Name: \qquad Student ID: \qquad

Quiz 2
Directions: You will have 30 minutes to complete this quiz. Please show all of your work and mark your answers clearly. You may not use any extra resources during the quiz: not your notes, not your book, not a cell phone, not a calculator. Good luck.

1. (5 points) Evaluate the definite integral

$$
\int_{\pi}^{2 \pi}(\sec x+\tan x)^{2} d x
$$

Solution: We first expand, then use the identity $\tan ^{2}(x)+1=\sec ^{2}(x)$.

$$
\begin{aligned}
\int_{\pi}^{2 \pi}(\sec x+\tan x)^{2} d x & =\int_{\pi}^{2 \pi}\left(\sec ^{2} x+2 \sec (x) \tan (x)+\tan ^{2} x\right) d x \\
& =\int_{\pi}^{2 \pi}\left(2 \sec ^{2} x+2 \sec (x) \tan (x)-1\right) d x \\
& =(2 \tan (x)+2 \sec (x)-x)]_{\pi}^{2 \pi} \quad \text { (Evaluation Theorem) } \\
& =(2 \tan (2 \pi)+2 \sec (2 \pi)-2 \pi)-(2 \tan (\pi)+2 \sec (\pi)-\pi) \\
& =(0+2-2 \pi)-(0-2-\pi) \\
& =4-\pi
\end{aligned}
$$

2. (5 points) Find the general anti-derivative

$$
\int \sin (3 x) e^{\cos (3 x)} d x
$$

Solution: We begin by defining $u=g(x)=\cos (3 x)$ and calculating

$$
d u=\frac{d g}{d x} \cdot d x=-3 \sin (3 x) d x
$$

This allows us to make the substituion

$$
\begin{aligned}
\int \sin (3 x) e^{\cos (3 x)} d x & =\int\left(\frac{-1}{3}\right)(-3 \sin (3 x)) e^{\cos (3 x)} d x \\
& =\int\left(\frac{-1}{3}\right) e^{u} d u \\
& =\frac{-1}{3} e^{u}+C \\
& =\frac{-1}{3} e^{\cos (3 x)}+C .
\end{aligned}
$$

3. (5 points) Evaluate the definite integral

$$
\int_{1}^{e} \frac{2 \ln (x)}{x} d x
$$

Solution: We begin by defining $u=g(x)=\ln (x)$ and calculating

$$
d u=\frac{d g}{d x} \cdot d x=\frac{1}{x} d x
$$

We also calculate the new limits of integration. The lower limit is $g(1)=\ln (1)=0$. The upper limit is $g(e)=\ln (e)=1$. We are now ready to rewrite the integral and evaluate

$$
\begin{aligned}
\int_{1}^{e} \frac{2 \ln (x)}{x} d x & =\int_{1}^{e} 2 \ln (x) \frac{1}{x} d x \\
& =\int_{0}^{1} 2 u d u \\
& \left.=u^{2}\right]_{0}^{1} \\
& =1^{2}-0^{2} \\
& =1
\end{aligned}
$$

4. (5 points) Suppose that we know $G(x)=\int_{0}^{x} f(t) d t=e^{x^{2}}$. Use this to calculate $f(1)$. Solution: From the Fundamental Theorem of Calculus, we know that $G^{\prime}(x)=\frac{d G}{d x}=f(x)$. Therefore we calculate

$$
\begin{aligned}
f(x) & =\frac{d}{d x}[G(x)] \\
& =\frac{d}{d x}\left[e^{x^{2}}\right] \\
& =e^{x^{2}} \cdot \frac{d}{d x}\left[x^{2}\right] \\
& =e^{x^{2}} \cdot 2 x
\end{aligned}
$$

From this we can immediately evaluate $f(1)=2 \cdot 1 \cdot e^{1^{2}}=2 e$.

