4/4/19

12/midterm) Q: \[E[Y^p] \]

\[X \sim \text{Exp} (\theta = 1000) \quad d = 200 \text{ franchise deductible} \]
\[u = 2000 \text{ policy limit} \]

\[Y^L = \begin{cases}
0 & \text{if } x < 200 \\
x & \text{if } 200 \leq x < 2000 \\
2000 & \text{if } x \geq 2000
\end{cases} \]

\[Y^P = Y^L \mid X > 200 \]

\[\therefore E[Y^P] \text{ is an expected value of a conditional random variable.} \]

General situation:

\[E[g(X) \mid X > a] = \int_a^\infty g(x) \cdot f_x(x) \, dx \]

\[f_x(x) = \begin{cases}
0 & \text{if } x \leq a \\
\frac{f_x(x)}{Pr(X > a)} & \text{if } x > a
\end{cases} \]

\[\therefore E[g(X) \mid X > a] = \int_a^\infty g(x) \cdot \frac{f_x(x)}{Pr(X > a)} \, dx \]

\[\therefore \#12 \quad E[Y^P] = \int_{200}^{2000} x \cdot \frac{f(x)}{Pr(X > 200)} \, dx + \int_{2000}^{\infty} 2000 \cdot \frac{f(x)}{Pr(X > 200)} \, dx \]
Remark: \[
\frac{\int_{-\infty}^{\infty} x f(x) \, dx + \int_{200}^{\infty} f(x) \, dx}{\Pr(X > 200)} = \frac{E[Y^2]}{\Pr(X > 200)}
\]

M453: Estimating Parameters

Set-up:
- Given a random variable \(X \) that has \(k \) parameters, we'll have a sample of size \(n \).

\[X: x_1, x_2, \ldots, x_n\]

Method 1: Method of Moments (Moment-Matching)

- First, find the empirical distribution, \(\hat{X} \), from the sample.

Example: \(X: 15, 20, 15, 30 \)

Then, the empirical distribution for this sample is:

<table>
<thead>
<tr>
<th>(\hat{X})</th>
<th>(\Pr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>2/4 = 0.5</td>
</tr>
<tr>
<td>20</td>
<td>0.25</td>
</tr>
<tr>
<td>30</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Then match the 1\(^{st}\) \(k \) moments of \(X \) to the 1\(^{st}\) \(k \) moments of \(\hat{X} \)

i.e.: \(E[X^1] = E[\hat{X}^1] \)
\(E[X^2] = E[\hat{X}^2] \)
\(\vdots \)
Method 2: Maximum likelihood Estimation MLE

Idea: Choose the parameters to maximize the "probability" that what happened happens.

Example: \(N \sim \text{Binomial}(m=10, q) \)

\(N: 4, 2, 7 \)

Q: Find the MLE of \(q \) \((0 \leq q \leq 1) \)

A: For this sample, the likelihood function is

\[
L(q) = \Pr(N=4) \cdot \Pr(N=2) \cdot \Pr(N=7)
\]

\[
= \left[\binom{10}{4} q^4 (1-q)^6 \right] \cdot \left[\binom{10}{2} q^2 (1-q)^8 \right] \cdot \left[\binom{10}{7} q^7 (1-q)^3 \right]
\]

Fact: The location of the maximum value of \(L(q) \) is the same as the location of the maximum value of the expression defining \(L(q) \), ignoring the constant factors.

\[
L(q) \propto q^4 \cdot (1-q)^6\quad \text{definition} \quad \hat{L}(q)
\]

We seek the location of the maximum value of \(\hat{L}(q) \)

Fact: The location of the maximum value of an expression is the same as the location of the maximum value of the natural log of the expression.
Notation: \(L(q) = \text{likelihood function} \)
\(\tilde{L}(q) = \ln(L(q)) = \text{loglikelihood function} \)

Maximize \(\tilde{L}(q) = \ln(\tilde{L}(q)) = 13 \ln(q) + 17 \ln(1-q) \)

Set \(\tilde{L}'(q) = 0 \) and solve