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We introduce a family of non-Hermitian optical potentials that are given in terms of double-exponential periodic
functions. The center of PT symmetry is not around zero and the potential satisfies a shifted PT -symmetry
relation at two distinct locations. Motivated by wave transmission through thin phase screens and gratings, we
examine these refractive index modulations from the perspective of optical lattices that are homogeneous along
the propagation direction. The diffraction dynamics, abrupt phase transitions in the eigenvalue spectrum, and
exceptional points in the band structure are examined in detail. In addition, the nonlinear properties of wave
propagation in Kerr nonlinearity media are studied. In particular, coherent structures such as lattice solitons are
numerically identified by applying the spectral renormalization method. The spatial symmetries of such lattice
solitons follow the shifted PT -symmetric relations. Furthermore, such lattice solitons have a power threshold
and their linear and nonlinear stabilities are critically dependent on their spatial symmetry point.

DOI: 10.1103/PhysRevA.93.013803

I. INTRODUCTION

One of the frontiers of modern photonics is the engineering
of a complex refractive index to create new synthetic systems
with novel functionalities. Nowadays it is understood that
ideas and methods from quantum field theories and quantum
mechanics [1,2] may be useful and applicable in such an
engineering direction. A result of this fusion is the area of
parity-time (PT ) -symmetric optics that originally started in
the context of optical waveguide arrays and lattices [3–6].
After the first experimental observation of PT -symmetry
breaking, in a passive optical coupler [7] and in two coupled
waveguides with gain and loss [8], this research area has
attracted intense interest and attention, partially because of
the possible applications in integrated photonics. In most
technologies, such as photonic crystal fibers, metamaterials,
and plasmonics, optical loss has always been considered an
obstacle. However, it has recently been demonstrated that
PT -symmetric composite structures with balanced gain and
loss distributions may offer an alternative solution to such
technological problems. In fact, losses can be advantageous in
various important applications such as optical isolators [9–13],
coupled microring PT -symmetric lasers [14,15], photonic
molecules with exceptional points [16–18], PT metamaterials
[19,20], PT -symmetric plasmonics [21–23], and integrated
silicon photonic structures [24,25].

All these findings in turn have stimulated much research
activity in the general area of non-Hermitian and PT
photonics and have led to several theoretical and experi-
mental predictions. Examples include wave propagation and
defect states in PT synthetic lattices [26–28], PT -symmetry
breaking in disordered lattices [29], linear [30] and non-
linear [31] beam dynamics close to the exceptional point,
Hamiltonian formulation [32], soliton stability in PT lattices
[33–36], Bloch oscillations, transport and localization in
complex crystals [37], spectral singularities in non-Hermitian
Friedrichs-Fano-Anderson models with complex potentials

[38], PT -symmetric wave chaos [39], four-wave mixing [40],
visualization of branch points in PT -symmetric waveguides
[41], subdiffraction and spatial filtering in media with gain
and loss [42], unidirectional invisibility [43], scattering in
PT -symmetric optical cavities [44,45], dark solitons [46],
transient amplification in lossy media [47], and constant
intensity waves in linear and nonlinear optical systems [48].

In this paper we study linear and nonlinear wave prop-
agation in a different type of optical lattice, that of a
doubly exponential periodic potential. The transmission bands
are computed using Floquet-Bloch theory and their phys-
ical properties are studied. We find a parameter regime
(of the potential) corresponding to a high refractive index
where the spectrum of the linear paraxial equation is entirely
real. The linear beam dynamics of a wide class of Gaussian in-
puts is thoroughly investigated in the unbroken-PT -symmetry
phase. Finally, localizedPT -symmetric lattice solitons are nu-
merically computed and their stability properties and nonlinear
dynamics in the presence of noise are reported.

II. LATTICES WITH TWO PT -SYMMETRY POINTS

The starting point of our analysis is the paraxial equation
of diffraction [49], which governs the dynamic evolution of
a linearly polarized scalar optical field ψ(x,z) with a weakly
guiding refractive index modulation V (x) that is homogeneous
in the propagation direction z. In one space dimension and in
normalized units this is given by

iψz + ψxx + V (x)ψ = 0. (1)

Our physical motivation here is based on the wave scattering
(in the context of the Helmholtz equation) of plane waves by
non-Hermitian phase screens or gratings. Such a refractive
index modulation is periodic and can be described by doubly
exponential functions. The resulting diffraction pattern is
spatially asymmetric due to the presence of gain and loss in
the grating. In this paper we are interested in studying optical
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FIG. 1. Real (solid blue line) and imaginary (dashed red
line) parts of the potential V (x) given in Eq. (2) for different
values of V0. Vertical lines indicate the location of the symmetry
points x = ±π/2.

wave propagation in such photonic structures governed by
Eq. (1). For this reason, we introduce the 2π -periodic doubly
exponential potential

V (x) = eiW (x), W (x) = cos x + iV0 sin x, (2)

with the free real parameter V0, which, when split into its real
and imaginary parts, yields

V (x) = e−V0 sin x cos(cos x) + ie−V0 sin x sin(cos x). (3)

Interestingly enough, the potential V (x) does not satisfy the
usual symmetry relation V ∗(x) = V (−x). It rather satisfies the
generalized twofold PT -symmetry conditions

V ∗(x) = V (π − x), (4)

V ∗(x) = V (−π − x). (5)

As a consequence, the real and imaginary parts of V (x) are,
respectively, even and odd around the points x = ±π/2. Thus
the potential (2) possesses two distinct symmetry points. This
is different from most studies on “standard” PT -symmetric
potentials (see [3,5]), which have focused on optical lattices
with one symmetry point typically located at the origin. In
Fig. 1 we show typical profiles of the lattice for various values
of V0. Depending on the magnitude of |V0|, the real part of the
potential admits two different local maxima (when |V0| < 1)
located exactly at the symmetry points x = ±π/2 and their
2π -periodic extensions. On the other hand, for |V0| > 1 the
first symmetry point x = −π/2 (mod 2π ) is now the only
local maximum, whereas the other point now corresponds to a
minimum.

At this point we comment on the physical meaning of V0. In
contrast to previous studies of PT -symmetric optical lattices
[3,5,6], where the potential parameter controls the level of gain
and loss for a fixed real part of V (x), here V0 appears in both the
real and imaginary parts of the optical potential. Thus changing
V0 would alter both the guiding index and the magnitude of
the gain and loss. This can be clearly seen from Fig. 1. As
V0 increases, so does the distance between local maxima and
the refractive index amplitude of the waveguides indicating a
decrease in the coupling between adjacent channels. At the
opposite limit, when V0 = 0, the potential is V (x) = ei cos x .

III. BAND-STRUCTURE ANALYSIS AND
DIFFRACTION DYNAMICS

A. Band structure and symmetry breaking

Before we consider the wave dynamics in such optical
lattices, it is important to first understand their eigenvalue
spectrum. In particular, we are interested in stationary solu-
tions, or more precisely the Floquet-Bloch (FB) modes of the
periodic index of refraction. We seek stationary solutions of
the form ψ(x,z) = φ(x)eiλz in Eq. (1), which yield the linear
eigenvalue problem

Hφ = λφ, (6)

where H = d2/dx2 + V (x) and λ is the propagation constant.
Expanding the wave function φ using the partial wave method

φ(x) =
∞∑

n=−∞
φ̂ne

i(k+n)x, (7)

with Bloch momentum k yields∑
m

V̂mφ̂n−m = [λ + (k + n)2]φ̂n, n ∈ Z, (8)

where V̂m are the Fourier coefficients of the potential given in
closed form by

V̂m = Cm[1 + sgn(m)V0]|m|
(

i

2

)|m|
, (9)

Cm = 1

|m|! +
∞∑

k=1

(
i

2

)2k
(
1 − V 2

0

)k

k!(k + |m|)! . (10)

For a wide range of potential parameters V0, the largest
imaginary part of the eigenvalue λ as a function of k

residing in the one-sided first Brillouin zone [0,1/2] has
been computed. Depending on the magnitude of |V0|, the
spectrum can be completely real, partially complex, or fully
complex. A summary of our findings is shown in Fig. 2. The
parameter value |V0| = 1 represents the exceptional point:
For |V0| > 1 the eigenvalues are all real and otherwise are
complex. We note that for the well-known PT potential
V (x) = cos(x) + iV1 sin(x) (see [3,5,6]) the spectrum is real
only when |V1| < 1.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
V

0

Im(λ) = 0

Exceptional
Point

Exceptional
Point

Im(λ) = 0 Im(λ) = 0

FIG. 2. Values of V0 where the linear spectrum λ(k) is broken or
unbroken, where k is the Bloch momentum lying in the first Brillouin
zone. Black circles indicate regimes where the linear spectrum is
purely real [max |Imλ(k)| � 10−8] and the blue crosses denote the
zone where the spectrum is fully or partially complex.
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FIG. 3. First (solid blue line) and second (dashed red line) spectral
bands corresponding to different values of V0 below, at, and above the
exceptional point. The top (bottom) row depicts the real (imaginary)
part of the propagation constant λ as a function of the Bloch
momentum k restricted to the first Brillouin zone. The depth of the
potential V0 is (a) 0.2, (b) 0.5, (c) 0.999, and (d) 1.5.

To further characterize the spectral properties of our
potential and highlight its different structure, we next turn our
attention to the band structure. To this end, we show in Fig. 3
the real and imaginary parts of the first two Floquet-Bloch
bands corresponding to various values of V0 below, at, and
above the exceptional point. The geometric structure of the
bands can be put into four distinct categories: (i) full overlap
of the real part of the bands and opening of a global gap for
their respective imaginary components [Fig. 3(a)], (ii) partial
overlap of both real and imaginary bands as shown in Fig. 3(b)
(both of these scenarios occur at potential strengths V0 well
below the exceptional point), (iii) the transition or exceptional
point where the real bands intersect only at the edge of the
Brillouin zone, whereas the corresponding imaginary parts
coalesce to zero [Fig. 3(c)], and (iv) the opening of a global
gap [Fig. 3(d)] above the exceptional point for which the entire
spectrum is purely real.

One can intuitively explain the numerically observed
spectral properties of H by using the imaginary shift relation
[50,51]. By rewriting the potential V (x) in the equivalent form

eiW (x) =

⎧⎪⎨
⎪⎩

ei
√

1−V 2
0 cos[x−i tanh−1(V0)], |V0| < 1

eieix

, |V0| = 1

e−
√

V 2
0 −1 sin[x−i tanh−1(1/V0)], |V0| > 1,

(11)

one can show that H is similar to

H = d2

dx2
+ exp[−

√
V 2

0 − 1 sin(x)], (12)

when |V0| > 1, i.e., H = exp(−θp)H exp(θp), where θ =
− tanh−1(1/V0) and p = −id/dx. This result can be obtained
by using the fact that e−θpxeθp = x + iθ . Since the spectrum
of H is real it implies, through the above similarity relation,
that the spectrum of H is the same and also real. Note that at
the exceptional point |V0| = 1, the potential is described by
the double-exponential function V (x) = exp[i exp(ix)]. We
remark that in the case of a single-exponential function, i.e.,
V (x) = exp(ix), the eigenfunctions φ of Eq. (6) are exactly
Bessel beams [33].

FIG. 4. Linear evolution of optical field |ψ(x,z)| obtained from
Eq. (1) subject to initial conditions (a) and (b) ψ(x,0) = e−(x+π/2)2

and (c) and (d) ψ(x,0) = e−.01(x+π/2)2
with potential parameters (a)

and (c) V0 = 1 and (b) and (d) V0 = 2.

B. Beam diffraction dynamics

In this section we are interested in exploring the linear
dynamic behavior of various input Gaussian beams in the
presence of a doubly exponential lattice with unbroken PT
symmetry. In this regard, we consider two important cases
V0 = 1 and V0 = 2. In the latter, the lattice is relatively large,
corresponding to a high refractive index and well-separated
potential wells. Thus, the dynamics of a narrow input Gaussian
beam centered at x = −π/2 (a global maximum point of the
lattice) yields a wave pattern that is well confined. On the other
hand, the same input wave would diffract if the refractive index
were lowered, as one can see from Figs. 4(a) and 4(b). The
situation is different when one instead considers wide input
Gaussian beams. For example, in the shallow lattice limit, a
double refraction pattern is observed [see Fig. 4(c)], whereas
for higher lattice potentials power oscillations occur over many
sites.

At this point we note that for the cases of a broad input
Gaussian beam [Figs. 4(c) and 4(d)] the diffraction pattern
is less sensitive to the location of the beam’s center because
the distribution of its projection coefficients is less localized
in the Brillouin zone. On the other hand, for a narrow
Gaussian profile [Figs. 4(a) and 4(b)], the diffraction patterns
are different depending on the location of the beam’s center
(x = 0, π/2, or −π/2). In particular, the asymmetries of the
diffraction patterns in Fig. 4 can be further analyzed and
explained by projecting the initial beam at z = 0 [6]. By using
the biorthogonality relations of the nonorthogonal Floquet-
Bloch modes, one can understand from the distribution of
the beam’s projection coefficients over all the bands in the
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FIG. 5. Intensity diffraction pattern of an incident wide Gaussian
beam subject to initial conditions (a) ψ(x,0) = e−(x/15)2−i0.8x and (b)
ψ(x,0) = e−(x/15)2+i0.8x with the potential parameter V0 = 1.01. Note
that, in both (a) and (b), the lattice is switched off at z = 30 and the
beam propagates in free space for z > 30.

Brillouin zone the resulting diffraction pattern. Another factor
that one has to take into account is the dependence of coupling
on the parameter V0. The difference between the two cases is
that in Fig. 4(a) (V0 = 1) the wave coupling is higher than that
shown in Fig. 4(b) (V0 = 2). Therefore, in the first case there is
coupling between adjacent channels (asymmetric diffraction
to the left), while in the latter case the light is trapped mostly
in one waveguide by losing energy to radiation losses. Since
the modes of any individual waveguide have tilted phase fronts
(from left to right) the diffraction pattern would be asymmetric
to the right, as one can see in Fig. 4.

Many of the diffraction characteristics (double refraction,
power oscillations, etc.) of wide Gaussian beams are generic
in parity-time-symmetric periodic potentials and are a direct
outcome of the mode nonorthogonality. In particular, since
there is gain and loss in the refractive index transverse
modulation, the phase fronts of the FB modes are tilted.
This phase front tilt is related to the nonzero transverse
Poynting vector flow and has observable consequences in the
beam’s diffraction. In order to better understand this factor, we
examine (see Fig. 5) the wave dynamics of a wide Gaussian
beam in the presence of a doubly exponential PT lattice that is
turned off after the beam has propagated some finite distance
Z (here Z = 30). Thus, for z � Z there is no optical potential
and the beam diffracts in free space. More specifically, we
consider incident beams tilted to the left [Fig. 5(a)] and to the
right [Fig. 5(b)] at z = 0. Due to the skewness of the involved
FB modes, the beam undergoes a “negative” type of refraction
(breaking Snell’s law) that is directly observable in the case of
incidence from the left side [Fig. 5(a)].

At this point we note that Figs. 4 and 5 highlight different
physical phenomena. The former figure displays the double
refraction and power oscillations inside the medium, while the
latter figure shows what happens to a beam at the interface
between lattice and free space (negative refraction). Further-
more, the beams in Fig. 4 propagate at normal incidence,
while those in Fig. 5 are coupled to the lattice on an angle
(oblique incidence). The effect of the beam width and centering
on the tilted beam diffraction dynamics is a nontrivial issue,
however it can be systematically understood by projecting the
initial Gaussian beam to the biorthogonal FB eigenbasis [6].

Moreover, the closer the value V0 is to the exceptional point,
the higher the degree of non-Hermiticity becomes. This non-
Hermitian character (combined with the interference between
nonorthogonal FB modes) leads to the complex diffraction
patterns described in Figs. 4 and 5, i.e., power oscillations,
asymmetric wave transport, and negative refraction.

IV. NONLINEAR COHERENT STRUCTURES IN DOUBLY
EXPONENTIAL POTENTIALS

A. Power-eigenvalue curves and lattice solitons

Having studied the linear properties of the potential and
linear wave dynamics, we next focus our attention on nonlinear
wave propagation in the presence of a doubly exponential
lattice. The governing equation is the one-dimensional nor-
malized nonlinear Schrödinger equation

iψz + ψxx + V (x)ψ + |ψ |2ψ = 0. (13)

In particular, we are interested in the structure of lattice solitons
and their nonlinear dynamics subject to perturbative noise. To
this end, we consider stationary waveguide solutions of the
form ψ(x,z) = φ(x) exp(iλz), which yield

φxx + V (x)φ + |φ|2φ = λφ, (14)

for the complex localized eigenmode φ and real propagation
constant λ. Since Eq. (14) admits two PT -symmetry points
x = ±π/2, this in turn induces two different families of
solutions, which here we refer to as φ±. Furthermore, they
satisfy the PT -symmetry condition∫ ∞

−∞
Im{V (x)}|φ±(x)|2dx = 0. (15)

We consider nonlinear localized modes whose propagation
constants λ are real and reside in the semi-infinite gap, as
well as potential parameters corresponding to both broken
(|V0| < 1) and unbroken (|V0| > 1) PT symmetries. Band-
gap lattice solitons in a single-exponential PT -symmetric
potential have been studied along with with their stability
properties [33]. We note that when the PT symmetry is no
longer exact the linear spectrum can be partially complex,
in which case lattice solitons still exist. Such a scenario has
been reported in [5] for a single-exponential potential. Typical
soliton solutions obtained by the spectral renormalization
method [52] or Newton conjugate-gradient scheme [53] are
shown in Fig. 6 along with the guiding index potential. The φ−
family is centered at a global lattice maximum (high refractive
index) with a dominant peak as well as all remaining humps
located at global maxima of the index profile. The solution
depicted in Fig. 6(a) is obtained for V0 = 0.5 where the PT
symmetry is broken, whereas the one shown in Fig. 6(c)
corresponds to an exact linearPT symmetry. In both cases, the
real and imaginary parts of the wave function φ− are even and
odd, respectively, around x = −π/2. To further characterize
this family, we have computed the power curves defined by

P (λ,V0) =
∫ ∞

−∞
|φ±(x,λ,V0)|2dx, (16)

for a wide range of potential values and soliton propagation
constants, both when the PT symmetry is broken and when it

013803-4



TWOFOLD PT SYMMETRY IN DOUBLY . . . PHYSICAL REVIEW A 93, 013803 (2016)

−5 0 5
0

1

2

2.5

x/π
−5 0 5

0

2

4

R
e 

V

−5 0 5
0

0.1

0.2

x/π

|φ|

−5 0 5
0

5

−5 0 5
0

0.2

0.4

0.6

0.8

|φ|

−5 0 5
0.5

1

1.5

2

−5 0 5
0

1

1.5

−5 0 5

1

2

R
e 

V

(b)

(d)(c)

(a)
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is exact. The results are summarized in Fig. 7(a). In the shallow
lattice limit, there is a minimum optical power necessary to
generate a fundamental lattice soliton. Increasing the potential
amplitude produces a higher effective refractive index at the
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FIG. 7. Power curves [see Eq. (16)] for solitons with eigenvalues
located in the semi-infinite gap centered at (a) x = −π/2 and
(b) x = π/2. For comparison, the existence curves of both families at
fixed potential depths (c) V0 = 0.5 and (d) V0 = 1.5 are shown along
side each other. The dashed red and solid blue lines represent the φ+
and φ− families, respectively.

left symmetry point, thus decreasing the amount of power
needed to support the formation of such nonlinear modes.

Next we study the other localized family φ+, which could
be centered around either a local lattice maximum or minimum
depending on the value of |V0|. Prototypical soliton examples
are shown in Figs. 6(b) and 6(d) with main peaks located at the
right PT -symmetry point and remaining humps at adjacent
potential maxima. The corresponding existence curves for
several V0 are shown in Fig. 7(b). Interestingly enough, for
a fixed real soliton eigenvalue, solutions have higher power
as |V0| increases (the opposite of the scenario encountered in
the φ− family). This is due to the fact that as |V0| increases
the potential shape changes, which in turn forces the soliton to
center at a potential minimum, rather than at a local maximum.
Moreover, each of these solutions displays a power threshold
necessary to generate a fundamental lattice soliton.

Up until now we have considered the φ± families indi-
vidually, i.e., they were grouped according to their symmetry
points. Now we examine their structural properties from a
different point of view, namely, we fix the potential depth
V0 and examine the soliton power for both families as λ is
varied. The results are shown in Figs. 7(c) and 7(d). The
solutions centered at the global maxima are observed to have
lower power than their counterparts (the φ+ solutions) and,
at a fixed eigenvalue λ, the difference in the soliton power
curves grow with increasing |V0|. We note that in the higher
refractive index regime, the lower branch continues all the way
to the (real) linear spectral boundary [see Fig. 7(d)]. Finally, we
point out that lattice solitons with power thresholds have been
previously studied and identified in another context, that of
the so-called surface solitons [54,55]. In this case, the optical
potential is Hermitian and the soliton solutions exist at the
boundary between the lattice and the bulk. The existence of a
termination surface leads to a power threshold.

B. Linear and nonlinear stability analysis

In this section we turn our attention to study linear and
nonlinear stability properties of the φ± lattice solitons found
above. Our approach is based on numerically solving the
corresponding linear stability equation combined with direct
numerical simulations. To do so, we consider perturbations on
solutions to Eq. (13) of the form

ψ(x,z) = [φ±(x) + η(x,z)]eiλz, (17)

where the perturbation η is assumed to be small in comparison
to the soliton size. With this in mind, linearizing around the
solutions φ±(x) gives

iηz − λη + ηxx + V (x)η + φ2
±η∗ + 2|φ±|2η = 0. (18)

Equation (18) governs the evolution of the perturbation
η(x,z) subject to localized initial and boundary conditions.
To fully address the linear stability problem we consider two
approaches, each of which provides its own insight into the
linear stability properties. First, we integrate Eq. (18) directly
for some noisy initial data and monitor the field intensity
over many realizations. Physically speaking, this scenario is
commonly encountered in experiments where localized noise
serves as the main source of perturbations. Second, we assume
that the perturbation grows exponentially in the propagation
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distance and obtain a spectral linear stability problem, which
is then numerically solved for the perturbation eigenvalues.
The latter gives a global picture of the stability development.

To this end, the soliton is initially perturbed by a
wide Gaussian beam seeded with random amplitude of the
form

η(x,z = 0) = Ar(x)e−x2/10, (19)

where A is a constant chosen to gauge the perturbation
magnitude relative to the soliton peak. The function r(x)
is a complex-valued random field constructed using spectral
filtering [56], i.e.,

r(x) = F−1[e−ξ 2/4F[r̃1(x) + ir̃2(x)](ξ )], (20)

where r̃1,2(x) are real random fields normally distributed on the
whole real line with mean zero and unit standard deviation. The
forward and inverse Fourier transforms are given, respectively,
by

F[f ] = 1√
2π

∫ ∞

−∞
f (x)e−iξxdx, (21)

F−1[f̂ ] = 1√
2π

∫ ∞

−∞
f̂ (ξ )eiξxdξ. (22)

Throughout the rest of the paper, the amplitude is fixed to
be A = 0.05 max |φ±|/ max |r|. Equation (18) is numerically
integrated using a spectral Runge-Kutta scheme.

We first comment on the φ− family. The numerical
simulations shown in Fig. 8(a) reveal that when the linear
PT symmetry is broken, perturbations grow unboundedly,
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FIG. 8. Evolution of the maximum value of the perturbation
averaged over ten realizations of randomness obtained from Eq. (18)
with the initial condition (19). The gray area designates the stan-
dard deviation away from the mean. The left and right columns
correspond, respectively, to the φ− and φ+ families. The param-
eters are (a) V0 = 0.5 and λ = 0.76, (b) V0 = 0.5 and λ = 1.36,
(c) V0 = 1.5 and λ = 2.04, and (d) V0 = 1.5 and λ = 2.71.

driving the soliton to become unstable. In some sense, this
result is expected since the linear spectrum of eigenvalue
problem (6) is now partially or fully complex. The situation is
drastically different for solitons whose propagation constants
correspond to exact PT symmetry. As one can see from
Fig. 8(c), the soliton develops a very weak instability. The
stability properties of the φ+ family share many common
features with those of the φ− family. That is to say, below
the exceptional point, the instability develops at a growth
rate comparable to that of the φ− family [see Fig. 8(b)].
The main distinction, as shown in Fig. 8(d), happens above
the exceptional point, where now the instability is orders of
magnitude larger than the one observed in the φ− mode. Thus,
semi-infinite gap modes centered at x = −π/2, or at a global
potential maximum, corresponding to real soliton propagation
constants are less unstable [against the random perturbation
given in Eq. (19)] than those centered at x = π/2.

To supplement the above linear stability findings, we
next consider a specific type of perturbations that grow
exponentially in z, i.e.,

η(x,z) = F (x)eμz + G∗(x)eμ∗z, (23)

where F and G are complex-valued eigenfunctions assumed
to be localized in x. Substituting this ansatz into Eq. (18) yields
the eigenvalue system

i

(
L̂ φ2

−(φ∗)2 −L̂∗

)(
F

G

)
= μ

(
F

G

)
, (24)

where L̂ = −λ + d2/dx2 + V (x) + 2|φ|2 and L̂∗ is the ad-
joint of L̂ in the space of square-integrable functions. Solutions
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FIG. 9. Spectrum of eigenvalue problem (24). The left and
right columns correspond, respectively, to the φ− and φ+ fami-
lies. The parameters are (a) V0 = 0.5 and λ = 0.76, (b) V0 = 0.5
and λ = 1.36, (c) V0 = 1.5 and λ = 2.04, and (d) V0 = 1.5 and
λ = 2.71.
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corresponding to the eigenvalue problem (24) with Re(μ) �= 0
are said to be linearly unstable. To determine the unstable
spectrum, we solve eigenvalue system (24) using Fourier [57]
collocation methods and differentiation matrices [58]. The
resulting stability spectra are shown in Fig. 9. Regardless of
the soliton symmetry point, nonlinear modes obtained in the
broken PT -symmetry regime are found to be linearly unstable
[see Figs. 9(a) and 9(b)]. These findings are consistent with
the results obtained in Figs. 8(a) and 8(b). On the other hand,
the linearized stability spectrum for the φ− family is located
entirely on the imaginary axis [see Fig. 9(c)] for V0 values
above the exceptional point, hence they are neutrally stable. It
is worth mentioning that the very same soliton solution devel-
oped weak instabilities against random localized perturbations
over very long distances in Fig. 8(c). We note that the stability
properties for the φ− family resemble those of the fundamental
solutions considered in [5,33]. Finally, the φ+ representatives
are also observed to be unstable since the stability eigenvalues
μ are complex. This scenario concurs with the numerical linear
stability problem encountered in Fig. 8(d).

Up until now we have studied the stability properties of
localized modes against small random localized perturbations
as well as exponentially growing (in z) perturbation eigenfunc-
tions. To deviate from that linear regime, we next examine the
nonlinear dynamics of lattice solitons under the action of a
localized random perturbation. Equation (13) is numerically
solved using a spectral fourth-order Runge-Kutta method with
localized boundary conditions and an input beam given by

ψ(x,z = 0) = φ±(x) + Ar(x)e−x2/10, (25)

FIG. 10. Soliton nonlinear dynamics obtained from Eq. (13)
subject to the initial condition given by Eq. (25). Shown are
representations of the evolution profile of the wave amplitude as
a function of x and z for (a) and (c) the φ− family and (b) and (d)
the φ+ family. The parameters are (a) V0 = 0.5 and λ = 0.76, (b)
V0 = 0.5 and λ = 1.36, (c) V0 = 1.5 and λ = 2.04, and (d) V0 = 1.5
and λ = 2.71.
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FIG. 11. Dynamic evolution of the (a) maximum peak and (b)
total power corresponding to the direct numerical simulations shown
in Fig. 10.

where A and r(x) are the same as in Eq. (19). Typical numerical
results are shown in Fig. 10. Overall, the nonlinear stage of the
perturbation evolution seems to preserve the stability picture
reported earlier. That is to say, the φ+ family is nonlinearly
unstable regardless of the guiding index depth. To visualize
the development (or lack thereof) of the nonlinear instability,
we present in Figs. 11(a) and 11(b) the maximum peak and total
power of the beam as a function of z, respectively. The mea-
sured soliton peak amplitude and power exhibit growing oscil-
latory behavior. The story with the φ− family is quite different.
In the unbroken PT phase, the solitons are dynamically stable
over long propagation distances with small and controlled
oscillations superimposed on top of the beam [see Fig. 10(c)].
We would like to point out that, in this parameter regime, a low-
amplitude Gaussian input beam was also found to support an
almost-diffraction-free propagation for sufficiently large lat-
tice depth [see Fig. 4(b)]. Recall as well that in the linear stabil-
ity analysis only the φ− family with |V0| > 1 grew at a less than
exponential rate with a linear stability spectrum [obtained from
Eq. (24)] lying entirely on the imaginary axis [see Fig. 9(c)].
However, for different members of the same family, the peak
amplitude grows rapidly with z when |V0| < 1 [Fig. 10(a)].

V. CONCLUSION

In the context of PT -symmetric optics, we examined
the spectral properties of a different class of non-Hermitian
periodic potentials, namely, that of coupled waveguides,
represented by a double-exponential periodic function. In
particular, the complex refractive index distributions are given
by V (x) = eiW (x), where W (x) = cos(x) + iV0 sin(x). Unlike
most optical PT refractive indices, whose PT symmetry is
usually given at one point, this class of optical structures sat-
isfies a shifted twofold PT symmetry around x = ±π/2. It is
found that the linear spectrum associated with these potentials
is entirely real for |V0| > 1 and exceptional points characterize
this abrupt phase transition from broken to unbroken shifted
PT symmetry. The effect of the FB-mode phase front tilt in
the diffraction dynamics was also examined. Our analysis was
extended to the nonlinear (self-focusing) regime where lattice
solitons were found to exist above a specific power threshold
for certain parameters. The center of spatial symmetry of
such solitons coincides with the shifted PT -symmetry points.
The linear and nonlinear dynamic stabilities of these lattice

013803-7



J. T. COLE et al. PHYSICAL REVIEW A 93, 013803 (2016)

solitons were investigated by direct numerical simulations and
by solving a stability eigenvalue problem. The solitons in the
unbroken-PT -symmetry regime can be stable depending on
their spatial point of symmetry.
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[40] T. Wasak, P. Szańkowski, V. V. Konotop, and M. Trippenbach,

Opt. Lett. 40, 5291 (2015).
[41] S. Klaiman, U. Günther, and N. Moiseyev, Phys. Rev. Lett. 101,

080402 (2008).
[42] K. Staliunas, R. Herrero, and R. Vilaseca, Phys. Rev. A 80,

013821 (2009).
[43] Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and

D. N. Christodoulides, Phys. Rev. Lett. 106, 213901 (2011).
[44] Y. D. Chong, L. Ge, and A. D. Stone, Phys. Rev. Lett. 106,

093902 (2011).

013803-8

http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1088/0034-4885/70/6/R03
http://dx.doi.org/10.1088/0034-4885/70/6/R03
http://dx.doi.org/10.1088/0034-4885/70/6/R03
http://dx.doi.org/10.1088/0034-4885/70/6/R03
http://dx.doi.org/10.1103/PhysRevLett.100.103904
http://dx.doi.org/10.1103/PhysRevLett.100.103904
http://dx.doi.org/10.1103/PhysRevLett.100.103904
http://dx.doi.org/10.1103/PhysRevLett.100.103904
http://dx.doi.org/10.1364/OL.32.002632
http://dx.doi.org/10.1364/OL.32.002632
http://dx.doi.org/10.1364/OL.32.002632
http://dx.doi.org/10.1364/OL.32.002632
http://dx.doi.org/10.1103/PhysRevLett.100.030402
http://dx.doi.org/10.1103/PhysRevLett.100.030402
http://dx.doi.org/10.1103/PhysRevLett.100.030402
http://dx.doi.org/10.1103/PhysRevLett.100.030402
http://dx.doi.org/10.1103/PhysRevA.81.063807
http://dx.doi.org/10.1103/PhysRevA.81.063807
http://dx.doi.org/10.1103/PhysRevA.81.063807
http://dx.doi.org/10.1103/PhysRevA.81.063807
http://dx.doi.org/10.1103/PhysRevLett.103.093902
http://dx.doi.org/10.1103/PhysRevLett.103.093902
http://dx.doi.org/10.1103/PhysRevLett.103.093902
http://dx.doi.org/10.1103/PhysRevLett.103.093902
http://dx.doi.org/10.1038/nphys1515
http://dx.doi.org/10.1038/nphys1515
http://dx.doi.org/10.1038/nphys1515
http://dx.doi.org/10.1038/nphys1515
http://dx.doi.org/10.1103/PhysRevA.82.043803
http://dx.doi.org/10.1103/PhysRevA.82.043803
http://dx.doi.org/10.1103/PhysRevA.82.043803
http://dx.doi.org/10.1103/PhysRevA.82.043803
http://dx.doi.org/10.1103/PhysRevLett.110.234101
http://dx.doi.org/10.1103/PhysRevLett.110.234101
http://dx.doi.org/10.1103/PhysRevLett.110.234101
http://dx.doi.org/10.1103/PhysRevLett.110.234101
http://dx.doi.org/10.1364/OE.22.009574
http://dx.doi.org/10.1364/OE.22.009574
http://dx.doi.org/10.1364/OE.22.009574
http://dx.doi.org/10.1364/OE.22.009574
http://dx.doi.org/10.1038/nphoton.2014.133
http://dx.doi.org/10.1038/nphoton.2014.133
http://dx.doi.org/10.1038/nphoton.2014.133
http://dx.doi.org/10.1038/nphoton.2014.133
http://dx.doi.org/10.1038/nphys2927
http://dx.doi.org/10.1038/nphys2927
http://dx.doi.org/10.1038/nphys2927
http://dx.doi.org/10.1038/nphys2927
http://dx.doi.org/10.1126/science.1258480
http://dx.doi.org/10.1126/science.1258480
http://dx.doi.org/10.1126/science.1258480
http://dx.doi.org/10.1126/science.1258480
http://dx.doi.org/10.1126/science.1258479
http://dx.doi.org/10.1126/science.1258479
http://dx.doi.org/10.1126/science.1258479
http://dx.doi.org/10.1126/science.1258479
http://dx.doi.org/10.1103/PhysRevLett.108.173901
http://dx.doi.org/10.1103/PhysRevLett.108.173901
http://dx.doi.org/10.1103/PhysRevLett.108.173901
http://dx.doi.org/10.1103/PhysRevLett.108.173901
http://dx.doi.org/10.1038/ncomms5034
http://dx.doi.org/10.1038/ncomms5034
http://dx.doi.org/10.1038/ncomms5034
http://dx.doi.org/10.1038/ncomms5034
http://dx.doi.org/10.1126/science.1258004
http://dx.doi.org/10.1126/science.1258004
http://dx.doi.org/10.1126/science.1258004
http://dx.doi.org/10.1126/science.1258004
http://dx.doi.org/10.1103/PhysRevLett.110.053901
http://dx.doi.org/10.1103/PhysRevLett.110.053901
http://dx.doi.org/10.1103/PhysRevLett.110.053901
http://dx.doi.org/10.1103/PhysRevLett.110.053901
http://dx.doi.org/10.1103/PhysRevLett.110.173901
http://dx.doi.org/10.1103/PhysRevLett.110.173901
http://dx.doi.org/10.1103/PhysRevLett.110.173901
http://dx.doi.org/10.1103/PhysRevLett.110.173901
http://dx.doi.org/10.1364/OE.18.021585
http://dx.doi.org/10.1364/OE.18.021585
http://dx.doi.org/10.1364/OE.18.021585
http://dx.doi.org/10.1364/OE.18.021585
http://dx.doi.org/10.1364/OE.19.018004
http://dx.doi.org/10.1364/OE.19.018004
http://dx.doi.org/10.1364/OE.19.018004
http://dx.doi.org/10.1364/OE.19.018004
http://dx.doi.org/10.1364/OE.21.021651
http://dx.doi.org/10.1364/OE.21.021651
http://dx.doi.org/10.1364/OE.21.021651
http://dx.doi.org/10.1364/OE.21.021651
http://dx.doi.org/10.1126/science.1206038
http://dx.doi.org/10.1126/science.1206038
http://dx.doi.org/10.1126/science.1206038
http://dx.doi.org/10.1126/science.1206038
http://dx.doi.org/10.1038/nmat3495
http://dx.doi.org/10.1038/nmat3495
http://dx.doi.org/10.1038/nmat3495
http://dx.doi.org/10.1038/nmat3495
http://dx.doi.org/10.1038/nature11298
http://dx.doi.org/10.1038/nature11298
http://dx.doi.org/10.1038/nature11298
http://dx.doi.org/10.1038/nature11298
http://dx.doi.org/10.1103/PhysRevLett.110.223902
http://dx.doi.org/10.1103/PhysRevLett.110.223902
http://dx.doi.org/10.1103/PhysRevLett.110.223902
http://dx.doi.org/10.1103/PhysRevLett.110.223902
http://dx.doi.org/10.1137/130912694
http://dx.doi.org/10.1137/130912694
http://dx.doi.org/10.1137/130912694
http://dx.doi.org/10.1137/130912694
http://dx.doi.org/10.1103/PhysRevLett.103.030402
http://dx.doi.org/10.1103/PhysRevLett.103.030402
http://dx.doi.org/10.1103/PhysRevLett.103.030402
http://dx.doi.org/10.1103/PhysRevLett.103.030402
http://dx.doi.org/10.1103/PhysRevA.91.023825
http://dx.doi.org/10.1103/PhysRevA.91.023825
http://dx.doi.org/10.1103/PhysRevA.91.023825
http://dx.doi.org/10.1103/PhysRevA.91.023825
http://dx.doi.org/10.1364/OL.37.004874
http://dx.doi.org/10.1364/OL.37.004874
http://dx.doi.org/10.1364/OL.37.004874
http://dx.doi.org/10.1364/OL.37.004874
http://dx.doi.org/10.1103/PhysRevA.87.033819
http://dx.doi.org/10.1103/PhysRevA.87.033819
http://dx.doi.org/10.1103/PhysRevA.87.033819
http://dx.doi.org/10.1103/PhysRevA.87.033819
http://dx.doi.org/10.1103/PhysRevA.85.023822
http://dx.doi.org/10.1103/PhysRevA.85.023822
http://dx.doi.org/10.1103/PhysRevA.85.023822
http://dx.doi.org/10.1103/PhysRevA.85.023822
http://dx.doi.org/10.1103/PhysRevE.83.066608
http://dx.doi.org/10.1103/PhysRevE.83.066608
http://dx.doi.org/10.1103/PhysRevE.83.066608
http://dx.doi.org/10.1103/PhysRevE.83.066608
http://dx.doi.org/10.1103/PhysRevA.83.041805
http://dx.doi.org/10.1103/PhysRevA.83.041805
http://dx.doi.org/10.1103/PhysRevA.83.041805
http://dx.doi.org/10.1103/PhysRevA.83.041805
http://dx.doi.org/10.1103/PhysRevA.85.063837
http://dx.doi.org/10.1103/PhysRevA.85.063837
http://dx.doi.org/10.1103/PhysRevA.85.063837
http://dx.doi.org/10.1103/PhysRevA.85.063837
http://dx.doi.org/10.1103/PhysRevLett.103.123601
http://dx.doi.org/10.1103/PhysRevLett.103.123601
http://dx.doi.org/10.1103/PhysRevLett.103.123601
http://dx.doi.org/10.1103/PhysRevLett.103.123601
http://dx.doi.org/10.1103/PhysRevB.80.165125
http://dx.doi.org/10.1103/PhysRevB.80.165125
http://dx.doi.org/10.1103/PhysRevB.80.165125
http://dx.doi.org/10.1103/PhysRevB.80.165125
http://dx.doi.org/10.1103/PhysRevLett.104.054102
http://dx.doi.org/10.1103/PhysRevLett.104.054102
http://dx.doi.org/10.1103/PhysRevLett.104.054102
http://dx.doi.org/10.1103/PhysRevLett.104.054102
http://dx.doi.org/10.1364/OL.40.005291
http://dx.doi.org/10.1364/OL.40.005291
http://dx.doi.org/10.1364/OL.40.005291
http://dx.doi.org/10.1364/OL.40.005291
http://dx.doi.org/10.1103/PhysRevLett.101.080402
http://dx.doi.org/10.1103/PhysRevLett.101.080402
http://dx.doi.org/10.1103/PhysRevLett.101.080402
http://dx.doi.org/10.1103/PhysRevLett.101.080402
http://dx.doi.org/10.1103/PhysRevA.80.013821
http://dx.doi.org/10.1103/PhysRevA.80.013821
http://dx.doi.org/10.1103/PhysRevA.80.013821
http://dx.doi.org/10.1103/PhysRevA.80.013821
http://dx.doi.org/10.1103/PhysRevLett.106.213901
http://dx.doi.org/10.1103/PhysRevLett.106.213901
http://dx.doi.org/10.1103/PhysRevLett.106.213901
http://dx.doi.org/10.1103/PhysRevLett.106.213901
http://dx.doi.org/10.1103/PhysRevLett.106.093902
http://dx.doi.org/10.1103/PhysRevLett.106.093902
http://dx.doi.org/10.1103/PhysRevLett.106.093902
http://dx.doi.org/10.1103/PhysRevLett.106.093902


TWOFOLD PT SYMMETRY IN DOUBLY . . . PHYSICAL REVIEW A 93, 013803 (2016)

[45] P. Ambichl, K. G. Makris, L. Ge, Y. Chong, A. D. Stone, and
S. Rotter, Phys. Rev. X 3, 041030 (2013).

[46] V. Achilleos, P. G. Kevrekidis, D. J. Frantzeskakis,
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