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! The nonlinear Schrödinger–Helmholtz (SH) equation in N space dimensions with 2!
nonlinear power was proposed as a regularization of the classic nonlinear Schrödinger (NLS)
equation. It was shown that the SH equation has a larger regime

(
1 ≤ ! < 4

N

)
of global

existence and uniqueness of solutions compared with that of the classic NLS
(
0 < ! < 2

N

)
. In

the limiting case where the Schrödinger–Helmholtz equation is viewed as a perturbed system of
the classic NLS equation, we apply modulation theory to the classic critical case (! = 1,N = 2)
and show that the regularization prevents the formation of singularities of the NLS equation.
Our theoretical results are supported by numerical simulations.
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equation; Regularization of the nonlinear Schrödinger equation; Schrödinger–
Helmholtz equation; Schrödinger–Newton equation.
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1. INTRODUCTION

The nonlinear Schrödinger–Helmholtz (SH) system is given as below

ivt + "v + u|v|!−1v = 0, t > 0, x ∈ !N ,

u − "2"u = |v|!+1, (1.1)

v(0) = v0

Address correspondence to Edriss S. Titi, Department of Mathematics, University of California,
Irvine, CA 92697-3875, USA; E-mail: etiti@math.uci.edu

46

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
F
l
o
r
i
d
a
 
S
t
a
t
e
 
U
n
i
v
e
r
s
i
t
y
 
L
i
b
r
a
r
i
e
s
]
 
A
t
:
 
1
9
:
2
0
 
2
8
 
F
e
b
r
u
a
r
y
 
2
0
0
9



Modulation Approximation 47

where ! ≥ 1 and, for simplicity, " > 0. This system has been proposed [5]
as a regularization for the classic nonlinear Schrödinger (NLS) equation:

iut + "u + |u|2!u = 0, t > 0, x ∈ !N ,

u(0) = u0# (1.2)

In [5] we showed global existence of solution of the Cauchy problem (1.1)
for 1 ≤ ! < 3 when N = 1 and 1 ≤ ! < 4

N when N > 1. It is well known
that the classic NLS has global solution for 0 ≤ ! < 2

N in any dimension
N ≥ 1 and there is finite time blow up in the critical case ! = 2

N (see, e.g.,
[6, 13–15, 19, 20] and references therein). So we regard the SH system
(1.1) as a regularization system for the NLS (1.2) as the former system has
larger regime of global existence for the parameter !, which contains the
values for which the NLS (1.2) blows up. Note that (1.1) is a Hamiltonian
system with the corresponding Hamiltonian

"(v) =
∫

!N

(
|$v(x , t)|2 − u(x , t)|v(x , t)|!+1

! + 1

)
dx

and can be obtained formally by the variational principle

i
%v
%t

= &"(v)
&v∗ ,

where v∗ denotes the complex conjugate of v. Let us rewrite system (1.1) as

ivt + "v + |v|2!v + "2("u)|v|!−1v = 0, (1.3)

where u = (I − "2")−1(|v|!+1). Observe that when the parameter " goes
to zero, one can regard system (1.1) (or 1.3) as a formal perturbation of
the classic NLS. There has been a lot of work on perturbed NLS in the
critical case ! = 2

N (see, e.g., [8–10], and references therein). In this paper,
we will apply modulation theory (see, e.g., [11, 12, 17, 18] for references
about modulation theory) to the classic critical case ! = 1,N = 2 in order
to shed more light on the nature of the effect of the regularization
in preventing the blow up. In this case, the classic NLS blows up for
certain initial data, however, the SH system has global solution with the
regularization parameter " > 0. Indeed, modulation theory tries to explain
the role of the regularization in preventing the formation of singularity
near the critical values of the initial data that blow up in the classic
case. Intuitively speaking, the basic idea behind modulation theory is that
the energy near singularity is equal to the power of the Townes soliton
[see Eq. (2.1) below], and the profiles of the solutions are asymptotic to
some rescaled profiles of the Townes soliton. With modulation theory, one

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
F
l
o
r
i
d
a
 
S
t
a
t
e
 
U
n
i
v
e
r
s
i
t
y
 
L
i
b
r
a
r
i
e
s
]
 
A
t
:
 
1
9
:
2
0
 
2
8
 
F
e
b
r
u
a
r
y
 
2
0
0
9



48 Y. Cao et al.

can reduce the perturbed system (1.3) into a simpler system of ordinary
differential equations that do not depend on the spatial variables, and they
are supposed to be easier to analyze both analytically and numerically.

In this paper, we will study how the parameter " prevents the singularity
formation in the 2D critical NLS. The work here will follow the study we
initiated in [5]. In particular, some of the statements have already been
mentioned there. For the sake of completeness, we will restate some
important theorems and propositions.

2. MODULATION THEORY

First we review some main results on modulation theory for the
unperturbed critical NLS following [12]. As stated in [12], most of
the results presented in this section are formal and have not been
made rigorous at present. We emphasize here that we consider the case
! = 1,N = 2 in order to see how the regularization prevents singularity
formation.

In the case of self-focusing, the amount of power that goes into
the singularity is equal to the critical power Nc = ‖R‖2

2 =
∫ ∞
0 R 2(r )r dr

where R , the Townes soliton, is the solution of the following equation with
minimal L2-norm, which is positive and radially symmetric

"R −R +R 3 = 0, R ′(0)= 0, lim
r→+∞

R(r )= 0, " = %2

%r 2
+ 1

r
%

%r
# (2.1)

Close to the stage of self-focusing, the solution of (1.2) separates into two
components as it propagates,

v = vs + vback (2.2)

where vs is the high-intensity inner core of the beam that self-focuses
toward its center axis and vback is the low-intensity outer part that
propagates forward following the usual linear propagation mode. Close
enough to the singularity, vs has only small excess power above the critical
one and approches the radially symmetric asymptotic profile:

vs(x , t) = 1
L(t)

V (', () exp
(
i
(
' + Lt

L
r 2

4

))
, arg V (', 0) = 0, (2.3)

where L(t) is a yet undetermined function that is used to rescale the
variables ( = ((1, (2), x = (x1, x2) with

( = x
L
,

d'
dt

= 1
L2

#
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Modulation Approximation 49

Then the reduced system for unperturbed critical NLS is

Ltt = − )

L3
,

(2.4)

)t = − e
− *√

)

L2
,

where L(t) is the scaling factor and ) is proportional to the excess of the
power near singularity: ) = M (N − Nc) for constantM = 1

4

∫ ∞
0 R 2(+)+3d+ ≈

0#55. We emphasize here that in the case of self-focusing of the original
system, both the scaling factor L and the excess energy ) will approach
zero.

Next we review some results on modulation theory for the perturbed
critical NSL [12]. For a general perturbed critical NLS of the form

ivt + "v + |v|2v + ,F (v, vt ,$v, # # # ) = 0, |,| - 1, (2.5)

where F is an even function in x , modulation theory is valid when the
following three conditions hold.

Condition 2.1. The focusing part of the solution is close to the
asymptotic profile

vs(t , x) ∼ 1
L(t)

V (', () exp
[
i'(t) + i

Lt

L
r 2

4

]
, (2.6)

where

( = x
L
, r 2 = x2

1 + x2
2 ,

d'
dt

= 1
L(t)2

and V = R + #(), ,), ) = −L3Ltt and R is the Townes soliton given in (2.1).

Condition 2.2. The power is close to critical
∣∣∣∣
1
2*

∫
|vs(t , x1, x2)|2dx1 dx2 − Nc

∣∣∣∣ - 1, (2.7)

or, equivalently,

|)(t)| - 1, (2.8)

where Nc = 1
2*

∫
!2 R(x1, x2)2dx1 dx2 = ‖R‖2

2 is the threshold energy of
blow up.
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50 Y. Cao et al.

Condition 2.3. The perturbation ,F is small in comparison with the
other terms, i.e.,

|,F | - |"v|, |,F | - |v|3# (2.9)

The following proposition is given in [12].

Proposition 2.4. If Conditions 2.1–2.3 hold, self-focusing in the perturbed
critical NLS (2.5) is given to leading order by the reduced system

)t + e
− *√

)

L2
= ,

2M
(f1)t − 2,

M
f2, Ltt = − )

L3
# (2.10)

The auxiliary functions f1, f2 are given by

f1(t) = 2L(t)Re
[
1
2*

∫

!2
F (-R)exp(−iS)[R(+) + +$R(+)]dx1 dx2

]
, (2.11)

f2(t) = Im
[
1
2*

∫

!2
-∗

RF (-R)dx1 dx2

]
, (2.12)

where

-R = 1
L
R(+)exp(iS),

and R is the Townes soliton given in (2.1), + = r
L , S = '(t) + Lt

L
r 2

4 ,
d'
dt = 1

L2 ,
M = 1

4

∫ ∞
0 R(+)2+3d+ ≈ 0#55.

Furthermore, if F is a conservative perturbation, i.e.,

Im
∫

!2
v∗F (v)dx1 dx2 = 0, (2.13)

then f2 = 0. Because ) - 1, e
− *√

) - ), taking the leading order by neglecting the
exponential term in the first equation of (2.10), we further reduce the system (2.10)
into the following system

−L3Ltt = ) = )0 + ,

2M
f1, )0 = )(0) − ,

2M
f1(0), (2.14)

where )0 is independent of t .

In general, at the onset of self-focusing only Condition 2.3 holds.
Therefore, if the power is above Nc , the solution will initially self-focus as
in the unperturbed critical NLS. As a result, near the time of blow up in
the absence of the perturbation, Conditions 2.1–2.2 will also be satisfied.
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Modulation Approximation 51

It is worth pointing out that, as studied in [12], various conservative
perturbations of the critical NLS equation, for instance, self-focusing in
fiber arrays (see [1–4, 16, 21] and references therein) and small dispersive
fifth-power nonlinear perturbation to the classic NLS [18] have a generic
form

f1 ∼ − C
L2

, C = constant, (2.15)

which results in a canonical focusing–defocusing oscillation.
Next, we shall derive the reduced equations (2.14) that correspond

with the nonlinear Schrödinger–Helmholtz regularization system in the
critical case ! = 1, N = 2 (the reason for this restriction is that it allows us
to compare with numerical simulations). In this case, Eq. (1.3) reads

ivt + "v + |v|2v + "2v"u = 0# (2.16)

Comparing Eq. (2.16) with (2.5) we have , = "2 and

F (v) = v"u, u − "2"u = |v|2# (2.17)

We shall assume that the system (2.16) satisfies all three conditions, (2.6),
(2.7), and (2.9). Because

-R(x) = 1
L
R

(
x
L

)
exp(iS), (2.18)

we have

F (-R)(x) = -R(x)"uR , (2.19)

where uR satisfies

uR(x) − "2"uR(x) = |-R(x)|2 =
∣∣∣∣
1
L
R

(
x
L

)
exp(iS)

∣∣∣∣
2

= 1
L2

∣∣∣∣R
(
x
L

)∣∣∣∣
2

# (2.20)

For a given function g , solution to the equation

(I − "2")u(x) = g
(
x
L

)
, x ∈ !2 (2.21)

is given by

u(x) =
(
B "

L
∗ g

)( x
L

)
,
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52 Y. Cao et al.

where B "
L

is the modified Bessel potential or the Green function
corresponding with the Helmholtz operator (see, e.g., [7] for reference on
Bessel potential)

B "
L
(x) = 1

2"2

∫ ∞

0

e−s e
− |x |2

4s("/L)2

sN /2
ds# (2.22)

If we let g (·) = 1
L2R(·)2, then we can write the solution to Eq. (2.20) as

uR(x) =
(
B "

L
∗ 1
L2

R 2

)(
x
L

)
= 1

L2

(
B "

L
∗ R 2)

(
x
L

)
(2.23)

= 1
L2

1
2"2

∫

!2

( ∫ ∞

0

e−s e
− |x/L−y|2

4s("/L)2

s
ds

)
R 2(y)dy1 dy2, (2.24)

where y = (y1, y2). Substituting the above into (2.19) and using (2.20),
we get

F (-R)(x) = -R(x)"uR(x) = 1
"2
(uR(x) − |-R(x)|2)-R(x) (2.25)

= 1
"2L

R
(
x
L

)[
uR(x) − 1

L2
R 2

(
x
L

)]
e iS # (2.26)

Now we can calculate the term f1

f1 = L
*
Re

∫

!2
F (-R(x)) exp(−iS)(R(+) + +R+)dx1 dx2

= L
*

∫

!2

1
"2L

R(+)

[
uR(x) − 1

L2
R 2(+)

]
[R(+) + +R+]dx1 dx2

= 1
*"2

∫

!2
uR(x)R(+)[R(+) + +R+]dx1 dx2

− 1
*"2

1
L2

∫

!2
R 3(+)[R(+) + +R+]dx1 dx2

= J1 − J2#

It is easy to see that the second integral J2 is a constant that does not
depend on L. Indeed, applying change of variables: (1 = x1

L , (2 = x2
L , as

+ = r
L =

√
x21+x22
L =

√
(21 + (22, we get

J2 = 1
*"2

∫

!2
R 3(+)(R(+) + +R+(+))d(1 d(2 = c0, (2.27)

where c0 is a constant that does not depend on L.
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Modulation Approximation 53

Next, let us look at the first integral J1. Plugging the result of (2.24)
into J1, we get

J1 = 1
*"2

∫

!2
uR(x)R(+)(R(+) + +R+)dx1 dx2 (2.28)

= 1
*"2

∫

!2

1
L2

1
2"2

∫

!2

( ∫ ∞

0

e−s e
− |x/L−y|2

4s("/L)2

s
ds

)

× R 2(y)dy1 dy2R(+)(R(+) + +R+)dx1 dx2 (2.29)

= 1
2*

1
"4

1
L2

∫

!2

∫

!2

∫ ∞

0

e−s e
− |x/L−y|2

4s("/L)2

s
ds

× R 2(y)dy1 dy2 R(+)(R(+)+ +R+)dx1 dx2# (2.30)

Change of variables: ( = ((1, (2) =
( x1
L ,

x2
L

)
, then we will have

J1 = 1
2*

1
"4

∫

!2

∫

!2

∫ ∞

0

e−s e
− |(−y|2

4s("/L)2

s
ds R 2(y)dy1 dy2 R(+)(R(+) + +R+)d(1 d(2#

(2.31)

So f1 can be written as

f1 = 1
2*

1
"4

∫

!2

∫

!2

∫ ∞

0

e−s e
− |(−y|2

4s("/L)2

s
ds R 2(y)dy1 dy2 R(+)(R(+)+ +R+)d(1 d(2 − c0,

(2.32)

where c0 is a constant given in (2.27).
Plugging into (2.14), we have the reduced system for the Schrödinger–

Helmholtz system (1.1)

−L3Ltt = )0 + "2

M
f1, )0 = )(0) − "2

2M
f1(0) (2.33)

where f1 is given in (2.32).
Now one needs to study the ordinary differential equation (ODE)

(2.33) with f1 given in (2.32). The explicit form of the function f1 is much
more complicated when compared with the generic form of (2.15) due to
the nonlocal nature of our perturbation term (2.17). The idea is to show
that for L small, this additional term on the right-hand side of the first
equation of (2.33) will prevent the singularity formation, i.e., prevents L
from tending to zero as time evolves. In the next section, we will investigate
the ODE system (2.33) by approximating the function f1.
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54 Y. Cao et al.

3. A SIMPLIFIED REDUCED SYSTEM

Now, without solving uR(x) explicitly as we did above, we will try to
approximate uR(x) by asymptotic expansion in terms of "

L , for small values
of "

L , and further approximate the function f1.

3.1. First-Order Approximation

Recall that from (1.1) we have (when ! = 1, N = 2)

u − "2"u = |v|2

or we can write u(x) = (I − "2")−1|v(x)|2. When " is very small, we can
formally write u(x) in the first leading order term: u(x) = |v(x)|2 + #("2).
Now for -R(x) = 1

LR( x
L ) exp (iS), we can similarly write uR(x) as

uR(x) = |-R(x)|2 + #
((

"

L

)2)

= 1
L2

R 2

(
x
L

)
+ #

((
"

L

)2)
(3.1)

so we have

F (-R)(x) = ("xuR(x))-R(x)

∼ ("x(|-R(x)|2))-R(x)

∼ 1
L2

(
"xR 2

(
x
L

))
1
L
R

(
x
L

)
exp (iS)# (3.2)

Substituting this into the equation for f1 (2.11), we get

f1 = L
*
Re

∫

!2
F (-R(x)) exp (−iS)(R(+) + +R+)dx1 dx2

∼ L
*

∫

!2

1
L2

(
"xR 2

(
x
L

))
1
L
R

(
x
L

)
(R(+) + +R+)dx1 dx2# (3.3)

Next, we make change of variables:

( = x
L
, ( = ((1, (2)

then for + = |(|, and by the chain rule, we get

f1 ∼ 1
*

1
L2

∫

!2
("(R 2(+))R(+)(R(+) + +R+)d(1 d(2

∼ −C1

L2
= I1 (3.4)
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Modulation Approximation 55

where

C1 = −1
*

∫

!2
("(R 2)R(R + +R+)d(1 d(2

= 2
∫ ∞

0
[(R 2)+]2+ d+ > 0, (3.5)

where the detail of the calculation of the above integral is presented in
Claim A.1 of the Appendix.

Plugging into (2.33), we have the leading order of the reduced system,
which turns out to be of the generic form

−L3Ltt = )0 + "2

2M
f1 (3.6)

with f1 ∼ − C1
L2 and )0 = )(0) + "2C1

2M
1

L2(0) - 1 as )(0) - 1, "
L - 1. Fibich and

Papanicolaou [12] showed that there is no singularity in finite time with this
perturbation. In fact, substituting f1 (3.4) into the above equation, we get

−L3Ltt = )0 − C1

2M
"2

L2
# (3.7)

Write y = L2, then y satisfies the following equation:

(yt)2 = 4)0 − "2C1

M
1
y

+ 4D0y, (3.8)

where D0 is a constant satisfying D0 = L2
t (0) − )0

L2(0) + "2C1
4M

1
L4(0) .

Because "2C1
M > 0, y cannot go to zero in the above equation, i.e.,

L cannot go to zero, which explains the prevention of the singularity
formation, at this leading order in the expansion.

3.2. Second-Order Approximation

In the previous subsection, we use the asymptotic expansion by taking
the first leading term as approximation for the solution u of the Helmholtz
equation u − "2"u = |v|2. One might naturally ask whether we will get
better approximation and still have the no blow up structure if we
approximate the solution of the Helmholtz equation u(x) by taking one
more leading term. To investigate this, we proceed similarly as before: we
can formally write u(x) in the first two leading terms: u(x) = |v(x)|2 +
"2"|v(x)|2 + #("4), so we have

uR(x) = |-R(x)|2 + "2"x |-R(x)|2 + #
((

"

L

)4)

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
F
l
o
r
i
d
a
 
S
t
a
t
e
 
U
n
i
v
e
r
s
i
t
y
 
L
i
b
r
a
r
i
e
s
]
 
A
t
:
 
1
9
:
2
0
 
2
8
 
F
e
b
r
u
a
r
y
 
2
0
0
9



56 Y. Cao et al.

= 1
L2

R 2

(
x
L

)
+ "2"x

(
1
L2

R 2

(
x
L

))
+ #

((
"

L

)4)

∼ 1
L2

R 2

(
x
L

)
+

(
"

L

)2

"xR 2

(
x
L

)
(3.9)

and then

F (-R)(x) = ("xuR(x))-R(x)

∼
(

"x

(
1
L2

R 2

(
x
L

)
+

(
"

L

)2

"xR 2

(
x
L

)))
1
L
R

(
x
L

)
exp (iS)

∼
(

1
L2

"xR 2

(
x
L

)
+

(
"

L

)2

"2
xR

2

(
x
L

))
1
L
R

(
x
L

)
exp (iS)#

Substituting this into the equation of f1 (2.11), we get

f1 = L
*
Re

∫

!2
F (-R(x)) exp (−iS)(R(+) + +R+)dx1 dx2

∼ L
*

∫

!2

(
1
L2

"xR 2

(
x
L

)
+

(
"

L

)2

"2
xR

2

(
x
L

))
1
L
R

(
x
L

)
(R(+) + +R+)dx1 dx2

∼ 1
*

∫

!2

1
L2

(
"xR 2

(
x
L

))
R

(
x
L

)
(R(+) + +R+)dx1 dx2

+ 1
*

∫

!2

(
"

L

)2

"2
xR

2

(
x
L

)
R

(
x
L

)
(R(+) + +R+)dx1 dx2

∼ I1 + I2#

Here the first integral I1 is equal to − C1
L2 with C1 in (3.5) as we calculated

in the first-order expansion case. For the second integral I2, after change
of variables ( = x

L , ( = ((1, (2) and + = |(|, it gives

I2 = 1
*

"2

L4

∫

!2
("2

((R
2))R(R + +R+)d(1 d(2

= "2C2

L4
, (3.10)

where

C2 = 1
*

∫

!2
("2

((R
2))R(R + +R+)d(1 d(2

= 3
2*

∫

!2
("(R 2)2d(1 d(2 > 0, (3.11)

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
F
l
o
r
i
d
a
 
S
t
a
t
e
 
U
n
i
v
e
r
s
i
t
y
 
L
i
b
r
a
r
i
e
s
]
 
A
t
:
 
1
9
:
2
0
 
2
8
 
F
e
b
r
u
a
r
y
 
2
0
0
9



Modulation Approximation 57

where the detailed calculation of the above integral is presented in
Claim A.2 of the Appendix.

Therefore, we obtain

f1 ∼ −C1

L2
+ C2"2

L4
(3.12)

with a correction next-order term to the generic form (2.15). It yields the
reduced equation of the leading order

−L3Ltt = )0 + "2

2M
f1# (3.13)

Substituting f1 into the above Equation (3.13), we get

−L3Ltt = )0 − C1

2M

(
"

L

)2

+ C2

2M

(
"

L

)4

# (3.14)

Then y = L2 satisfies the following equation:

(yt)2 = 4)0 − "2C1

M
1
y

+ 2
3
"4C2

M
1
y2

+ E0y, (3.15)

where E0 is a constant satisfying E0 = 4L2
t (0) − 4)0

L(0)2 + C1
M

"2

L4(0) − 2C2
3M

"4

L6(0) .
Let us rewrite the right-hand side of the above Equation (3.15) by

substituting y = L2 and E0 into the equation

(yt)2 = 4L2
t (0) + 4)0

(
1 −

(
L(t)
L(0)

)2)
− C1

M

(
"

L(t)

)2(
1 −

(
L(t)
L(0)

)4)

+ 2C2

3M

(
"

L(t)

)4(
1 −

(
L(t)
L(0)

)6)
#

When L approaches zero, L(t)
L(0) is very small, and in the regime of

"
L(t) - 1, which is a required assumption for the expansion, the right-hand
side will remain positive when Lt(0) is large. In other words, contrary to
the equation of first-order expansion (3.8), the second-order expansion
Equation (3.14) might blow up with certain large Lt(0); we will see this is
also verified in the numerical computation in the next section.

3.3. Third-Order Expansion

With finite time blow up in the second-order expansion, one might try
to include a higher order term in the expansion of the solution of the
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Helmholtz equation:

u(x) = |v(x)|2 + "2"|v(x)|2 + "4"2|v(x)|2 + #("6)# (3.16)

As a result, we have

uR(x) = 1
L2

R 2

(
x
L

)
+

(
"

L

)2

"xR 2

(
x
L

)
+

(
"

L

)4

"2
xR

2

(
x
L

)
+ #

((
"

L

)6))

and then

F (-R)(x) = ("xuR(x))-R(x)

∼
(
1
L2

"xR 2

(
x
L

)
+ "2

L2
"2

xR
2

(
x
L

)
+ "4

L4
"3

xR
2

(
x
L

))
1
L
R

(
x
L

)
exp (iS)#

Now f1 satisfies the following expression

f1 = L
*
Re

∫

!2
F (-R(x)) exp (−iS)(R(+) + +R+)dx1 dx2

∼ I1 + I2 + I3,

where I1, I2 are the same as in the first-order and second-order expansions
(3.4) and (3.10), and we have

I3 = L
*

∫

!2

"4

L2

(
"3

xR
2

(
x
L

))
1
L
R

(
x
L

)
(R(+) + +R+)dx1 dx2

= 1
*

"4

L6

∫

!2
("3

(R
2)R(R + +R+)d(1 d(2

= −"4C3

L6
, (3.17)

where the constant

C3 = 2
*

∫

!2
($"R 2)2d(1d(2 > 0, ( = x

L
= ((1, (2), (3.18)

where the detailed calculation is presented in Claim A.3 of the Appendix.
Substituting f1 into the reduced equation of L (3.6), we get

−L3Ltt = )0 − C1

2M
"2

L2
+ C2

2M
"4

L4
− C3

2M
"6

L6
# (3.19)
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So y = L2 satisfies the following equation

(yt)2 = 4)0 − "2C1

M
1
y

+ 2
3
"4C2

M
1
y2

− "6C3

2M
1
y3

+ F0y, (3.20)

where F0 = 4L2
t (0) − 4)0

L2(0) + "2C1
M

1
L4(0) − 2

3
"4C2
M

1
L6(0) + "6C3

2M
1

L8(0) . In this
equation, because C3 is positive, we can see again that y cannot approach
zero, i.e., L cannot go to zero, which prevents singularity formation.

4. NUMERICAL RESULTS

In this section, we will show some numerical results of the evolution of
L(t) in three expansion cases, (3.7), (3.14) and (3.19), in order to study
the prevention of blow up of the Schrödinger–Helmholtz system. We will
first consider the first-order expansion case.

4.1. First-Order Expansion

Let us look at the Equation (3.7). After some algebraic calculation and
calculus integration, we come up with Equation (3.8):

(yt)2 = 4)0 − "2C1

M
1
y

+ 4D0y,

where )0 = )(0) + C1
2M

"2

L2(0) and D0 = L2
t (0) − )0

L2(0) + C1
4M

"2

L4(0) .
From above we know that y cannot approach zero, equivalently,

L cannot go to zero, which prevents singularity formation.
Furthermore, FibichandPapanicolaou[12]derived thegeneric equation

(yt)2 = 4)0 − "2C1

M
1
y

+ 4
H0

M
y = −4H0

M
1
y
(yM − y)(y − ym),

where

yM =
√
)2
0 + "2C1H0/M 2 + )0

−2H0/M
= M)0

−H0

[
1 + #

(
"2H0

)2
0

)]
,

ym = "2C1

2M
1

√
)2
0 + "2C1H0/M 2 + )0

= "2C1

4M)0

[
1 + #

(
"2H0

)2
0

)]
,

H0 = H (0) + "2C1

4
1

L4(0)
#

From above we see that when H0 > 0, and Lt(0) > 0, L is monotonically
defocusing to infinity; when H0 > 0 and Lt(0) < 0, self-focusing is arrested
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60 Y. Cao et al.

when L = Lm = (ym)1/2 > 0, after which L is monotonically defocusing to
infinity; when H0 < 0, then L goes through periodic oscillation between
Lm = (ym)1/2 and LM = (yM )1/2 (see Fig. 1).

4.2. Second-Order Expansion

Now we look at the Equation (3.14) of next-order expansion:

−L3Ltt =
(

C2

2M

)(
"

L

)4

−
(

C1

2M

)(
"

L

)2

+ )0# (4.1)

FIGURE 1 L evolves in time in first-order expansion: (a) Monotonic defocusing, H0 > 0,Lt (0) > 0;
(b) First focusing then defocusing, H0 > 0,Lt (0) < 0; (c) Oscillation, H0 < 0. For all cases, " = 0#01,
)0 = 0#01. In (a), (b), "

L(0) = 0#001. In (c), "
L(0) = 1/8.
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Modulation Approximation 61

FIGURE 2 Flow of L in second-order expansion. L decreases to zero in finite time, " = 0#01, )0 0 1,
L(0) = 0#1,Lt (0) = −2.

In this equation, when )0 >
C2
1

C2
1

8M , the right-hand side is definitely
positive, then for any initial data L(0) with Lt(0) < 0, the solution L will
monotonically decrease and approach zero in finite time. In other words,
when the initial excess energy is larger than certain amount

(C2
1

C2
1

8M

)
and

L is initially focusing, L will focus and blow up in finite time (see Fig. 2).
However, this is not valid to begin with applying the modulation theory.
Recall that for us to apply the modulation theory to a perturbed critical
NLS, we require three conditions to hold. One of the conditions is to
require |)(t)| - 1 (see 2.7 or 2.8).

So we will consider the case when 0 < )0 <
C2
1

C2
1

8M , then we have rlow =√
C1−2M

√
K

2C2
, rhigh =

√
C1+2M

√
K

2C2
, where K = C2

1
C2

1
8M − )0. In this case, when

initially "
L(0) > rhigh and Lt(0) < 0, the right-hand side of the Equation (4.1)

will remain positive, so L will monotonically decrease to zero, which is
similar to the case of )0 >

C2
1

C2
1

8M . Once again, this is not valid here for
the discussion because the asymptotic expansion (3.9) is valid under the
assumption that "

L - 1, so we need only to consider the situation of "
L(0)

small, in this case, "
L(0) < rhigh.
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62 Y. Cao et al.

FIGURE 3 Flow of L in second-order expansion: (a) L defocuses to infinity when H0 > 0.
(b) L oscillates between two values when H0 < 0. (c) L blows up when |Lt (0)| is large. For all

cases, we use " = 0#01, )0 = 0#01 - C2
1

C2
1

8M , "/L(0) = rlow/2.

Finally, we consider only the case 0 < )0 <
C2
1

C2
1

8M and 0 < "
L(0) < rhigh.

First we focus on 0 < "
L(0) < rlow. In this case, L might defocus to

infinity, oscillate between two values, or even blow up in finite time
depending on different initial condition of Lt(0) for given )0, " and
L(0). In Fig. 3, we take the parameters " = 0#01, "

L(0) = rlow/2 and )0 =
0#01. When initially Lt(0) > −44#9999, L will eventually defocus to infinity
if H0 > 0 (Fig. 3(a)) and L will oscillate between two values if H0 < 0
(Fig. 3(b)); when initially Lt(0) < −49#9999, L will approach zero in finite
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Modulation Approximation 63

time, i.e., we observe singularity in finite time (Fig. 3(c)). This numerical
result is expected from analysis at the end of Subsection 3.2.

Similarly, for rlow < "
L(0) < rhigh, we will observe different behaviors—

defocusing, oscillation, or focusing depending on Lt(0) and H0. For
instance, when "

L(0) = rlow+rhigh
2 , we have the threshold value Lc

t = −39#9999,
i.e., when Lt(0) > −39#9999, L will eventually defocus to infinity if H0 > 0
and oscillate between two values if H0 < 0; when Lt(0) < −39#9999, L will
eventually decrease to zero.

FIGURE 4 Flow of L in third-order expansion: (a) Monotonic defocusing, H0 > 0,Lt (0) > 0.
(b) First focusing then defocusing, H0 > 0,Lt (0) < 0. (c) Oscillation between two values, H0 < 0.
For all cases, " = 0#01, )0 = 0#01. In (a), (b), "

L(0) = 0#001. In (c), "
L(0) = 1/8.
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4.3. Third-Order Expansion

Lastly we study the Equation (3.19) of higher order expansion:

−L3Ltt = )0 − C1

2M
"2

L2
+ C2

2M
"4

L4
− C3

2M
"6

L6
#

By defining y = L2 and integrating the equation, we get equation (3.20)

(yt)2 = 4)0 − "2C1

M
1
y

+ 2
3
"4C2

M
1
y2

− "6C3

2M
1
y3

+ F0y,

where F0 = 4L2
t (0) − 4)0

L2(0) + "2C1
M

1
L4(0) − 2

3
"4C2
M

1
L6(0) + "6C3

2M
1

L8(0) .
In the above Equation (3.20), y cannot approach zero as the leading

order term on the right-hand side is of negative sign when y goes to
zero, equivalently, L cannot approach zero. The nature of this equation is
the same as that of Equation (3.8), and we see the same pattern in the
numerical result (see Fig. 4).

5. CONCLUSIONS

From the analysis and numerical computation, we see that the
regularization of the classic NLS effectively prevents singularity formation
with positive parameter " > 0. By asymptotically expanding the solution
of the Helmholtz equation to approximate the reduced system of the
modulation theory, we observe strong no blow up pattern in both first-
order and third-order expansion. In the valid regime of the expansion
and modulation theory, we also observe no blow up pattern in the second-
order expansion with further restriction on certain condition: Lt(0) > Lc

t ,
threshold initial value of Lt(0). This phenomenon is expected for even
higher order expansion, say fourth-order expansion approximation. One
of the reasons is that the Laplace operator is not bounded, which causes
instability for the expansion of the solution of the Helmholtz equation.

APPENDIX

For completeness, we present in this section the detail of the
calculation of the integrals (3.4), (3.10), and (3.17).

Claim A.1. The integral I1 in (3.4) for the first-order expansion can be
simplified as

I1 = 1
*

1
L2

∫

!2
("(R 2)R(R + +R+)d(1 d(2 = − 2

L2

∫ ∞

0
[(R 2)+]2+ d+#
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Proof.

I1 = 1
*

1
L2

∫

!2
("(R 2(+))R(+)(R(+) + +R+)d(1 d(2

= 1
*

1
L2

∫

!2
("R 2)R 2d(1 d(2 + 1

*

1
L2

∫

!2
("R 2)RR++ d(1 d(2

= I11 + I12#

In the rest of this section, all the integrands and integrals are of variables
( or + (i.e., they are the scaled variables) unless it is stated otherwise.

Now for I11, we integrate by parts once and change the variables by
(1 = + cos ., (2 = + sin .; we obtain

I11 = −1
*

1
L2

∫

!2
($R 2)2d(1 d(2

= −1
*

1
L2

2*
∫ ∞

0
[(R 2)+]2+ d+

= − 2
L2

∫ ∞

0
[(R 2)+]2+ d+,

which gives us exactly the constant C1 as in (3.5).
For I12, we show now it is identically zero.
Using polar coordinates, we get

I12 = 1
*

1
L2

2*
∫ ∞

0
((R 2)++ + 1

+
(R 2)+)RR++

2 d+

= 2
L2

∫ ∞

0
(R 2)++RR+ +

2 d+ + 2
L2

∫ ∞

0
(R 2)+RR+ + d+

= 1
L2

∫ ∞

0
(R 2)++(R 2)+ +

2 d+ + 1
L2

∫ ∞

0
(R 2)+(R 2)++ d+

= X + Y #

For the first integral X , after rewriting and integration by parts once,
we get

X = 1
L2

∫ ∞

0

1
2
[((R 2)+)

2]++2d+

= − 1
L2

∫ ∞

0
((R 2)+)

2+ d+

= −Y #

We conclude that I12 = 0, which yields the result of (3.4) and (3.5). !
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Claim A.2. The integral I2 (3.10) in the next-order expansion can be simplified as

I2 = 1
*

"2

L4

∫

!2
("2

((R
2))R(R + +R+)d(1 d(2 = 3"2

2*L4

∫

!2
("(R 2)2d(1 d(2#

Proof.

I2 = 1
*

"2

L4

∫

!2
("2(R 2))R(R + +R+)d(1 d(2

= 1
*

"2

L4

∫

!2
("2(R 2))R 2d(1 d(2 + 1

*

"2

L4

∫

!2
("2(R 2))R(+R+)d(1 d(2

= I21 + I22#

After integration by parts twice, we get

I21 = 1
*

"2

L4

∫

!2
["(R 2)]2d(1 d(2#

Next we will show that I22 = 1
2 I21, which yields (3.11).

Recall that +R+ = ( · $R , ( = ((1, (2), +2 = (21 + (22, so we have

I22 = 1
*

"2

L4

∫

!2
("2(R 2))(R(( · $R))d(

= 1
*

"2

L4

∫

!2
("2(R 2))

(
( · $ 1

2
R 2

)
d(

= 1
*

"2

L4

∫

!2
"(R 2)"

(
( · $ 1

2
R 2

)
d(

= 1
*

"2

L4

∫

!2
"(R 2)

(
"(R 2) + ( · $

(
"1
2
R 2

))
d(

= 1
*

"2

L4

∫

!2
["(R 2)]2d( + 1

*

"2

L4

∫

!2
"(R 2)

(
( · $

(
"1
2
R 2

))
d(

= P + Q #

For the second integral in the last line, we rewrite it then integrate by parts
and obtain

Q = 1
*

"2

L4

∫

!2
"(R 2)

(
( · $

(
"1
2
R 2

))
d(

= 1
*

"2

L4

∫

!2
( · $

(
1
4
("(R 2))2

)
d(
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= −1
*

"2

L4

∫

!2
($ · ()1

4
("(R 2))2d(

= −1
*

"2

L4

∫

!2

1
2
["(R 2)]2d(

= −1
2
P #

So we get I22 = P + Q = 1
2P = 1

2 I21, so we conclude that I2 = 3
2 I21 =

"2

L4
3
2*

∫
!2["(R 2)]2d(, which yields exactly (3.10) and (3.11). !

Claim A.3. The integral I3 (3.17) in the calculation of higher order expansion
can be simplified as

I3 = 1
*

"4

L6

∫

!2
("3

(R
2)R(R + +R+)d(1 d(2 = −2

*

"4

L6

∫

!2
($"R 2)2d(1 d(2#

Proof.

I3 = 1
*

"4

L6

∫

!2
("3(R 2))R(R + +R+)d(

= 1
*

"4

L6

∫

!2
("3(R 2))R 2d( + 1

*

"4

L6

∫

!2
("3(R 2))R(+R+)d(

= I31 + I32#

After integration by parts three times, we get

I31 = −1
*

"4

L6

∫

!2
($"(R 2))2d(#

Next, we will show that I32 = I31 = − 1
*
"4

L6

∫
!2($"(R 2))2d(.

I32 = 1
*

"4

L6

∫

!2
("3(R 2))R(+R+)d(

= 1
*

"4

L6

∫

!2
("3(R 2))R(( · $R)d(

= 1
*

"4

L6

∫

!2
("3(R 2))

(
( · $ 1

2
R 2

)
d(

= 1
*

"4

L6

∫

!2
("2(R 2))"

(
( · $ 1

2
R 2

)
d(
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= 1
*

"4

L6

∫

!2
("2(R 2))

(
"(R 2) + ( · $

(
"1
2
R 2

))
d(

= 1
*

"4

L6

∫

!2
("2(R 2))"(R 2)d( + 1

*

"4

L6

∫

!2

1
2
("2(R 2))(( · $("R 2))d(

= A + B#

For A, after integration by parts once, we obtain

A = −1
*

"4

L6

∫

!2
($"(R 2))2d(#

For B, we define / = "(R 2), a scalar function. Then we rewrite and
calculate the term B as follows

B = 1
2*

"4

L6

∫

!2
"/(( · $/)d(

= 1
2*

"4

L6
2*

∫ ∞

0

(
/++ + 1

+
/+

)
(+/+)+ d+

= "4

L6

∫ ∞

0
/++/++

2 + (/+)
2+ d+

= "4

L6

∫ ∞

0

1
2
((/+)

2+2)+d+

= 0#

So we have now I3 = I31 + I32 = 2I31 = − 2
*
"4

L6

∫
!2($"(R 2))2d(, which

concludes our result of (3.17) and (3.18). !
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