = 1 is still stable against 
the homogeneous perturbation. Moreover, in the long-wave approximation, we have 

(2E, + 4)k 2 + (2ys + 48)o9 2 
0-- = (2.11) 

)/.,-+8 

One can see from Eq. (2.11) that the homogeneous solution to Eqs. (2.9) and (2.10) is stable against long-wave 

perturbations. However, it proves to be unstable against other infinitesimal perturbations. In Fig. 2 we show a 
three-dimensional plot of  the instability growth rate Re(a)  as a function of the perturbation parameters k and w. 
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Fig. 1. A three-dimensional plot of the instability growth rate Re(a) (see Eq. (2.5)) for the homogeneous solutions to Eqs. (2.1) and (2.2) 
as a function of the perturbation parameters k and ~o for F ----- 0.5 and ~ = 1. 

In accord with Eq. (2.11), for k and 09 close to the origin there is no instability, while a strong instability occurs at 

finite k and co. Increasing the parameter  Ys, the instability region shrinks, so that for a large mismatch Ys ~ 20, the 

solution becomes almost stable for all values of  k. This is illustrated by a contour plot of  the function Re tr(k, co) at 

ys = 20 and 3 = 1 (Fig. 3). One way to understand this result is to consider the system (2.9) and (2.10) in the limit 

Fs --+ oo. To the first order, this system is equivalent to a defocusing nonlinear Schr6dinger equation, in which the 

homogeneous solution is well-known to be modulat ionally stable. 

3. Modulational instability for the general cw solutions 

In this section we will analyze MI for a general cw solution to Eqs. (1.1) and (1.2) in the form 

u0 = A0e i~°r, v0 = B0e 2iC°°r, (3.1) 

where B0 ---- 1+o92 and A0 = ~/2(1 + co~)(F + 46co~). More general cw solutions contain the additional phase terms 

k0 • X_L and qoz. However, since Eqs. (1.1) and (1.2) are Galileian invariant, k0 and q0 can be transformed to zero. 

To proceed with the stability analysis, we again let u = u0 + Ul ei~)r and v = v0 + Vl e2i°mr • Substituting this 

into Eqs. (1.1) and (1.2), l inearizing around the cw solution, we obtain 

iOzul + V2ul  + (Or + ico0)2ul - ul + B0ul* + Aovi = 0, (3.2) 

2iOzvi + V2 vl + ~(0r + 2ico0)2Vl - VvJ + Aoul = 0. (3.3) 
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Fig. 2. A three-dimensional plot of the instability growth rate Re(cT) for the homogeneous solution to Eqs. (2.9) and (2.10) as a function 

of the perturbation parameters k and w for yr = 0.5 and 6 = 1, 

Note that, in the particular case of the r-independent solutions, Eqs. (3.2) and (3.3) take the form of the stability 

problem for a one-dimensional system. However, it is easy to check that these equations are really tantamount to the 

previously studied one-dimensional case [7,8] only if w = 0; otherwise, the values of the coefficients are different, 

hence the stability problem should be studied anew. 

We look for a solution in essentially the same form as in the previous section, i.e., as a superposition of exp(i(k . 

X_L + or) + a:) and exp(-i(k . xl + wt) + cr*z). Substitution of these wave forms into the linearized equations 

yields the following determinant of the linearized problem: 

ifl -bt Bo A0 0 

Bo -ia - bl 0 A0 
A0 0 2ia ’ (3.4) - at 0 

0 A0 0 -2ic - a? 

I 

where 

at -k’+S(o+2wo)2+y, a2 e k2 + 6(w - 2w0)* + y, 

bl I k” + (w + wo)’ + 1, b2zk2+(co-wo)2+1, 

hence the stability eigenvalues are determined by the algebraic equation 

(2ia - at)(--2io - al)[(ia - bt)(-ia - b2) - Bi] - Ai[(2ia - at)(io - bl) 

+(-ia - bz)(-2ia - a~)] + Ai = 0. (3.5) 
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Fig. 3. A contour plot of  the instability growth rate Re(a )  for Ys = 20 and 3 = 1. 

First we consider the homogeneous perturbation, w = k = 0. In this case we have al = a2 = y + 4&o0 2 and 

bl = b2 = 1 + co~. Substituting this into Eq. (3.5), we find 

o2 = (y + 43w~)(4~coo 2 + 8O9o 2 + y + 8) 
4 (3.6) 

To find the stability region, we require, as before, O "2 _< 0. This yields 

y > -46co 2. (3.7) 

This result is consistent with that obtained in the previous section for the case coo = 0. 

In the case when k, co and cr are finite but small (the long-wave approximation), Eq. (3.5) can be written in the 
form 

[(y + 46o92) 2 + 4Ao2]Cr 2 + 4icoo(y + 4~co2)r/co~r -- 2(y  + 43co2)[otk 2 +/5o92] = 0, (3.8) 

where 

O = 4(1 + co~)(1 + 6) + 48coo 2 + y, 

ot = (1 + co2)(48coo 2 + 2o92 + y + 2), 
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/~ = 30~co 4 -4- 24~co 2 -4- 3yco~ -4- y -4- 2~. 

The neutral stability (purely imaginary ~r) can be achieved by requiring A < 0, where 

A ~ - 8 ( y  + 4c~co~)'[2cotrF - (48co 2 + 8co~ + y + 8)/31co 2 
3 O 9 

+ 8 ( y  + 48co6)-(48co6 + 8co~ + y + 8)~ek 2. (3.9) 

Under condition (3.7), one notices that A is positive, hence the general cw solution is always unstable against the 

long-wave perturbations. 

4. Modulational stability of three-wave interactions in the dispersive medium 

In this section we aim to analyze MI in a dispersive optical media supporting more general three-wave (3W) 

nonlinear quadratic interactions. According to [10], the model equations are 

i(Ep):  -f- ½Dp(Ep)rr  = EIE2 ,  

i (El ) :  "4" i t ' l (E l ) r  -4- ½ D l ( E l ) r r  = EpE~,  

i(E2)= -4-iv2(E2)r -4- ½D2(E2)rr = EpE~,  

(4.1) 

(4.2) 

(4.3) 

where Ep and En (n = 1,2) represent the envelopes of  the pump wave (PW) and two daughter waves (DW), respec- 
tively, Dp and Dn are the corresponding dispersion coefficients, and the coefficient of  the parametric interaction is 
set equal to one. The coefficients Vn measure the group velocities of  the DWs in the reference frame in which the 
PW is at rest. The remaining invariance of the dispersive 3W equations with respect to the gauge transformations is 

employed to set the phase-velocity coefficients equal to zero in all the three equations. We consider a cw solution 
for system (4.1)-(4.3) in the form 

EpO = Apeikvz, EOn = Aneiknz, (4.4) 

with kp = kl + k2, lAp] 2 = klk2, [A1 [2 = k2(kl -4- k2), and IA2] 2 = kl (kl + k2). We linearize the system around 
this cw solution by writing 

0 E r, = Ep -4- Epe ~k~': , (4.5) 

El = El 0 -4- gl elk1:, (4.6) 

E2 = E ° + g2e ik2:. (4.7) 

Substituting this into Eqs. (4.1)-(4.3), one obtains 

(iO: - kp)gp -4- I Dp(gp)rr  - A1~72 - A2gl = 0, 

(iO- - kl)g~ + iv1 (g~)~ + ½D~ ( g i ) ~  - A p g j  - A~gp = O, 

(iO: - k2)g2 -4- iv2(g2)r -4- ½Dz(gz)r~ - apS~  - a T g  p = O. 

(4.8) 

(4.9) 

(4.10) 

Next we assume, as in the previous sections, that each perturbation is a linear combination of exp(icor + kz)  and 
exp( - i cor  -4- X'z),  where )~ is the instability growth rate, and co is an arbitrary frequency of the small perturbation. 
The determinant of  the linearized equations for the perturbed cw solutions is 
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zi 0 - A l  0 -A2  0 
0 Z2 0 --A~ 0 - a ~  

- A ~  0 0 --Ap z3 0 

0 --A2 - A p  0 0 z4 

- A  T 0 z5 0 0 - A p  

0 - A 1  0 Z6 - A p  0 

(4.11) 

I Dpco , * Zl ~- i)~ - kp - Z2 = Z 1 , 
1 "~ Z3 = iX  - k l  - r i o ) -  1DICO2, z4 = -i)~ - k l  + v i a ) -  ~Dlco ~, 

z5 = iX - k2 - v2co - 1D2co2, z6 = - i ; .  - k2 + v2co - ID2o92. 

The stability condition requires that all the real parts of  the eigenvalues of  the above determinant be negative or 

exactly zero. However, finding the eigenvalues of  (4.1 i) is a formidable task. Hence we start the analysis with the 

case of  the uniform perturbation, co = 0. In this case, the growth rate ~. is given by 

~2 = _4(k  2 + ki k2 + k2). (4.12) 

The quadratic form on the right-hand side of  this expression is negative definite, hence the solution is always stable 

against the uniform perturbations. 

Because it is too difficult to consider stability against nonuniform perturbations in the general case, in what 

follows we assume that ~. and co are small, and retain terms of  the fourth order in ~. and co (the terms of  the second 

order are identically zero). After lengthy calculations we find that the instability growth rate ~. satisfies an algebraic 

equation, 

C0~ 4 + CI~ 3 -- C2~ 2 "~- C3~ + C4 = 0, (4.13) 

where ~. = icon, and 

co = 4(k 2 + klk2 + k2), 

Cl = 2Vl[(k2 + kp) 2 + k 2] + 2v2[(kl + kp) 2 + k2], 

c2 = 2kik2kp(Dl + D2 - Dp) - v2(k2 + kp) 2 - v2(ki + kp) 2 - 2vl v2(nk 2 - k l k 2 ) ,  

c3 = 2kpvl I)211)1 (k2 + kp) -t- 1)2(kl -t- kp)] - 2klk2kp[Vl (D2 - Dp) -+- 1)2(D1 - Dp)], 

c4 = -k lk2kp[D1Dpk2 + D2Dpkl + D1D2kp] + 1)lV2kp(2klk2Dp + kpVl 1)2) • 

The stability of  the solution (4.4) requires ~ to be real. Let us first consider the special case when the phase- 

mismatch coefficients in the underlying equations (4.1)-(4.3) are zero, vl = v2 = 0. In this case, Cl = c3 - 0, 

leaving Eq. (4.13) in the form 

Co~ 4 - -  C2~ 2 -I- C4 = O. (4.14) 

If  c2 and c4 are strictly positive and c 2 - 4c0c4 > O, it follows from Eq. (4.14) that the solution (4.4) is stable. It 
should be pointed out that these conditions do not hold for every ki and k2. In particular, ifkl  = k2 = k > 0 (< 0), 
the stability condition takes the form of the following system of inequalities: 

D1 q- D2 - Dp > 0 (< 0), Dp(D1 q- D2) q- 2DID2 < 0, 

(D1 + D2 - Dp) 2 + 6(DpDI + DpD2 q- 2D1D2) > 0. 
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For nonzero mismatch parameters Vl and v2, a simple result can be obtained in the case vl = - v 2  --- v. In 

addition, we will assume that kl = k2 = k and Di = D2 = - D p  =-- D, then cl = c3 ---- 0. In this case, the final 

stability condition for solutions with kD > 0 is v 2 < 3kD. 

5. Conclusion 

We have analyzed stability of the homogeneous as well as general cw solution for the second-harmonic-generation 

equations describing copropagation of the fundamental and second harmonics in the quadratically nonlinear medium. 

We have shown that the cw solutions are always unstable, against long-wave perturbation for one class of solutions, 

and against short-wave perturbations for another class. From here, we conclude that stable optical vortices cannot 

be supported by the second-harmonic-generating media. 

On the other hand, we have found that a general three-wave system with the quadratic nonlinearities may have, 

at least in some special cases, cw solutions stable against both long- and short-wave perturbations, i.e., it has a 

potential to support stable vortices. The vortices will be considered in a separate work. 
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