MAP 4934 Midterm

Name:_____

Show all work for full credit, use correct notation, and clearly mark your answer.

- 1. In order to reward efficiency, a company decides to pay its employees a bonus of 50% times the amount by which the companies expenses are under 400. If company expenses are modeled by a lognormal distribution with $\mu = 5.7$ and $\sigma = 0.75$, determine the expected amount of bonus to be paid to employees.
- 2. You are given:

(i) with probability 0.3, *X* has a Burr distribution with $\alpha = 3$, $\theta = 100$ and $\gamma = 1$ (ii) with probability 0.7, *X* has a Weibull distribution with $\tau = 1$ and $\theta = 100$ Determine *Var*(*X*)

- 3. The distribution of the discrete random variable, *N*, is such that $p_0 = 0.25$, and $p_k = c \left(1 \frac{2}{k}\right) p_{k-1}$ for k = 1, 2, ... Determine Var(N)
- 4. *X* follows a two-parameter Pareto distribution with $\alpha = 2$ and unknown θ . If E[X 100|X > 100] = 5E[X], determine E[X 25|X > 50].
- 5. N^T is a zero-truncated Binomial random variable with m = 10 and q = 0.1. Determine $Pr(N^T = 2)$.
- 6. Severity *X* is an Exponential random variable with mean 1000. An insurance company will pay the amount of each claim in excess of a deductible of 100. Calculate the variance of the payment per loss random variable.
- 7. The ground-up loss random variable is a two-parameter Pareto distribution with parameters $\alpha = 4$ and $\theta = 1200$. If a franchise deductible of 300 is imposed, determine the expected payment per payment.
- Given Λ = λ, the (conditional) number of claims, N|Λ = λ, for an insured follows a Poisson distribution with mean λ. Λ follows a Gamma distribution, independent of *N*. The unconditional number of claims, *N*, for a random insured follows a distribution with mean 0.10 and variance 0.15. Determine the variance of Λ.
- 9. *X*, the severity random variable for losses in 2020, has $f_X(x) = 0.1e^{-0.1x}$ for x > 0. Inflation of 10% impacts all losses uniformly for the next year, 2021. In 2021, a deductible of 2 is applied to all losses. *Y* is the payment random variable per payment made in 2021. Find $F_Y(5)$.
- 10. The ground-up loss *X* is a Uniform random variable on the interval [0,1000]. Let $M_3 = \max \{X_1, X_2, X_3\}$ for three mutually independent observations of *X*. Let $A = \Pr (M_3 > 400)$ and $B = \Pr (X > 400)$. Determine *A*/*B*.

- 11. The ground-up loss *X* is an Exponential random variable with mean 1000, and there is an ordinary deductible of d = 200 and a coinsurance factor of $\alpha = .8$. Determine the expected payment per loss.
- 12. The ground-up loss *X* is an Exponential random variable with mean 1000. There is a franchise deductible of d = 200 and a policy limit of u = 2000. Determine the expected payment per payment.
- 13. The loss random variable *X* follows a Weibull distribution with parameters $\theta = 10$ and $\tau = 2$. *Y* is the payment per payment random variable when a deductible of 4 is established. Find Pr (*Y* < 8).
- 14. The numbers *N* of losses each year are independent and identically distributed as Geometric random variables with mean 2. Find the probability that there is at most one claim during a five-year period.
- 15. The length of time, in years, that a person will remember an actuarial statistic is modeled by an exponential distribution with mean 1/Y. In a certain population, *Y* has a gamma distribution with $\alpha = \theta = 2$. Calculate the probability that a person drawn at random from this population will remember an actuarial statistic less than one year.
- 16. The severity, *X*, of a loss follows a normal distribution with mean θ and variance 8000, where θ follows a normal distribution with mean 1000 and variance *A*. Given Pr(X > 1150) = 0.0668, determine *A*.
- 17. You are given the following probabilities from a 0-modified (a, b, 0) distribution.

$$p_1^M = \frac{1}{4}$$
 $p_2^M = \frac{3}{16}$ $p_3^M = \frac{9}{64}$

Determine p_0^M

- 18. A claim count distribution can be expressed as a mixed Poisson distribution. The mean of the Poisson distribution is uniformly distributed over the interval [0,10]. Determine the variance of the number of claims.
- 19. A claim count distribution is a 30% / 70% mixture of a Poisson distribution with mean equal to 3 with a geometric distribution with mean equal to 3. Determine the probability that there will be at least two claims.
- 20. For each individual in a family of three, the annual number of driving accidents follows a binomial distribution with parameters m = 2 and q = 0.2. The annual numbers of driving accidents for the family members are mutually independent. Determine the probability of exactly 2 driving accidents in a year for the family.