Show sufficient work and clearly mark your answers. Each problem is worth 10 points.

1. Determine the present value of a 20-year annuity due with annual payments of 250 using an annual effective interest rate of 3% for the first 8 years and 6% thereafter.

(A) 3540 (B) 3550 (C) 3560 (D) 3570 (E) 3580

\[
P_V = 250 \cdot \ddot{a}_{8\%} + 250 \cdot \ddot{a}_{12\%} \cdot u_{3\%}^8 \approx 3561.42
\]

\[c\]

2. The accumulated value of a level annuity after 20 payments is \(c\) times the accumulated value of the annuity after 10 payments, when using a periodic discount factor \(v\) such that \(v^{10} = 0.4\). Determine \(c\).

(A) 1.5 (B) 2.0 (C) 2.5 (D) 3.0 (E) 3.5

\[
A_{V_{20}} = c \cdot A_{V_{10}}
\]

\[
v^{10} = 0.4 \implies (1+c)^{10} = 2.5
\]

\[
(1+c)^{20} = (1+c)^{10} \cdot (1+c)^{10} = 6.25
\]

\[
(1+c)^{20} - 1 = c \left[(1+c)^{10} - 1 \right]
\]

\[
6.25 - 1 = c \left[2.5 - 1 \right] \implies c = 3.5
\]

\[E\]
3. An annual payment annuity has an initial payment of 1. Subsequent payments increase by 1 until reaching a payment of \(n\). Payments then decrease by 1 until reaching a final payment of 1. Using an annual effective interest rate of 5%, the present value of the annuity two years before the first payment is 198.64. Determine \(n\).

\[
PV(\text{rainbow annuity due - peak } n) = \left(\frac{a^{-1}}{d^{-1}}\right)^2
\]

\[
198.64 \times (1.05)^2 = \left(\frac{a^{-1}}{d^{-1}}\right)^2 \implies n = 25
\]

4. A perpetuity due with annual payments has an initial payment of 4 and each subsequent payment is 9 more than its preceding payment. The present value of the perpetuity, when calculated using an annual effective discount rate of \(d\), is 850. Determine \(d\).

\[
PV = \frac{4}{d} + \frac{9}{d^2} = 850 \quad \Rightarrow \frac{4}{d} + \frac{9}{d^2} = \frac{850}{1+d} \implies d^2(1+d) = 850d^2
\]

\[
4 \cdot d(1+d) + 9(1+d) = 850d^2
\]

\[
846 \cdot d^2 + 13 \cdot d + 9 = 0 \implies d = \frac{-13 \pm \sqrt{306.25}}{2(846)} = 0.1
\]

\[
\Rightarrow d = \frac{d}{1+d} = 0.1
\]
5. A 25-year annuity with semi-annual payments has first payment equal to 2 and each subsequent payment is 20% more than its preceding one. Determine the accumulated value of the annuity one year after the last payment, using an annual effective interest rate of 10.25%.

\[
A = a_{\frac{1}{2}}^{49} (1.05)^2 + a_{\frac{1}{2}}^{48} (1.05)^3 + \cdots
\]

\[
= 2(1.2)^{49} (1.05)^2 \left[1 + \frac{1.05}{1.2} + \cdots \right]
\]

\[
r = \frac{1.05}{1.2} < 1
\]

\[
= 2(1.2)^{49} (1.05)^2 \cdot \frac{1}{50} \left(\frac{1.2}{1.05} - 1 \right)
\]

\[
\approx 133,607.87
\]

6. A perpetuity due with annual payments has the following payment schedule: 100, 200, 300, 400, 500, 400, 300, 200, 200, 200, Determine the present value of the perpetuity using an annual effective interest rate of 2%.

\[
PV = 100 \left(\frac{1}{51.02} \right)^2 + 100 \left(\frac{2}{.02} \right)^8 + \frac{200}{.02} \cdot \left(\frac{2}{.02} \right)^8
\]

\[
\approx 10,931.68
\]
7. Sue invests 100 at the end of each year for 15 years into an account that pays interest annually at an annual effective interest rate of i. The interest payments are reinvested at an annual effective interest rate of 5%. At the end of the 15 year period, Sue has a total accumulated value of 1921. Determine i.

(A) 0.032 (B) 0.034 (C) 0.036 (D) 0.038 (E) 0.040

\[\text{Principal} \quad (\text{aeir} = i) \]

\[100 \quad 100 \quad 100 \quad 100 \quad \ldots \quad 100 \quad 100 \]

\[\text{Interest} \quad (\text{aeir} = 0.05) \]

\[0 \quad 1 \quad 2 \quad 3 \quad 4 \quad \ldots \quad 14 \quad 15 \]

\[1000 \quad 2000 \quad 3000 \quad \ldots \quad 13000 \quad 14000 \]

\[\therefore \text{AV} = 1921 \]

\[\therefore 1921 = 100 (1 + s) + 100 \int_{14}^{15.05} \]

\[\Rightarrow \overline{i} = 0.032 \]

8. At an annual effective interest rate i, both of the following annuities have a present value of X.

(i) a 10-year annuity due with annual payments of 15
(ii) a 15-year annuity due with annual payments of 10 for the first 5 years, 20 for the second 5 years, and 30 for the last five years

Determine X.

(A) 54.25 (B) 67.60 (C) 72.30 (D) 74.80 (E) 88.15

\[PV_i = 15 \ddot{a}_{10\ i} = 15 \ddot{a}_{10} + 15 \ddot{a}_{5\ i} u^5 \]

\[PV_{ii} = 10 \ddot{a}_{5\ i} + 20 \ddot{a}_{5\ i} u^5 + 30 \ddot{a}_{5\ i} u^{10} \]

\[PV = PV_{ii} \Rightarrow x_{15} (15 + 15 u^5) = x_{15} (10 + 20 u^5 + 30 u^{10}) \]

\[\Rightarrow 30 u^{10} + 5 u^5 - 5 = 0 \]

\[\Rightarrow u^5 = \frac{-5 \pm \sqrt{625}}{2(30)} = \frac{1}{3} \Rightarrow i = 3^{\frac{1}{5}} - 1 \]

\[X = 15 \ddot{a}_{10\ i} = 67.6 \]
9. An annuity due with semiannual payments has an initial payment of 60 and each subsequent payment decreases by 7 until reaching a final payment of 4. Determine the present value of the annuity using an annual effective interest rate of 12.36%.

\[\text{secr} = \sqrt{1.1236} - 1 = 0.06 \]

\[PV = 4 \cdot a_{\overline{91.06}} + 7(10 \cdot a_{\overline{81.06}}) = 250.23 \]

D

10. A perpetuity due with annual payments has the following payment pattern:
1, 2, 3, 1, 2, 3, ...
Determine the present value of the perpetuity at an annual effective interest rate of 5%.

\[j = t \cdot e^{cr} = 1.05^3 - 1 \]

\[PV = \frac{(T \cdot a_{\overline{31.05}})}{j} (1 + j) = 41.3 \]

E