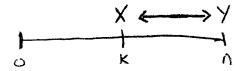
Section 4: General Force of Interest

Relating force of interest to accumulation functions:

Given
$$a(t)$$
, then $\delta_t = \frac{a'(t)}{a(t)}$ (t is measured in years)

Given
$$\delta_t$$
, then $a(t) = e^{\int_0^t \delta_r dr}$ (t is measured in years)

Accumulating and Discounting using General Force of Interest:



$$Y = X \cdot e^{\int_{k}^{n} \delta_{t} dt}$$
, or equivalently, $X = Y \cdot e^{\int_{n}^{k} \delta_{t} dt}$

Special Cases:

1.

$$\delta_t = c \cdot \frac{f'(t)}{f(t)} \Longrightarrow a(t) = \left(\frac{f(t)}{f(0)}\right)^c$$

2. Constant Force of Interest: $\delta_t = \delta$ (see earlier notes on continuous compounding)

$$a(t) = e^{\delta t}$$

Module 1 Section 4 Problems:

1. Given
$$a(t) = 1 + 2t + \frac{1}{2}t^2$$
, determine an expression for the general force of interest.

2. Given
$$a(t) = 100 + 200t + 50t^2$$
, determine δ_2 .

3. Given
$$\delta_t = \frac{6t}{2+6t^2}$$
 determine $a(1)$.

- 4. Suppose $\delta_t = .02t, t > 0$.
 - a. Determine the accumulation function.
 - b. Determine the accumulated value at time 7 of the time 3 value of 100.
- 5. Given $\delta_t = \frac{.03}{1-.03t}$ determine the discounted value at time 2 of the time 6 value of 50.

Solutions to Module 1 Section 4 Problems:

$$\int_{t} = \frac{2+t}{1+2t+t^{2}}$$

$$\mathcal{L}_{2} = \frac{4}{7}$$

$$3) a(1) = 2$$

$$4$$
) (a) $a(t) = e^{i01t^2}$

(b)
$$X = 149.18$$