Name: \qquad Student ID: \qquad

Quiz 1

Directions: You will have 30 minutes to complete this quiz. Please show all of your work and mark your answers clearly. You may not use any extra resources during the quiz: not your notes, not your book, not a cell phone, not a calculator. Good luck.

1. (6 points) Find the general anti-derivative $\int f(x) d x$ when

$$
f(x)=\frac{1}{2 \sqrt{x}}+2 \sec (x) \tan (x)-4 \cos (x)-e^{-3 x} .
$$

Solution: We find the general anti-derivative

$$
\begin{aligned}
& \int\left(\frac{1}{2 \sqrt{x}}+2 \sec (x) \tan (x)-4 \cos (x)-e^{-3 x}\right) d x \\
& =\int \frac{1}{2 \sqrt{x}} d x+2 \int \sec (x) \tan (x) d x-4 \int \cos (x) d x-\int e^{-3 x} d x \\
& =\sqrt{x}+2 \sec (x)-4 \sin (x)+\frac{e^{-3 x}}{3}+C
\end{aligned}
$$

2. (6 points) A bullet is fired at time $t=1$ with an initial velocity of $v=400$. If the bullet's acceleration is given by the function $a(t)=-100 t$, find the velocity of the bullet as a function of time.
Solution: We know that velocity must be an antiderivative of acceleration. Therefore we begin by finding the general antiderivative of the acceleration.

$$
\int a(t) d t=\int(-100 t) d t=-50 t^{2}+C .
$$

Now we use the given initial condition to determine the unknown constant C.

$$
v(1)=-50\left(1^{2}\right)+C=400 . \Longrightarrow C=450 .
$$

This fully defines the velocity as a function of time.

$$
v(t)=-50 t^{2}+450
$$

3. (8 points) From the book, we know that

$$
\int_{0}^{b} x d x=\frac{b^{2}}{2}, \quad \text { and } \quad \int_{0}^{b} x^{2} d x=\frac{b^{3}}{3} .
$$

Use these facts and the properties of definite integrals to calculate

$$
\int_{1}^{2}\left(6 x+3 x^{2}\right) d x
$$

(Do not use the Fundamental Theorem of Calculus, or the Evaluation Theorem) Solution:

$$
\begin{aligned}
\int_{1}^{2}\left(6 x+3 x^{2}\right) d x & =\int_{1}^{2} 6 x d x+\int_{1}^{2} 3 x^{2} d x \quad \text { (Rule 4: Sum \& Difference) } \\
& =6 \int_{1}^{2} x d x+3 \int_{1}^{2} x^{2} d x \quad \text { (Rule 3: Constant Multiple) } \\
& =6\left(\int_{0}^{2} x d x-\int_{0}^{1} x d x\right)+3\left(\int_{0}^{2} x^{2} d x-\int_{0}^{1} x^{2} d x\right) \text { (Rule 5: Additivity) } \\
& =6\left(\frac{2^{2}}{2}-\frac{1^{2}}{2}\right)+3\left(\frac{2^{3}}{3}-\frac{1^{3}}{3}\right) \quad \text { (From Problem Statement) } \\
& =6\left(2-\frac{1}{2}\right)+3\left(\frac{8}{3}-\frac{1}{3}\right) \\
& =12-3+8-1 \\
& =16
\end{aligned}
$$

