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1. Introduction

Recent experiments have found that small i lated metallic rings, threaded by magnetic flux,
carry persistent currents. Although the existence of this effect had been anticipated theoreti-
cally for many years [1-4], the magnitude of jthe observed current was found to be much larger
than expected.

Experiments performed on moderately disordered rings with small transverse width have
measured the magnetic response of an ensemble of copper rings [5], of isolated gold loops [6],
and of a clean, almost one-dimensional, sam le [7].

The ensemble averaged persistent current was found to have an amplitude of order 10~ %ev /L
and periodicity ®0/2, (where L is the circumference of the ring, v is the Fermi velocity, e is
the electron charge, and ®¢ = h/e is the fl I quantum). The single loops experiment reported
finding an unexpectedly large current of order evs/L, the free electron value, and displaying
periodicity in flux with period &,. I

Theoretical approaches can be classified =n.- to non-interacting and interacting electrons ap-
proaches. Non interacting theories which take into account the effects of disorder and devia-
tions from a perfect 1D geometry [8], predic values of the average persistent current that are
smaller than observed, but still within one gr two orders of magnitude of the experimentally
determined value of the average current. i
typical value of the persistent current, mes

ore surprisingly, the theoretical estimates for the
Hured in the single loop experiment, are perhaps
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two or three orders of magnitude smaller than the reported values. It seems that agreement
between theory and experiment worserls with increasing disorder. This suggests that perhaps
interaction corrections are quantitatively important in the moderately disordered regime.

A first guess would be that interactiops enhance the impurity scattering and further suppress
the persistent current, as happens for |the conductance of the disordered luttinger liquid [9].
However, this intuitive analogy may be quite misleading. While the conductance depends
on the Fermi surface properties, i.e. yelocity and scattering rates, the persistent current is
a sum of contributions from all occupied states. Also, by Galilean invariance, an interacting
electron liquid without disorder carries the same current as the non interacting gas, even though
its Fermi velocity may be renormalized. Thus it is plausible that in the disordered system,
interactions could work both ways, i.e. either suppress or enhance the persistent currents under
conditions which need to be explored.

Exact diagonalization studies of spinless fermions with intersite interactions on small rings
(10,11}, have found that weak interactions reduce the persistent current below its noninteracting
value. The correlation between the nop interacting persistent current and the first order (in
interactions) corrections have been evaluated numerically for the Hubbard model with spin by
Ramin, Reulet and Bouchiat (RRB) [13] for various disorder realizations. RRB found that the
non interacting and interaction correction have the same sign, which agrees with exact results
for the disordered Hubbard model found by Giamarchi and Shastry [12]. They also explain this
effect by estimating the ground state epergy correction. In this paper [14] we shall gain more
insight into the puzzle of interaction cotrections by arriving at an analogous expression for the
interaction correction to the persistent qurrent and its explicit dependence on disorder strength.
In Section 2 we diagonalize the tight binding Hamiltonian numerically for different realizations
of disorder, and compute the persistent current to zeroth and to first order in the Hubbard
interactions. We find that interactions enhance the persistent current. In Section 3 we present
the Avoided Levels Crossing (ALC) theory, which provides an analytic approximation to the
numerical results. This is an expansign, at weak disorder, of nearly degenerate eigenstates
at fluxes close to points of time reversal symmetry. The correlation between the zeroth and
first order currents is explained by a fommon mechanism, i.e. the avoided level crossings.
The opposite (suppression) effect for spinless fermions, is also explained by the ALC theory in
Section 4. We conclude by a summary rmd future directions.

2. Numerical Perturbation Theory

We consider a tight-binding Hamiltonian on a periodic chain with repulsive on-site Hubbard

interaction:
H =|Hy + Uann,-l, (1)
i

Ho = - Z[ei(zf'gﬁ)chl,cia +h.c] + Zfid,cfa- (2)

io

where cfa creates an electron at site ¢ with spin 0. Our unit of energy is the hopping energy. ¢;
is the dimensionless on-site disorder energy uniformly distributed in the interval [-W/2,W/2].
The chain has L sites, N, electrons, the flux through its center is given by ®. With these
conventions, the energy spectrum is periodic in the enclosed flux with period ®,, and the

current is given by

I(®) = -%E(@), (3)



Ne1l ENHANCEMENT OF PERSISTENT CURRENTS 1489

«

2.54

Io(@) 0+

R 05 s

;
8/,

Fig. 1. — The ensemble averaged noninteracting current (lp) as a function of the applied flux for
several strengths of disordered potential: W=0, 0.5, 1.0, 2.0 and 4.0. All curves are for a half-filled

lattice of six sites.

where
E(®) = Eo(®) + E1(®) + O(U?). (4)

Ey is the exact ground state energy of Hy, whose single electron eigenstates are determined
numerically. E, is the first order correction in U, which is given by

E1 = Uann,—l
i
nie = (Tolcl,cin|¥o) (5)
where g is the Fock ground state of Hy. Thus by diagonalizing Hy we can readily obtain
1(®) = Io(®) + I (®) + O(U?). (6)

The effects of disorder on the ensemble averaged non interacting current Io(®) can be seen in
Figure 1, where it is shown as a function of flux for a half filled lattice of six sites, for different
disorder strengths W. Disorder smoothens and reduces the magnitude of Iy, and for W >> 1
it is dominated by the first harmonic sin(2r®/®y).

In Figure 2, the average value of I;(®) is plotted. There are several features of the first
order interaction correction that deserve comment. First, the most important observation is
that it generally enhances the non interacting current for all values of disorder strength and
flux. That is to say: there is a positive correlation between the non interacting current and the

first order correction,
(Io(2)1(®))ee 2> 0. (7)

which is in agreement with the numerical results obtained by RRB for the same model [13].
This result is found to hold for all realizations of disorder which we have used. Second, in the
limit of weak disorder, I;(®) becomes singular at discontinuity points of Io(®), which are at
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Fig. 2. — The first order ensemble averaged interacting current (I;) as a function of the applied flux
for disordered potential values: W= 1.0, 2.0 and 4.0. As before, all curves are for a half-filled lattice

of six sites.

fluxes (m+ 3)®o, (m®,) for even (odd) number of filled orbitals, where m are integers. Finally,
we see the first order current also becomes dominated by its first harmonic at large disorder.

To study the scaling properties of the current with system size and disorder strength, it is
convenient to characterize the strength of both Iy and I; by their amplitude at & = ®,/4. And
while it does not capture the singular nature of I;(®) near the regime of very weak disorder,
this characterization is still useful to study the scaling properties of the first order current.
Previous studies have found [4, 10] both numerically and analytically, that the amplitude of
the noninteracting current, averaged over disorder, behaves like:

1Ho(®o/4)| = 3 2 exp(~L/¢). ®)

By fitting to this functional form we extracted the localization length ¢ for different system
sizes and disorder values. Figure 3 shows the values of the localization length obtained for
sizes L=6,10,14,20 and 25, at half-filling, averaged over many (up to four thousand) impurity
configurations for each value of W. We find good agreement between our inferred value of the
localization length and the known asymptotic form in the weak disorder limit: £ = 105/W?2,
valid when W « 2 for large systems at half-filling.

There is less agreement in the strongly localized limit where the localization length is known
to behave like: £ = (In(W/2) ~ 1)~!. We find a better fit taking £ = 1/In(W%%/2.5) for the
L = 25 data. This discrepancy could be due to the small sizes considered, or a breakdown
of equation (8) when £ is of order unity. We have calculated the amplitude I;($ = &, /4) as
function of strength of disorder, characterized by the scaling parameter L/¢, for system sizes
of L=6,10,14,20,25. At weak disorder (large ¢), the amplitude increases with the strength of
disorder achieving its maximum value at some intermediate strength of disorder ( £ ~ L ). In
this weakly disordered regime, a single scaling function could be used to describe the results:
1|

7~ fL/O)/L. (9)
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Fig. 3. — The logarithm of the localization length (In¢), implied by equation (8), is plotted as a
function of strength of disorder (W) for half-filled rings with N=6, 10, 14, 20 and 25 sites. Data for
the different system sizes collapse well onto a single curve.

This behavior is similar to that of the amplitude of the noninteracting current given by (8).
Upon increasing the impurity scattering further, the first order current decreases with disorder.
When the single particle wavefunctions are sufficiently localized, I; can be described by a

different scaling form:
1|
Lk R 1
=~ g(L/6), (10)
where g is a decreasing function of its argument. Equation (10) suggests that in the localized
regime I; dominates I for large system sizes. However for localized doubly occupied single

electron states
U

("paT'/’al‘UZ"itnill Yar¥al) ~ t (11)

Thus even for weak interactions, the interaction corrections may be larger than the non inter-
acting level spacings which go as 1/L. This invalidates perturbation theory in U in the localized
regime. ’

3. Avoided Level Crossings Theory

Here we will discuss how the numerical results of the previous section can be understood in
terms of avoided level crossings (ALC) at weak disorder. First, we derive the ALC approxima-
tion for the noninteracting current Iy.

3.1. ALC THEORY FOR Ip. — In Figure 4 we can see a typical spectrum for a tight-binding

JOURNAL DE PHYSIQUE L —T. 3, N* 11, NOVEMBER 195 %
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Fig. 4. — Energy level spectrum of the tight-binding Hamiltonian(12) as a function of applied flux
for a N=6 ring in the absence of disorder (solid lines) and for weak disorder (dotted lines).

Hamiltonian of a 6 site ring, as a function of the applied flux. In the absence of disorder
(W = 0) the eigenenergies are

€.{®) = —2cos (%}—r(n + %)) ) (12)
with period $o = 27. At points of time reversal symmetry, i.e. where & is an integer multiple of

®/2, level crossings occurs between states of opposite angular momenta. The noninteracting
persistent current is a sum over the currents carried by all occupied levels,

P occupied 0
K@) =-22__ 5 0 (13)
3% 20 5%

where n,s are the orbital and spin index, respectively. The noninteracting current Io(®) will
be a smooth function of & away from the points of level crossings. By symmetry of & — ~&,
any pair of levels cross with opposite slopes, and thus if they are both fully occupied their
contribution to the total current cancels. The only nonvanishing contribution comes from a
topmost level which is not compensated by its partner. Then the current changes sign abruptly
as the occupation moves from one branch to another. Thus for an odd number of fully occupied
orbitals the current discontinuity occur at & = (m + 1/2)®, otherwise the discontinuities will
occur at ¢ = m®P,. In between the discontinuities the current varies linearly with the flux,
which explains the periodic sawtooth shape for Iy as seen in Figure 1. Introducing a small
amount of disorder lifts the degeneracy at the crossings by opening small gaps. This reduces
the persistent current Jj since the occupied levels have smaller slopes near the former crossing
points. This explains the behavior shown in Figure 1: weak impurity scattering softens the
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discontinuities and leads to an overall reduction of the magnitude of current. We can quantify
this observation by examining pairs of levels with momenta %k which cross at & = 0. We
specialize to the case of an even number of filled levels with equal occupations for both spin
directions. The unperturbed energies are given by
2
€1k (®) = —2cos (i:k + %%) (14)
with k = 2rm/L, for a positive integer m. Consider the effect of a weak random potential ¢;
which lifts the degeneracy in the 2 x 2 subspace of k, -k,

3 Vi
Ho = | : ] 15
‘ [V—k.k e-x(®) (15)
where
i 1 <& .
Vi, -k = I Zexp(—z2km,-)e,-. (16)

i=]

From now on we will omit the subcripts k, —k off V.
The eigenvalues and normalized eigenfunctions of (15) are:

6+(Q) : ’(/)+ = -712 (A+ei’°’ + B+e""°")

e(®): yY.= 711- (A—e™*® + B_e~=) (17)
where:
~1/2
' 7|2
Al = &' |1+ cld 3 ,
(ek — €k + \/(e-k —€x)? + 4|f/|2 )
B. = —2v — A_, (18)
€k — € + \/(C-k - fk)2 + 4IV'2
and,
€k + e 24/ (€ — € )2+4V2
€4 = \/ 5 * Vi , (19)
which satisfy:
€+(®) + e (P) = € (®) + (D). (20)
We see that the contribution of the occupied orbitals to Iy is unchanged by weak disorder since:
- Oes +€-) Olex + €~i)
k-k _ _Ole4 - -
L= a9 el (21)

Let us now use (13) to calculate Iy(®) for free electrons with weak disorder by summing
over occupied levels. We fill all levels up to kr = 2wmg/L, plus two electrons at k¢ so that
an even number of orbital levels is filled. Although we restrict our calculations to an even
number of filled orbitals, the ALC theory can be easily extended to all other fillings as follows:
we note that the non interacting wavefunctions have two-fold spin degeneracy. An unpaired
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spin in an open orbital will not produce any interaction correction to the persistent current
since its density interacts with an approximately uniform core density. For odd number of
doubly occupied orbitals, the important level 1 crossings occur at & ~ :i:%@o, rather than near
@ ~ 0. The total noninteracting current is given by the contribution from the filled level pairs,
together with the contribution of lowest m = 0 (nondegenerate) level and the topmost orbital
level at m;:

1l

Ip(®) DI I I

mg—1
4r | 2 ® Oe_
= -2 E msmf(m+¢—o)—-25$ (22)

Neglecting corrections of order 1/L?, we obtain the expression:

_smsin(ky) | . ® (@ 3)? o\
o) = 5 2+ () / \J (a) +(4wsin(kf)) @

for ® € [-®¢/2, ®0/2]. This expression for I, is valid as long as the energy scale of the disorder
is much smaller than the level spacing at the Fermi level:

V| << dmsin(ke)/L. (24)

Using the relation between V| and the mean free path l¢; defined by the one dimensional Born
approximation,

27 sin®
AL (25)
. V2L
According to (24), the ALC approximation is valid for
8nla/L > 1, (26)

which is the ballistic, or delocalized regime(!). In terms of I, one can write

__ 8msin(k) & @ 8\2 I |
o®) = =222 2+ () / \/(55) +8wze,J' (27

In order to compare (27) to the numerical result for equation (2), one needs to determine the
parameter lj. Since fluctuations in Iy for different disorder realizations are large, we determine
la1 by fitting (27) to the numerical ensemble averaged Ip. Once I, is determined for a particular
disorder realization, we use it to evaluate I, as shown below.

3.2. ALC THEORY FOR I;. — We shall now proceed to use the same approximation to explain
the behavior of I, (?).

(') There is no intermediate “diffusive regime” between the localized and ballistic regimes in one
dimension [15].

(?) This approach is similar to the discussion of Aharonov-Bohm oscillations of the participation ratio
in disordered rings [16].
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According to (5), the first order energy is a sum of the density squared at all sites,

E(®)=U Z NNy (28)
where for the filling of an even number of orbitals per spin, the single spin density is,
nis(®) = [Yo(i)* + [¥m, - (D)7 + mf z:i [0 ()] (29)
m=0 o=
We will now show that the first order energy,
E\(®)=U) nany (30)
i

is enhanced near level crossings.
For a pair of fully occupied levels one has, by unitary

W O + om G =BRGP + s = 7. (31)

Consequently, for weak disorder, all occupied levels, except for the last one, contribute constant
values to the total density:
me -1

T +Hh-0F (32)

N =
or in terms of the coefficients A, B (17)

2m¢ A*B_e?k=  A_B*e %

ni; = T + I + I (33)
The first order energy is thus given by (32),
4me?  2|A_*|B-|?
Ey(@))u = 2 ) AALIB-F (34)

L L
Using (17) and (25) we can write

E(3)/U ~ 4"1’;‘2 + % [1 + (8’21"‘) (go-)z] _1, (35)

Differentiating (35) with respect to flux yields

now =22 [l () (2)] a0

In Figure 5, (36) is compared to the numerical ensemble averaged result for I; for various
values of disorder. For each disorder realization, l,) is determined by fitting the numerical and
ALC results for the average Iy. We see that for weak disorder there is a satisfying agreement
between the ALC approximation and the numerical results. In Figure 5c, the disorder is too
large, and the ALC approximation fairs badly.

Equation (36) explains both the positive correlation between Iy and I; of (7). Since in one
dimension the mean free path (l.)) and the localization length (§) differ by a proportionality
factor of order unity [15], (36) agrees with the empirical scaling form (9) |I1|/U ~ f(L/la)/L
which was found numerically at weak disorder.
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Fig. 5. — Comparison between numerically determined interactions correction I); (dashed lines) and
the analytic ALC result (36) (solid lines). a) ~ c) show results for three values of disorder strength W.
le1(W) are determined by fitting equation (27) to the numerical disorder averaged o(®). Error bars
depict fluctuations of numerical I for different disorder realizations.
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4. Difference of Hubbard Model and Spinless Fermions

In recent papers (10,11}, small disordered rings of spinless electrons have been exactly diago-
nalized. The persistent currents have been computed as a function of disorder and interaction
strength. In contrast to our result for the Hubbard model, interactions have been seen to
reduce the persistent current at weak disorder. Here we apply the ALC approach to explain
this apparent difference between the models.

The spinless Hamiltonian H* is given by
H* = Hg + ZU,-jn;nj,
HS = - Z[ei(zf'z’%)c:-‘+lci + hC] + Z E,‘CIC,'. (37)

The non interacting current, I3, is given by half the value of equation (13). In the ALC
approximation, it is given by half the value of equation (27).
Following the analogous derivation of I;, we use (33) to obtain:

E}(®) = 4me2U(0) + 2|A_|2|B-[2U(2ks), (38)
where
O(k) = % ; exp(—ik;)Us;, (39)

which implies
-1

E3(®)

it

4m2U(0) + U (2kc) [1 + (-SLLI—‘) (%)2}
@) = 12’;24’0(2@) [1 + (872"') (gg)z] N (40)

For the spinless nearest neighbor case studied in reference [11]:

E\(®)=UY ninip, (41)

the corresponding Fourier coefficient is
U(2ks) = 2U cos(2ks). (42)

Above a quarter filling, k¢ > 7/4, U is negative. Consequently I? has the opposite sign to that
of I} in equation (36), and to I§. That is to say, the persistent current of the spinless fermion
model is suppressed by the interactions which is in agreement with the results obtained by
reference [11,13].

The difference between the models can be attributed to the different effects of intersite
interactions (in the spinless model), versus local interactions (in the Hubbard model).
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5. Remarks and Conclusions

We have investigated the first order effect of Hubbard interactions on the persistent current in
one dimensional disordered rings.

The findings can be summarized as follows. I; was found to correlate in sign with Iy, a fact
which goes contrary to the naive intuition that interactions suppress currents (e.g. as they do
for the conductivity of the Luttinger model with an impurity [9]).

We can understand this result by observing that I; depends on charge fluctuations which vary
strongly with flux near the degeneracy points, which also determine the sign and magnitude
of Ip. Using the avoided level crossings theory, we obtain analytical expressions which fit the
numerical results for both Iy and I;. We can use the same theory to explain why spinless
fermions with intersite interactions exhibit suppression of currents rather than enhancement.

We have found numerically that I) (L/€) scales differently with the localization length than
Io(L/£), it seems that effects of electron-electron interactions grow as disorder is increased.

However, first order perturbation theory in the weakly disordered case is expected to hold as
long as the interaction matrix elements do not exceed the single particle level spacings. Thus we
are restricted to the regime U < 1. We can draw on the exact diagonalization results [10,11]
where for weak disorder, the numerical currents are found to vary linearly with interaction
strength in a sizeable regime. Thus we believe that first order perturbation theory should be
valid for physically interesting interaction parameters.

It would be very satisfying if a similar analysis could be applied to the experimentally relevant
case of three dimensional rings. Preliminary results yield positive correlations between I, and
I, but where a simple minded application of the ALC approach cannot describe the diffusive
regime of l; < L. It would also be important to understand the effects of true long range
Coulomb interactions with the screening and exchange effects which are absent in the Hubbard

model.
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two or three orders of magnitude smaller than the reported values. It seems that agreement
between theory and experiment worsens with increasing disorder. This suggests that perhaps
interaction corrections are quantitativaly important in the moderately disordered regime.

A first guess would be that interactions enhance the impurity scattering and further suppress
the persistent current, as happens for {the conductance of the disordered luttinger liquid [9].
However, this intuitive analogy may be quite misleading. While the conductance depends
on the Fermi surface properties, i.e. Velocity and scattering rates, the persistent current is
a sum of contributions from all occupied states. Also, by Galilean invariance, an interacting
electron liquid without disorder carries the same current as the non interacting gas, even though
its Fermi velocity may be renormalizef]. Thus it is plausible that in the disordered system,
interactions could work both ways, i.e. either suppress or enhance the persistent currents under
conditions which need to be explored.

Exact diagonalization studies of spinless fermions with intersite interactions on small rings
[10,11], have found that weak interactiops reduce the persistent current below its noninteracting
value. The correlation between the noh interacting persistent current and the first order (in
interactions) corrections have been evaluated numerically for the Hubbard model with spin by
Ramin, Reulet and Bouchiat (RRB) [13] for various disorder realizations. RRB found that the
non interacting and interaction correction have the same sign, which agrees with exact results
for the disordered Hubbard model found by Giamarchi and Shastry [12]. They also explain this
effect by estimating the ground state ehergy correction. In this paper [14] we shall gain more
insight into the puzzle of interaction cotrections by arriving at an analogous expression for the
interaction correction to the persistent qurrent and its explicit dependence on disorder strength.
In Section 2 we diagonalize the tight binding Hamiltonian numerically for different realizations
of disorder, and compute the persistent current to zeroth and to first order in the Hubbard
interactions. We find that interactions enhance the persistent current. In Section 3 we present
the Avoided Levels Crossing (ALC) theory, which provides an analytic approximation to the
numerical results. This is an expansign, at weak disorder, of nearly degenerate eigenstates
at fluxes close to points of time reversal symmetry. The correlation between the zeroth and
first order currents is explained by a common mechanism, i.e. the avoided level crossings.
The opposite (suppression) effect for spinless fermions, is also explained by the ALC theory in
Section 4. We conclude by a summary and future directions.

2. Numerical Perturbation Theor

n on a periodic chain with repulsive on-site Hubbard

o + Uann,’l, 1)

We consider a tight-binding Hamiltonig
interaction:
H =

Hy=— Z[e’(zf' * )CI+10.C1‘¢ +he] + Zegcfacia. (2)
k1-4 1o

where cf., creates an electron at site ¢ with spin ¢. Our unit of energy is the hopping energy. ¢;

is the dimensionless on-site disorder energy uniformly distributed in the interval [-W/2,W/2].

The chain has L sites, N, electrons, the flux through its center is given by &. With these

conventions, the energy spectrum is periodic in the enclosed flux with period ®p, and the

current is given by
= -——=E(®), 3)
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Fig. 1. — The ensemble averaged noninteracting current (Io) as a function of the applied flux for
several strengths of disordered potential: W=0, 0.5, 1.0, 2.0 and 4.0. All curves are for a half-filled

lattice of six sites.

where
E(®) = Eo(®) + E1(2) + O(U?). (4)

Ey is the exact ground state energy of Hy, whose single electron eigenstates are determined
numerically. E, is the first order correction in U, which is given by

E1 = UZn.-Tngl

f

Nis (Wolc! cio|¥o) (5)

where ¥y is the Fock ground state of Hy. Thus by diagonalizing Hy we can readily obtain
1(®) = Ip(®) + L(®) + O(U?). (6)

The effects of disorder on the ensemble averaged non interacting current Iy(®) can be seen in
Figure 1, where it is shown as a function of flux for a half filled lattice of six sites, for different
disorder strengths W. Disorder smoothens and reduces the magnitude of Iy, and for W >> 1
it is dominated by the first harmonic sin(27r®/®;).

In Figure 2, the average value of I;(®) is plotted. There are several features of the first
order interaction correction that deserve comment. First, the most important observation is
that it generally enhances the non interacting current for all values of disorder strength and
flux. That is to say: there is a positive correlation between the non interacting current and the

first order correction,
(Io(®)1(®))ee 2 0. (7)

which is in agreement with the numerical results obtained by RRB for the same model [13].
This result is found to hold for all realizations of disorder which we have used. Second, in the
limit of weak disorder, I1(®) becomes singular at discontinuity points of Io(®), which are at
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Fig. 2. — The first order ensemble averaged interacting current (I;) as a function of the applied flux
for disordered potential values: W= 1.0, 2.0 and 4.0. As before, all curves are for a half-filled lattice

of six sites.

fluxes (m + 1 )®o, (m®y) for even (odd) number of filled orbitals, where m are integers. Finally,
we see the first order current also becomes dominated by its first harmonic at large disorder.

To study the scaling properties of the current with system size and disorder strength, it is
convenient to characterize the strength of both Iy and I; by their amplitude at & = ®¢/4. And
while it does not capture the singular nature of I;(®) near the regime of very weak disorder,
this characterization is still useful to study the scaling properties of the first order current.
Previous studies have found [4,10] both numerically and analytically, that the amplitude of
the noninteracting current, averaged over disorder, behaves like:

1Mo(®@0/4)| = 3 5 exp(~L/6). ®)

By fitting to this functional form we extracted the localization length £ for different system
sizes and disorder values. Figure 3 shows the values of the localization length obtained for
sizes L=6,10,14,20 and 25, at half-filling, averaged over many (up to four thousand) impurity
configurations for each value of W. We find good agreement between our inferred value of the
localization length and the known asymptotic form in the weak disorder limit: £ = 105/W?3,
valid when W <« 27 for large systems at half-filling.

There is less agreement in the strongly localized limit where the localization length is known
to behave like: ¢ = (In(W/2) ~ 1)1, We find & better fit taking £ = 1/In(W%%/2.5) for the
L = 25 data. This discrepancy could be due to the small sizes considered, or a breakdown
of equation (8) when ¢ is of order unity. We have calculated the amplitude I;(® = &,/4) as
function of strength of disorder, characterized by the scaling parameter L/¢, for system sizes
of L=6,10,14,20,25. At weak disorder (large £), the amplitude increases with the strength of
disorder achieving its maximum value at some intermediate strength of disorder ( £ ~ L ). In
this weakly disordered regime, a single scaling function could be used to describe the results:

Bl rene. 9)
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Fig. 3. — The logarithm of the localization length (In¢), implied by equation (8), is plotted as a
function of strength of disorder (W) for half-filled rings with N=6, 10, 14, 20 and 25 sites. Data for
the different system sizes collapse well onto a single curve.

This behavior is similar to that of the amplitude of the noninteracting current given by (8).
Upon increasing the impurity scattering further, the first order current decreases with disorder.
When the single particle wavefunctions are sufficiently localized, I; can be described by a

different scaling form:

Wl owse), (10)

where ¢ is a decreasing function of its argument. Equation (10) suggests that in the localized
regime I; dominates Ip for large system sizes. However for localized doubly occupied single
electron states

U
(%WallUZmrﬂul YatPay) ~ T (11)

Thus even for weak interactions, the interaction corrections may be larger than the non inter-
acting level spacings which go as 1/L. This invalidates perturbation theory in U in the localized
regime. '

3. Avoided Level Crossings Theory

Here we will discuss how the numerical results of the previous section can be understood in
terms of avoided level crossings (ALC) at weak disorder. First, we derive the ALC approxima-
tion for the noninteracting current Ip.

3.1. ALC THEORY FOR Iy. — In Figure 4 we can see a typical spectrum for a tight-binding

JOURNAL DE PHYSIQUEL —T. 5, N° 11, NOVEMBER 1995 %9
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Fig. 4. — Energy level spectrum of the tight-binding Hamiltonian(12) as a function of applied flux
for a N==6 ring in the absence of disorder (solid lines) and for weak disorder (dotted lines).

Hamiltonian of a 6 site ring, as a function of the applied flux. In the absence of disorder
(W = 0) the eigenenergies are
2 ®
en(®) = —2cos (1—\,7[(11 + Q—O)) , (12)
with period @y = 27. At points of time reversal symmetry, i.e. where @ is an integer multiple of
®0/2, level crossings occurs between states of opposite angular momenta. The noninteracting
persistent current is a sum over the currents carried by all occupied levels,

6E() occupied 9

h@)=-z=== 3 zzea(d), (13)

where n,s are the orbital and spin index, respectively. The noninteracting current Ip(®) will
be a smooth function of & away from the points of level crossings. By symmetry of & — —&,
any pair of levels cross with opposite slopes, and thus if they are both fully occupied their
contribution to the total current cancels. The only nonvanishing contribution comes from a
topmost level which is not compensated by its partner. Then the current changes sign abruptly
as the occupation moves from one branch to another. Thus for an odd number of fully occupied
orbitals the current discontinuity occur at & = (m+1/2)®,, otherwise the discontinuities will
occur at # = m®Py. In between the discontinuities the current varies linearly with the flux,
which explains the periodic sawtooth shape for I as seen in Figure 1. Introducing a small
amount of disorder lifts the degeneracy at the crossings by opening small gaps. This reduces
the persistent current Iy since the occupied levels have smaller slopes near the former crossing
points. This explains the behavior shown in Figure 1: weak impurity scattering softens the
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discontinuities and leads to an overall reduction of the magnitude of current. We can quantify
this observation by examining pairs of levels with momenta +k which cross at & = 0. We
specialize to the case of an even number of filled levels with equal occupations for both spin
directions. The unperturbed energies are given by

2r ®
= - 2= 14
e+x(®) 2 cos (ik+ 7 %) (14)

with k = 2wm/L, for a positive integer m. Consider the effect of a weak random potential €;
which lifts the degeneracy in the 2 x 2 subspace of k, —k,

®)  Vi-k
Hy = | &l : ] 15
° [ Vekr €-x(®) (15)
where L
- 1 .
Vi,—k = I 1Z;exp(—121\7:1:,»)6,-. (16)

From now on we will omit the subcripts k, —k off V.
The eigenvalues and normalized eigenfunctions of (15) are:

€+(®) : Py = 715 (A+ei'°‘ + B+e—ikz)

e-(®): P-= :}Z (A—e™** + B_e~*=) (17
where:
-1/2
‘ 12
A = eus.. 1+ 4|VI - ,
(ek —€p+\/(e—k — ) + 4|V|2 )
B. = il — A_, (18)
€k — € + \/(e-k ~€x)? + 4|V)?
and,
€x + e+ 1/ (ex — )2 + 4|V|?
Lot \/(k2 44V 19
which satisfy:
€4(P) + € () = ex(P) + e (D). (20)

We see that the contribution of the occupied orbitals to Ij is unchanged by weak disorder since:

_O(ey +e) _ ek +€—k)
8% - od

Let us now use (13) to calculate Io(®) for free electrons with weak disorder by summing
over occupied levels. We fill all levels up to kr = 2wmq/L, plus two electrons at k¢ so that
an even number of orbital levels is filled. Although we restrict our calculations to an even
number of filled orbitals, the ALC theory can be easily extended to all other fillings as follows:
we note that the non interacting wavefunctions have two-fold spin degeneracy. An unpaired

Iy~* = (21)
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spin in an open orbital will not produce any interaction correction to the persistent current
since its density interacts with an approximately uniform core density. For odd number of
doubly occupied orbitals, the important level | crossings occur at & ~ +1®o, rather than near
@ ~ 0. The total noninteracting current is given by the contribution from the filled level pairs,
together with the contribution of lowest m = 0 (nondegenerate) level and the topmost orbital
level at my:

(®) = Y +I=+L™

my—1
47 2 (i ] de_
= - E e 8] — T} T e 22
2 L@osmL (m+¢0) 28<I> (22)

—(m¢—1)

Neglecting corrections of order 1/L?, we obtain the expression:

_ 8msin(ky) d i 3\* L|V| ]
o) == 25+ () / \! (z) +(4wsin(kf)) @

for & € [~®/2, ®o/2]. This expression for Iy is valid as long as the energy scale of the disorder
is much smaller than the level spacing at the Fermi level:

V| << 4msin(ke)/L. (24)

Using the relation between [V| and the mean free path [, defined by the one dimensional Born
approximation,

27 sin?
o = 2k 25
. VI2L
According to (24), the ALC approximation is valid for
8l /L > 1, (26)

which is the ballistic, or delocalized regime(!). In terms of /., one can write

_ 8rsin(k) 3 @ 8\* 1 |
Ip(®) = —'ﬁ;— —2&:)- + (a) /‘/(a‘;) + 'S‘;r'l—el'J . (27)

In order to compare (27) to the numerical result for equation (2), one needs to determine the
parameter l;. Since fluctuations in Iy for different disorder realizations are large, we determine
le1 by fitting (27) to the numerical ensemble averaged Io. Once I, is determined for a particular
disorder realization, we use it to evaluate I; as shown below.

3.2. ALC THEORY FOR I;. — We shall now proceed to use the same approximation to explain
the behavior of I, ().

(*) There is no intermediate “diffusive regime” between the localized and ballistic regimes in one
dimension [15].

(%) This approach is similar to the discussion of Aharonov-Bohm oscillations of the participation ratic
in disordered rings [16).
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According to (5), the first order energy is a sum of the density squared at all sites,

El(Q) = UZTI,‘TTLQ (28)
where for the filling of an even number of orbitals per spin, the single spin density is,
me—1
ni(®) = [Yo() + me,-(F + 3 D Womo (D). (29)
m=0 o=+
We will now show that the first order energy,
Ei(®) = Uannu (30)

is enhanced near level crossings.
For a pair of fully occupied levels one has, by unitary

[ 4 O + [9m,~G)I* = [ )* + [0k (D = - (31)

Consequently, for weak disorder, all occupied levels, except for the last one, contribute constant
values to the total density:
2mg -1

L oGP (32)

it =
or in terms of the coefficients A, B (17)

2m; A*B_e?k= A _Bre k=i

Ny = A + 17 + 7 (33)
The first order energy is thus given by (32),
2 UA_ 2 _ 2
By@)v = 4me y HA-TIB-L (34)

L L
Using (17) and (25) we can write

E(8)/U ~ 31? + % {1 + (B’Z“) (%)2] , (35)

Differentiating (35) with respect to flux yields
2
8nla) [ @ )°
(=)@ a0

L(®)/U =(%i;()%/1+

In Figure 5, (36) is compared to the numerical ensemble averaged result for I; for various
values of disorder. For each disorder realization, [ is determined by fitting the numerical and
ALC results for the average Iy. We see that for weak disorder there is a satisfying agreement
between the ALC approximation and the numerical results. In Figure 5c, the disorder is too
large, and the ALC approximation fairs badly.

Equation (36) explains both the positive correlation between Iy and I; of (7). Since in one
dimension the mean free path (l.;) and the localization length (£) differ by a proportionality
factor of order unity [15], (36) agrees with the empirical scaling form (9) {11|/U ~ f(L/la)/L
which was found numerically at weak disorder.
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Fig. 5. — Comparison between numerically determined interactions correction /; {dashed lines) and

the analytic ALC result (36) (solid lines). a) - c) show results for three values of disorder strength W.
lei(W) are determined by fitting equation (27) to the numerical disorder averaged Ip(®). Error bars
depict fluctuations of numerical I; for different disorder realizations.
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4. Difference of Hubbard Model and Spinless Fermions

In recent papers [10,11), small disordered rings of spinless electrons have been exactly diago-
nalized. The persistent currents have been computed as a function of disorder and interaction
strength. In contrast to our result for the Hubbard model, interactions have been seen to
reduce the persistent current at weak disorder. Here we apply the ALC approach to explain
this apparent difference between the models.

The spinless Hamiltonian H*® is given by
H = Hg + ZUijn,'nj,
H = - Z[e‘(zllfr?)c:-'+lc; +he] + Ze.-cfc.;. (37)
i i

The non interacting current, I3, is given by half the value of equation (13). In the ALC
approximation, it is given by half the value of equation (27).
Following the analogous derivation of I;, we use (33) to obtain:

E}(®) = 4m*U(0) + 2|4~ |*| B-|*U (2ks), (38)
where
0(k) = %gexp(—ikz,-)Uij, (39)

which implies

-1

EN®) = 4m2U(0)+ U(2k) [1+(8’Z"‘) (%)2]
e = %’%’—‘qu—’ﬁ(zm 1+(8’Z°') (%)2] - (40)

For the spinless nearest neighbor case studied in reference [11]:

Ey(®)=U) ninis1, (41)

the corresponding Fourier coefficient is
U(2ke) = 2U cos(2ky). (42)

Above a quarter filling, k¢ > /4, U is negative. Consequently I has the opposite sign to that
of I in equation (36), and to I§. That is to say, the persistent current of the spinless fermion
model is suppressed by the interactions which is in agreement with the results obtained by
reference {11,13).

The difference between the models can be attributed to the different effects of intersite
interactions (in the spinless model), versus local interactions (in the Hubbard model).
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5. Remarks and Conclusions

We have investigated the first order effect of Hubbard interactions on the persistent current in
one dimensional disordered rings.

The findings can be summarized as follows. I; was found to correlate in sign with Iy, a fact
which goes contrary to the naive intuition that interactions suppress currents (e.g. as they do
for the conductivity of the Luttinger model with an impurity [9]).

We can understand this result by observing that I; depends on charge fluctuations which vary
strongly with flux near the degeneracy points, which also determine the sign and magnitude
of Iy. Using the avoided level crossings theory, we obtain analytical expressions which fit the
numerical results for both Iy and I;. We can use the same theory to explain why spinless
fermions with intersite interactions exhibit suppression of currents rather than enhancement.

We have found numerically that I;(L/¢) scales differently with the localization length than
Io(L/€), it seems that effects of electron-electron interactions grow as disorder is increased.

However, first order perturbation theory in the weakly disordered case is expected to hold as
long as the interaction matrix elements do not exceed the single particle level spacings. Thus we
are restricted to the regime U < 1. We can draw on the exact diagonalization results [10,11]
where for weak disorder, the numerical currents are found to vary linearly with interaction
strength in a sizeable regime. Thus we believe that first order perturbation theory should be
valid for physically interesting interaction parameters.

It would be very satisfying if a similar analysis could be applied to the experimentally relevant
case of three dimensional rings. Preliminary results yield positive correlations between I and
I, but where a simple minded application of the ALC approach cannot describe the diffusive
regime of lg <« L. It would also be important to understand the effects of true long range
Coulomb interactions with the screening and exchange effects which are absent in the Hubbard
model.
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