Midterm Exam

Math 21B: Section 001

Summer 2012

Name \qquad
ID number \qquad

Directions

- Do not begin until instructed to do so. You will have 90 minutes to complete the exam.
- You may use pencils, pens, and erasers.
- Put away all books, notes, cell phones, calculators, and other electronic devices.
- Show all work for full credit. If in doubt, write it out.
- Keep your work as neat as possible. If we can't read it, we won't grade it!
- Keep your student ID out on your desk while working on your exam.
- You must also present your student ID to the instructor when turning in your exam.

Point totals

Problem	1	2	3	4	5	6	7	8	9	10	11	total
Score	$/ 8$	$/ 12$	$/ 8$	$/ 8$	$/ 12$	$/ 16$	$/ 8$	$/ 12$	$/ 16$	$/ 16$	$/ 16$	$/ 132$

1. (8 Points) Solve the following initial value problem:

$$
\frac{d s}{d t}=\cos (t)+\sin (t), \quad s(\pi)=1
$$

Solution: We know that $s(t)$ is an antiderivative of the given function. Therefore we calculate

$$
s(t)=\int(\cos (t)+\sin (t)) d t=\sin (t)-\cos (t)+C
$$

We now use the given initial condition to solve for the unknown constant C.

$$
1=s(\pi)=\sin (\pi)-\cos (\pi)+C=1+C, \Rightarrow C=0
$$

This fully determines the function $s(t)=\sin (t)-\cos (t)$.
2. (12 Points) Suppose that f and g are both integrable functions. You are given that

$$
\int_{1}^{3} f(x) d x=-4, \quad \int_{1}^{5} f(x) d x=1, \quad \int_{-1}^{3} g(x) d x=7 / 2, \quad \int_{-1}^{5} g(x) d x=1 / 2 .
$$

Use these facts to calculate the definite integral

$$
\int_{5}^{3}(f(x)-2 g(x)) d x
$$

Solution: We use the properties of the definite integral

$$
\begin{aligned}
\int_{5}^{3}(f(x)-2 g(x)) d x & =-\int_{3}^{5}(f(x)-2 g(x)) d x \\
& =\int_{3}^{5}(2 g(x)-f(x)) d x \\
& =2 \int_{3}^{5} g(x) d x-\int_{3}^{5} f(x) d x \\
& =2\left(\int_{-1}^{5} g(x) d x-\int_{-1}^{3} g(x) d x\right)-\left(\int_{1}^{5} f(x) d x-\int_{1}^{3} f(x) d x\right) \\
& =2(1 / 2-7 / 2)-(1--4)=-11 .
\end{aligned}
$$

3. (8 Points) Calculate the definite integral

$$
\int_{0}^{1} x e^{x^{2}} d x
$$

Solution: We let $u=x^{2}$. A quick calculation shows $d u=2 x d x$ and thus $x d x=\frac{1}{2} d u$. When $x=0$ we have $u=0$, and similarly when $x=1, u=1$. We use these facts to make the substitution

$$
\begin{aligned}
\int_{0}^{1} x e^{x^{2}} d x & =\int_{0}^{1} \frac{1}{2} e^{u} d u \\
& \left.=\frac{1}{2} e^{u}\right]_{0}^{1} \\
& =\frac{1}{2}\left(e^{1}-e^{0}\right) \\
& =\frac{e-1}{2}
\end{aligned}
$$

4. (8 Points) Find the indefinite integral

$$
\int \frac{t \sqrt[3]{t}-\sqrt[3]{t^{2}}}{t^{2}} d t
$$

Solution:

$$
\begin{aligned}
\int \frac{t \sqrt[3]{t}-\sqrt[3]{t^{2}}}{t^{2}} d t & =\int \frac{t \cdot t^{1 / 3}-\left(t^{2}\right)^{1 / 3}}{t^{2}} d t \\
& =\int \frac{t^{4 / 3}-t^{2 / 3}}{t^{2}} d t \\
& =\int t^{-2 / 3}-t^{-4 / 3} d t \\
& =3 t^{1 / 3}+3 t^{-1 / 3}+C
\end{aligned}
$$

5. (12 Points) Sketch the region between the curves $y=1+\cos (x), y=2$, and $x=\pi$. Then calculate the area of this region. Solution: The region in question is pictured in the figure below.

We calculate its area using the formula $A=\int_{a}^{b} h(x) d x$. The function $h(x)$ is the height of the region of interest, which in this case is from the top curve $(y=2)$ to the bottom curve $(y=1+\cos (x))$. Therefore

$$
h(x)=2-(1+\cos (x))=1-\cos (x) .
$$

As can be seen in the figure, the region spans from $x=0$ to $x=\pi$. Thefore

$$
\begin{aligned}
A & =\int_{0}^{\pi}(1-\cos (x)) d x \\
& =x-\sin (x)]_{0}^{\pi} \\
& =(\pi-\sin (\pi))-(0-\sin (0)) \\
& =\pi
\end{aligned}
$$

6. (16 Points) Solve the following initial value problem:

$$
\frac{d^{2} y}{d \theta^{2}}=4 \sec ^{2}(2 \theta) \tan (2 \theta), \quad y^{\prime}(0)=4, \quad y(0)=-1
$$

Solution: As before, we begin by finding the general antiderivative. To do this we make the substitution $u=\sec (2 \theta)$. A quick calculation shows that $d u=2 \sec (2 \theta) \tan (2 \theta) d \theta$. Therefore

$$
\int 4 \sec ^{2}(2 \theta) \tan (2 \theta) d \theta=\int 2 u d u=u^{2}+C=\sec ^{2}(2 \theta)+C
$$

We use the initial condition for $y^{\prime}(\theta)$ to solve for the unknown constant

$$
4=y^{\prime}(0)=\sec ^{2}(0)+C \Rightarrow C=3
$$

This gives us that $\frac{d y}{d \theta}=\sec ^{2}(2 \theta)+3$. We repeat this process to find $y(\theta)$. Taking the antiderivative we have

$$
\int \frac{d y}{d \theta} d \theta=\int\left(\sec ^{2}(2 \theta)+3\right) d \theta=\frac{1}{2} \tan (2 \theta)+3 \theta+C
$$

Using our initial condition we see

$$
-1=y(0)=\frac{1}{2} \tan (0)+3(0)+C \Rightarrow C=-1 .
$$

Therefore

$$
y(\theta)=\frac{1}{2} \tan (2 \theta)+3 \theta-1
$$

7. (8 Points) Find the average value of the function $f(x)=\sin (x)$ over the interval $[0,7 \pi]$. Solution: We know that the average value of a function over an interval is given by $\bar{f}=\frac{1}{b-a} \int_{a}^{b} f(x) d x$. Therefore we calculate

$$
\begin{aligned}
\bar{f} & =\frac{1}{7 \pi-0} \int_{0}^{7 \pi} \sin (x) d x \\
& \left.=\frac{-1}{7 \pi} \cos (x)\right]_{0}^{7 \pi} \\
& =\frac{-1}{7 \pi}(\cos (7 \pi)-\cos (0)) \\
& =\frac{2}{7 \pi}
\end{aligned}
$$

8. (12 Points) Find the length of the curve given by $y=\frac{2}{3}\left(x^{2}+1\right)^{3 / 2}$ on the interval $0 \leq x \leq 2$.
Solution: We begin by recalling the formula for arc length:

$$
L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

In order to use this formula, we calculate

$$
\begin{gathered}
\frac{d y}{d x}=2 x\left(x^{2}+1\right)^{1 / 2} \\
\left(\frac{d y}{d x}\right)^{2}=4 x^{2}\left(x^{2}+1\right)=4 x^{4}+4 x^{2} \\
1+\left(\frac{d y}{d x}\right)^{2}=4 x^{4}+4 x^{2}+1=\left(2 x^{2}+1\right)^{2}
\end{gathered}
$$

and therefore

$$
\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=2 x^{2}+1
$$

This allows us to use the arc length formula and calculate

$$
\begin{aligned}
L & =\int_{0}^{2}\left(2 x^{2}+1\right) d x \\
& \left.=\frac{2}{3} x^{3}+x\right]_{0}^{2} \\
& =\frac{2}{3}\left(2^{3}\right)+2 \\
& =\frac{22}{3}
\end{aligned}
$$

9. (16 Points) Calculate the volume of a sphere of radius 3 by rotating a semi-circular arc (of radius 3) about the x-axis (HINT: The equation for a circle of radius r in the $\mathrm{x}-\mathrm{y}$ plane is $y^{2}+x^{2}=r^{2}$).
Solution: We begin by drawing the semi-circle (or radius 3) in the top half plane. We define the distance from the x -axis to this curve to be $r(x)$.

The formula given in the hint allows us to solve for $r(x)=y=\sqrt{9-x^{2}}$. Using the disk method, we know that rotating this semi-circle about the x -axis will produce a volume $V=\int_{a}^{b} \pi r(x)^{2} d x$. This is the sphere we are interested in. Our limits of integration are where the curve touches the x -axis, which is $x=-3$ and $x=3$. Using this information, we calculate

$$
\begin{aligned}
V & =\int_{-3}^{3} \pi\left(\sqrt{9-x^{2}}\right)^{2} d x \\
& =\int_{-3}^{3} \pi\left(9-x^{2}\right) d x \\
& \left.=\pi\left(9 x-\frac{x^{3}}{3}\right)\right]_{-3}^{3} \\
& =\pi\left(27-\frac{27}{3}\right)-\pi\left(-27+\frac{27}{3}\right) \\
& =\pi(27-9+27-9) \\
& =36 \pi
\end{aligned}
$$

10. (16 Points) Calculate the volume of the solid that is generated when you take the region bounded by the x -axis and the graph of $f(x)=\sin \left(x^{2}\right)$ (on the interval $0 \leq x \leq \sqrt{\pi}$) and revolve it about the y -axis.
Solution: We will calculate this volume using the method of cylindrical shells. Begin by sketching the region being rotated and drawing a slice through it parallel to the axis of revolution.

This slice has a thickness that we call $d x$. It is a distance $r(x)=x$ from the axis of revolution. It stretches from the x -axis to the curve $y=\sin \left(x^{2}\right)$. Therefore the height of this slice is $h(x)=\sin \left(x^{2}\right)$. The method of cylindrical shells tells us that the volume of the solid of revolution is

$$
V=\int_{a}^{b} 2 \pi r(x) h(x) d x=\int_{0}^{\sqrt{\pi}} 2 \pi x \sin \left(x^{2}\right) d x .
$$

To evaluate this integral, we make the substitution $u=x^{2}$. A quick calculation shows us that $d u=2 x d x$, when $x=0, u=0$, and when $x=\sqrt{p i}, u=\pi$. Using this information, we make a U-substitution and get

$$
\left.V=\int_{0}^{\pi} \pi \sin (u) d u=-\pi \cos (u)\right]_{0}^{\pi}=2 \pi
$$

11. (16 Points) Calculate the lateral surface area (not including the circular end) of the solid that is generated when you take the graph of the function $g(y)=y^{3} / 3$ on the interval $0 \leq y \leq 1$ and revolve it about the y -axis.
Solution: The figure below shows the curve that will be rotated about the y-axis. Recall that the area for surfaces of revolution is

$$
A=\int_{a}^{b} 2 \pi x(y) \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y
$$

We begin by calculating the terms needed to evaluate this integral:

$$
\frac{d x}{d y}=y^{2}, \quad\left(\frac{d x}{d y}\right)^{2}=y^{4}, \quad \sqrt{1+\left(\frac{d x}{d y}\right)^{2}}=\sqrt{y^{4}+1}
$$

The problem statement tells us that we will be integrating from $y=0$ to $y=1$. Therefore we must evaluate the integral

$$
A=\int_{0}^{1} \frac{2 \pi}{3} y^{3} \sqrt{y^{4}+1} d y
$$

To do this, we make the substitution that $u=y^{4}+1$. A calculation shows us that $d u=4 y^{3} d y$, and therefore $\frac{2}{3} y^{3} d y=\frac{1}{6} d u$. Furthermore, when $y=0$, we have $u=1$, and when $y=1, u=2$. This allows us to make the substitution

$$
\begin{aligned}
A & =\int_{0}^{1} \frac{2 \pi}{3} y^{3} \sqrt{y^{4}+1} d y \\
& =\int_{1}^{2} \frac{\pi}{6} \sqrt{u} d u \\
& \left.=\frac{\pi}{9} u^{3 / 2}\right]_{1}^{2} \\
& =\frac{\pi}{9}\left(2^{3 / 2}-1^{3 / 2}\right) \\
& =\frac{\pi}{9}(2 \sqrt{2}-1)
\end{aligned}
$$

