Please show your work or line of reasoning.
An answer with no work or reasoning receives no credit.
You may use the back of a page if you need more space for a problem.
You may not use any calculators.

<table>
<thead>
<tr>
<th>Page</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1. (10 points) Find and simplify the linearization of the function given by $f(x) = x^{3/4}$ at $x = 81$. (Hint: $81 = 3^4$.)

2. (10 points) Find the derivative of the function given by $f(x) = x \sinh(x) - \cosh(x)$.
3. In each part find the given limit if it exists; explain why if it does not.

(a) (10 points) \(\lim_{x \to \infty} x^2 e^{-x} = \)

(b) (10 points) \(\lim_{x \to 0} \frac{\cos(x) - 1 + x^2/2}{x^4} = \)
4. (10 points) Find all the critical points of the function given by \(h(t) = t^{1/3}(1 - t) \) and use this information to find the global minimum value and global maximum value of \(h \) on the interval \([0, 1]\).
5. Consider the function given by \(f(x) = x^4 - 4x^3 \).

(a) (10 points) Find the intervals of increase or decrease.

(b) (10 points) Find the local extremum points of \(f \) (if any).

(c) (10 points) Find the intervals of concavity and the inflection points of \(f \) (if any).
6. (20 points) Graph the function f given the data below; label all local extremum points, inflection points, and asymptotes.

$f(0) = 0$;
$\lim_{x \to -\infty} f(x) = 1$ and $\lim_{x \to \infty} f(x) = 3$;
$f'(x) > 0$ for $(-\infty, -2), (0, 2)$, and $(2, \infty)$;
$f'(x) < 0$ for $(-2, 0)$;
$f''(x) > 0$ for $(-\infty, -3), (-1, 1)$ and $(2, 3)$; and
$f''(x) < 0$ for $(-3, -1), (1, 2)$ and $(3, \infty)$.